Yıl: 2021 Cilt: 45 Sayı: 3 Sayfa Aralığı: 508 - 518 Metin Dili: İngilizce DOI: 10.3906/vet-2005-80 İndeks Tarihi: 04-07-2022

Identification of microRNAs in the follicular and luteal tissues of Holstein-Friesian cows

Öz:
MicroRNAs (miRNAs) regulate many physiological pathways, including development, cell differentiation, immune response as well as diseases by post-transcriptional processes. However, information is limited regarding the biological roles of miRNAs in the development of the follicular and luteal tissues in cows. The main aim of the present study was to identify miRNAs that are expressed in the follicular and luteal tissues of cows. We used a comparative RNA sequencing method to identify miRNA candidates that might play key roles in the follicular and luteal phases of Holstein cows. Nine miRNAs were expressed at a high ratio: 8 in the follicular tissue and one in the luteal tissue. Bioinformatics analysis predicted 2479 target genes. RNA sequencing identified several miRNA candidates, including bta-miR-196a, bta-miR-490, bta-miR-1247-5p, bta-miR-34c, and bta-miR-222. These were associated with pathways like TGF-beta signaling, gonadotropin-releasing hormone receptor, prolactin signaling, and progesterone-mediated oocyte maturation associated with the reproductive system. These findings will be beneficial in future comprehensive studies on the miRNAs involved in regulating the development of follicular and luteal tissues in cows.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. McBride D, Carre W, Sontakke SD, Hogg CO, Law A et al. Identification of miRNAs associated with the follicular-luteal transition in the ruminant ovary. Reproduction 2012; 144 (2): 221-233. doi:10.1530/rep-12-0025
  • 2. Zhu L, Chen T, Sui M, Han C, Fang F et al. Comparative profiling of differentially expressed microRNAs between the follicular and luteal phases ovaries of goats. SpringerPlus 2016; 5 (1): 1233. doi:10.1186/s40064-016-2902-1
  • 3. Manik RS, Palta P, Singla SK, Sharma V. Folliculogenesis in buffalo (Bubalus bubalis): a review. Reproduction, Fertility, and Development 2002; 14 (5): 315-325. doi: 10.1071/rd01126
  • 4. Richards JS, Pangas SA. The ovary: basic biology and clinical implications. The Journal of Clinical Investigation 2010; 120 (4): 963-972. doi:10.1172/jci41350
  • 5. Puglisi R, Montanari M, Chiarella P, Stefanini M, Boitani C. Regulatory role of BMP2 and BMP7 in spermatogonia and Sertoli cell proliferation in the immature mouse. European Journal of Endocrinology 2004; 151 (4): 511-520. doi: 10.1530/ eje.0.1510511
  • 6. Tomizuka K, Horikoshi K, Kitada R, Sugawara Y, Iba Y. et al. R-spondin1 plays an essential role in ovarian development through positively regulating Wnt-4 signaling. Human Molecular Genetics 2008; 17 (9):1278-1291. doi:10.1093/hmg/ ddn036
  • 7. Donadeu FX, Pedersen HG. Follicle development in mares. Reproductive Domestic Animals 2008; 43 (2): 224-231. doi:10.1111/j.1439-0531.2008.01166.x
  • 8. Gilbert I, Robert C, Dieleman S, Blondin P, Sirard MA. Transcriptional effect of the LH surge in bovine granulosa cells during the peri-ovulation period. Reproduction 2011; 141 (2): 193-205. doi:10.1530/rep-10-0381
  • 9. Rao JU, Shah KB, Puttaiah J, Rudraiah M. Gene expression profiling of preovulatory follicle in the buffalo cow: effects of increased IGF-I concentration on periovulatory events. PloS One 2011; 6 (6): e20754. doi:10.1371/journal.pone.0020754
  • 10. Christenson LK, Gunewardena S, Hong X, Spitschak M, Baufeld A et al. Research resource: preovulatory LH surge effects on follicular theca and granulosa transcriptomes. Molecular Endocrinology 2013; 27 (7): 1153-1171. doi:10.1210/me.2013- 1093
  • 11. Berezikov E Evolution of microRNA diversity and regulation in animals. Nature Reviews Genetics 2011; 12 (12): 846-860. doi:10.1038/nrg3079
