Yıl: 2022 Cilt: 22 Sayı: 2 Sayfa Aralığı: 120 - 131 Metin Dili: İngilizce DOI: 10.54614/electrica.2022.22021

Superdense Coding, Teleportation Algorithms, and Bell’s Inequality Test in Qiskit and IBM Circuit Composer

Öz:
Quantum teleportation is a technique of sending information from one place to another place. Distance between two points can be hundreds of thousands of lightyears. For quantum teleportation, there is no need for a channel between two points when sending a state vector from one place to another. Since classical information sharing is possible, it is also possible to send a state vector from one place to another place. Teleportation is the transfer of a quantum state from one place to another through classical channels. Superdense coding, a dual to teleportation, uses a single quantum bit to transmit two bits classical information. Superdense coding uses a qubit to transfer two classical bits, while teleportation performs one qubit transfer using two classical bits. In this article, teleportation, superdense coding algorithms, and the Bell’s inequality test in which Bell’s inequality is violated with quantum mechanics are performed on both Qiskit and International Business Machines circuit composer, and results are compared and presented in detail. The results revealed that whether a faster-than-light signal transfer is possible using quantum mechanics depends on whether a copy of the quantum state is created or not. Finally, Bell’s inequality created by classical logic violated by quantum mechanics is shown by experimental results.
Anahtar Kelime:

Konular:
Fen > Mühendislik > Mühendislik, Elektrik ve Elektronik
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. M. A. Nielsen, and I. L. Chuang, Quantum Computation and Quantum Information. New York, USA: Cambridge University Press, 2000.
  • 2. E. Rieffel, and W. Polak, “An introduction to quantum computing for nonphysicists,” ACM Comput. Surv., vol. 32, no. 3, pp. 300–335, 2000. [CrossRef]
  • 3. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett., vol. 70, no. 13 no. 13, pp. 1895–1899, 1993. [CrossRef]
  • 4. D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett., vol. 80, no. 6, pp. 1121–1125, 1998. [CrossRef]
  • 5. C. H. Bennett, and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein- Podolsky-Rosen states,” Phys. Rev. Lett., vol. 69, no. 20, pp. 2881–2884, 1992. [CrossRef]
  • 6. K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett., vol. 76, no. 25, pp. 4656–4659, 1996. [CrossRef]
  • 7. C. Wang, F.-G. Deng, Y.-S. Li, X.-S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A, vol. 71, no. 4, 2005. [CrossRef]
  • 8. S. L. Braunstein, and H. J. Kimble, “Dense coding for continuous variables,” Phys. Rev. A, vol. 61, no. 4, 1999. [CrossRef]
  • 9. Z. Zhao, Y. A. Chen, A. N. Zhang, T. Yang, H. J. Briegel, and J. W. Pan, “Experimental demonstration of five-photon entanglement and opendestination teleportation,” Nature, vol. 430, no. 6995, pp. 54–58, 2004. [CrossRef]
  • 10. W. Pfaff et al., “Unconditional quantum teleportation between distant solid-state qubits,” Sci. Am. Assoc. Adv. Sci. (AAAS), vol. 345, no. 6196, pp. 532–535, 2014
  • 11. S. Hillmich, A. Zulehner, and R. Wille, ““Exploiting quantum teleportation in quantum circuit mapping”, Quantum Physics (quant-ph), 26th Asia and South Pacific Design Automation Conference (ASP-DAC), IEEE, pp. 792–797, January, 2021.
  • 12. J. S. Bell, “On the Einstein Podolsky Rosen Paradox”, Physics Publishing Co., United State, vol. 1, no. 3, 1964, pp. 195–200.
  • 13. J. D. Hidary, Quantum Computing: An Applied Approach. Switzerland: Springer, 2019.
  • 14. D. N. Matsukevich, P. Maunz, D. L. Moehring, S. Olmschenk, and C. Monroe, “Bell inequality violation with two remote atomic qubits,” Phys. Rev. Lett., vol. 100, no. 15, 150404, 2008. [CrossRef]
APA KOÇAK Y, SEVGEN S (2022). Superdense Coding, Teleportation Algorithms, and Bell’s Inequality Test in Qiskit and IBM Circuit Composer. Electrica, 22(2), 120 - 131. 10.54614/electrica.2022.22021
Chicago KOÇAK Yasemin POYRAZ,SEVGEN Selçuk Superdense Coding, Teleportation Algorithms, and Bell’s Inequality Test in Qiskit and IBM Circuit Composer. Electrica 22, no.2 (2022): 120 - 131. 10.54614/electrica.2022.22021
MLA KOÇAK Yasemin POYRAZ,SEVGEN Selçuk Superdense Coding, Teleportation Algorithms, and Bell’s Inequality Test in Qiskit and IBM Circuit Composer. Electrica, vol.22, no.2, 2022, ss.120 - 131. 10.54614/electrica.2022.22021
AMA KOÇAK Y,SEVGEN S Superdense Coding, Teleportation Algorithms, and Bell’s Inequality Test in Qiskit and IBM Circuit Composer. Electrica. 2022; 22(2): 120 - 131. 10.54614/electrica.2022.22021
Vancouver KOÇAK Y,SEVGEN S Superdense Coding, Teleportation Algorithms, and Bell’s Inequality Test in Qiskit and IBM Circuit Composer. Electrica. 2022; 22(2): 120 - 131. 10.54614/electrica.2022.22021
IEEE KOÇAK Y,SEVGEN S "Superdense Coding, Teleportation Algorithms, and Bell’s Inequality Test in Qiskit and IBM Circuit Composer." Electrica, 22, ss.120 - 131, 2022. 10.54614/electrica.2022.22021