  • 12. Naeem A, Zhong K, Moisa SJ, Drackley JK, Moyes KM et al. Bioinformatics analysis of microRNA and putative target genes in bovine mammary tissue infected with Streptococcus uberis. Journal of Dairy Science 2012; 95 (11): 6397-6408. doi:10.3168/ jds.2011-5173
  • 13. Alsaweed M, Hepworth AR, Lefevre C, Hartmann PE, Geddes DT et al. Human milk microRNA and total RNA differ depending on milk fractionation. Journal of Cellular Biochemistry 2015; 116 (10): 2397-2407. doi:10.1002/jcb.25207
  • 14. Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nature Reviews Genetics 2011; 12 (2): 99-110. doi:10.1038/ nrg2936
  • 15. Dai A, Sun H, Fang T, Zhang Q, Wu S et al. MicroRNA-133b stimulates ovarian estradiol synthesis by targeting Foxl2. FEBS Letters (2013); 587 (15): 2474-2482. doi:10.1016/j. febslet.2013.06.023
  • 16. Kitahara Y, Nakamura K, Kogure K, Minegishi T. Role of microRNA-136-3p on the expression of luteinizing hormonehuman chorionic gonadotropin receptor mRNA in rat ovaries. Biology of Reproduction 2013; 89 (5): 114. doi:10.1095/ biolreprod.113.109207
  • 17. Lannes J, L’Hote D, Garrel G, Laverriere JN, Cohen-Tannoudji J et al. Rapid communication: A microRNA-132/212 pathway mediates GnRH activation of FSH expression. Molecular Endocrinology 2015; 29 (3): 364-372. doi:10.1210/me.2014- 1390
  • 18. Yao N, Lu CL, Zhao JJ, Xia HF, Sun DG et al. A network of miRNAs expressed in the ovary are regulated by FSH. Frontiers in Bioscience 2009; 14: 3239-3245
  • 19. Juanchich A, Le Cam A, Montfort J, Guiguen Y, Bobe J. Identification of differentially expressed miRNAs and their potential targets during fish ovarian development. Biology of Reproduction 2013; 88 (5):128. doi:10.1095/ biolreprod.112.105361
  • 20. Sontakke SD, Mohammed BT, McNeilly AS, Donadeu FX. Characterization of microRNAs differentially expressed during bovine follicle development. Reproduction 2014; 148 (3): 271- 283. doi:10.1530/rep-14-0140
  • 21. Nawrocki EP, Burge SW, Bateman A, Daub J, Eberhardt RY et al. Rfam 12.0: updates to the RNA families database. Nucleic Acids Research 2015; 43: 130-137. doi:10.1093/nar/gku1063
  • 22. Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Research 2014; 42: 68-73. doi:10.1093/nar/gkt1181
  • 23. Friedlander MR, Mackowiak SD, Li N, Chen W, Rajewsky N [2012] miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Research 40 [1]:37-52. doi:10.1093/nar/gkr688
  • 24. Guo Y, Zhang X, Huang W, Miao X. Identification and characterization of differentially expressed miRNAs in subcutaneous adipose between Wagyu and Holstein cattle. Scientific Reports 2017; 7: 44026. doi:10.1038/srep44026
  • 25. Hao DC, Yang L, Xiao PG, Liu M. Identification of Taxus microRNAs and their targets with high-throughput sequencing and degradome analysis. Physiologia Plantarum 2 012; 146 (4): 388-403. doi:10.1111/j.1399-3054.2012.01668.x
  • 26. Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biology 2010; 11 (10): 106. doi:10.1186/gb-2010-11-10-r106
  • 27. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010; 26 (1): 139- 140. doi:10.1093/bioinformatics/btp616
  • 28. Metsalu T, Vilo J. ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Research 2015; 43 (1): 566-570. doi:10.1093/nar/gkv468
  • 29. Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R. Fast and effective prediction of microRNA/target duplexes. RNA 2004; 10 (10): 1507-1517. doi:10.1261/rna.5248604
  • 30. Merk FB, Botticelli CR, Albright JT An intercellular response to estrogen by granulosa cells in the rat ovary; an electron microscope study. Endocrinology 1972; 90 (4): 992-1007. doi:10.1210/endo-90-4-992
  • 31. Drummond AE, Findlay JK. The role of estrogen in folliculogenesis. Molecular and Cellular Endocrinology 1999; 151 (1): 57-64. doi: 10.1016/s0303-7207(99)00038-6
  • 32. Hulas-Stasiak M, Gawron A. Immunohistochemical localization of estrogen receptors ERalpha and ERbeta in the spiny mouse (Acomys cahirinus) ovary during postnatal development. Journal of Molecular Histology 2007; 38 (1): 25- 32. doi:10.1007/s10735-006-9072-3
  • 33. Palter SF, Tavares AB, Hourvitz A, Veldhuis JD, Adashi EY. Are estrogens of import to primate/human ovarian folliculogenesis? Endocrine Reviews 2001; 22 (3): 389-424. doi:10.1210/edrv.22.3.0433
  • 34. Graham JD, Clarke CL. Physiological action of progesterone in target tissues. Endocrine Reviews 1997; 18 (4): 502-519. doi:10.1210/edrv.18.4.0308
  • 35. Tripurani SK, Lee KB, Wee G, Smith GW, Yao J. MicroRNA196a regulates bovine newborn ovary homeobox gene (NOBOX) expression during early embryogenesis. BMC Developmental Biology 2011; 11: 25. doi:10.1186/1471- 213x-11-25
  • 36. Rajkovic A, Pangas SA, Ballow D, Suzumori N, Matzuk MM. NOBOX deficiency disrupts early folliculogenesis and oocytespecific gene expression. Science 2004; 305 (5687): 1157-1159. doi:10.1126/science.1099755
  • 37. Choi Y, Qin Y, Berger MF, Ballow DJ, Bulyk ML et al. Microarray analyses of newborn mouse ovaries lacking Nobox. Biology of Reproduction 2007; 77 (2): 312-319. doi:10.1095/ biolreprod.107.060459
  • 38. Kubota K, Omori Y, Ikeda S, Minegishi T. Expression and cyclic change of betaglycan in the rat oviduct. The Journal of Reproduction and Development 2009; 55 (2): 200-205. doi: 10.1262/jrd.20145
  • 39. Hempel N, How T, Dong M, Murphy SK, Fields TA et al. Loss of betaglycan expression in ovarian cancer: role in motility and invasion. Cancer Research 2007; 67 (11): 5231-5238. doi:10.1158/0008-5472.can-07-0035
  • 40. Sue Ng S, Mahmoudi T, Li VS, Hatzis P, Boersema PJ et al. MAP3K1 functionally interacts with Axin1 in the canonical Wnt signalling pathway. Biological Chemistry 2010; 391 (2): 171-180. doi:10.1515/bc.2010.028
  • 41. Gatcliffe TA, Monk BJ, Planutis K, Holcombe RF. Wnt signaling in ovarian tumorigenesis. International journal of gynecological cancer: Official Journal of the International Gynecological Cancer Society 2008; 18 (5): 954-962. doi:10.1111/j.1525-1438.2007.01127.x
  • 42. Salem SM, Hamed AR, Mosaad RM. MTDH, MAP3K1 are direct targets of apoptosis-regulating miRNAs in colorectal carcinoma. Biomedecine & Pharmacotherapie 2017; 94: 767- 773. doi:10.1016/j.biopha.2017.07.153
  • 43. Bu G, Liang X, Li J, Wang Y. Extra-pituitary prolactin (PRL) and prolactin-like protein (PRL-L) in chickens and zebrafish. General and Comparative Endocrinology 2015; 220: 143-153. doi:10.1016/j.ygcen.2015.02.001
  • 44. Rothschild MF Genetics and reproduction in the pig. Animal Reproduction Science 1996; 42 (1): 143-151. doi:10.1016/0378- 4320[96]01486-8
  • 45. Zi XD, Chen DW, Wang HM. Molecular characterization, mRNA expression of prolactin receptor (PRLR) gene during pregnancy, nonpregnancy in the yak (Bos grunniens). General and Comparative Endocrinology 2012; 175 (3): 384-388. doi:10.1016/j.ygcen.2011.12.004
  • 46. Kloverpris S, Mikkelsen JH, Pedersen JH, Jepsen MR, Laursen LS et al. Stanniocalcin-1 potently inhibits the proteolytic activity of the metalloproteinase pregnancy-associated plasma protein-A. The Journal of Biological Chemistry 2015; 290 (36): 21915-21924. doi:10.1074/jbc.M115.650143
  • 47. Mazerbourg S, Monget P. Insulin-like growth factor binding proteins and IGFBP proteases: a dynamic system regulating the ovarian folliculogenesis. Frontiers in Endocrinology 2018; 9: 134. doi:10.3389/fendo.2018.00134
  • 48. Song Y, An X, Zhang L, Fu M, Peng J. et al. Identification and profiling of microRNAs in goat endometrium during embryo implantation. PloS One 2015; 10 (4): e0122202. doi:10.1371/ journal.pone.0122202
  • 49. Raymond CS, Murphy MW, O’Sullivan MG, Bardwell VJ, Zarkower D. Dmrt1, a gene related to worm and fly sexual regulators, is required for mammalian testis differentiation. Genes & Development 2000; 14 (20): 2587-2595. doi: 10.1101/ gad.834100
  • 50. Wang H, Chen Y, Lin P, Li L, Zhou G. et al. The CUL7/F-box and WD repeat domain containing 8 (CUL7/Fbxw8) ubiquitin ligase promotes degradation of hematopoietic progenitor kinase 1. The Journal of Biological Chemistry 2014; 289 (7): 4009-4017. doi:10.1074/jbc.M113.520106
  • 51. Zhang H, Klausen C, Zhu H, Chang HM, Leung PC. BMP4 and BMP7 Suppress StAR and progesterone production via ALK3 and SMAD1/5/8-SMAD4 in human granulosa-lutein cells. Endocrinology 2015; 156 (11): 4269-4280. doi:10.1210/ en.2015-1494
  • 52. Coutinho LL, Matukumalli LK, Sonstegard TS, Van Tassell CP, Gasbarre LC et al. Discovery and profiling of bovine microRNAs from immune-related and embryonic tissues. Physiological genomics 2007; 29 (1):35-43. doi:10.1152/ physiolgenomics.00081.2006
  • 53. Tesfaye D, Worku D, Rings F, Phatsara C, Tholen E et al. Identification and expression profiling of microRNAs during bovine oocyte maturation using heterologous approach. Molecular Reproduction and Development 2009; 76 (7): 665- 677. doi:10.1002/mrd.21005
  • 54. Huang J, Ju Z, Li Q, Hou Q, Wang C et al. Solexa sequencing of novel and differentially expressed microRNAs in testicular and ovarian tissues in Holstein cattle. International Journal of Biological Sciences 2011; 7 (7):1016-1026. doi: 10.7150/ ijbs.7.1016
  • 55. Ozdemir S, Comakli S. Investigation of the interaction between bta-miR-222 and the estrogen receptor alpha gene in the bovine ovarium. Reproductive Biology 2018; 18 (3): 259- 266. doi:10.1016/j.repbio.2018.06.006
APA özdemir s, ÇOMAKLI S (2021). Identification of microRNAs in the follicular and luteal tissues of Holstein-Friesian cows. , 508 - 518. 10.3906/vet-2005-80
Chicago özdemir selçuk,ÇOMAKLI Selim Identification of microRNAs in the follicular and luteal tissues of Holstein-Friesian cows. (2021): 508 - 518. 10.3906/vet-2005-80
MLA özdemir selçuk,ÇOMAKLI Selim Identification of microRNAs in the follicular and luteal tissues of Holstein-Friesian cows. , 2021, ss.508 - 518. 10.3906/vet-2005-80
AMA özdemir s,ÇOMAKLI S Identification of microRNAs in the follicular and luteal tissues of Holstein-Friesian cows. . 2021; 508 - 518. 10.3906/vet-2005-80
Vancouver özdemir s,ÇOMAKLI S Identification of microRNAs in the follicular and luteal tissues of Holstein-Friesian cows. . 2021; 508 - 518. 10.3906/vet-2005-80
IEEE özdemir s,ÇOMAKLI S "Identification of microRNAs in the follicular and luteal tissues of Holstein-Friesian cows." , ss.508 - 518, 2021. 10.3906/vet-2005-80
ISNAD özdemir, selçuk - ÇOMAKLI, Selim. "Identification of microRNAs in the follicular and luteal tissues of Holstein-Friesian cows". (2021), 508-518. https://doi.org/10.3906/vet-2005-80
APA özdemir s, ÇOMAKLI S (2021). Identification of microRNAs in the follicular and luteal tissues of Holstein-Friesian cows. Turkish Journal of Veterinary and Animal Sciences, 45(3), 508 - 518. 10.3906/vet-2005-80
Chicago özdemir selçuk,ÇOMAKLI Selim Identification of microRNAs in the follicular and luteal tissues of Holstein-Friesian cows. Turkish Journal of Veterinary and Animal Sciences 45, no.3 (2021): 508 - 518. 10.3906/vet-2005-80
MLA özdemir selçuk,ÇOMAKLI Selim Identification of microRNAs in the follicular and luteal tissues of Holstein-Friesian cows. Turkish Journal of Veterinary and Animal Sciences, vol.45, no.3, 2021, ss.508 - 518. 10.3906/vet-2005-80
AMA özdemir s,ÇOMAKLI S Identification of microRNAs in the follicular and luteal tissues of Holstein-Friesian cows. Turkish Journal of Veterinary and Animal Sciences. 2021; 45(3): 508 - 518. 10.3906/vet-2005-80
Vancouver özdemir s,ÇOMAKLI S Identification of microRNAs in the follicular and luteal tissues of Holstein-Friesian cows. Turkish Journal of Veterinary and Animal Sciences. 2021; 45(3): 508 - 518. 10.3906/vet-2005-80
IEEE özdemir s,ÇOMAKLI S "Identification of microRNAs in the follicular and luteal tissues of Holstein-Friesian cows." Turkish Journal of Veterinary and Animal Sciences, 45, ss.508 - 518, 2021. 10.3906/vet-2005-80
ISNAD özdemir, selçuk - ÇOMAKLI, Selim. "Identification of microRNAs in the follicular and luteal tissues of Holstein-Friesian cows". Turkish Journal of Veterinary and Animal Sciences 45/3 (2021), 508-518. https://doi.org/10.3906/vet-2005-80