Yıl: 2022 Cilt: 46 Sayı: 3 Sayfa Aralığı: 929 - 940 Metin Dili: İngilizce DOI: 10.55730/1300-0527.3381 İndeks Tarihi: 04-07-2022

Boric acid and Schiff base-based fluorescent sensor for detection of L-tryptophan in milk and BSA samples

Öz:
In the present paper, the fluorescence sensor based on Schiff base and boric acid was developed for easy and rapid detection of L-tryptophan in different samples such as milk and bovine serum albumin. The photoluminescence intensity was measured by using fluorescent measurements and the results indicated that the developed fluorescent sensor was exhibited selective, sensitive, reliable determination against L-tryptophan, and a series of various analytes such as cations, amino acids, and organic compounds were used to investigate the selectivity of the fluorescent chemosensor. The limit of detection and linear range of the chemosensor were calculated as 0.82 µM, and 0.1–500 µM, respectively. The performance of the chemosensor was evaluated in terms of selectivity, reversible usage, stability, and interference/anti-interference. The developed chemosensor was exhibited excellent photostability, and it was a great potential application of L-tryptophan in bovine serum albumin and milk samples.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Uluisik I, Karakaya HC, Koca A. tRNA wobble base modifications and boric acid resistance in yeast: boron-resistant deletion mutants induce the general amino acid control mechanism and activate boron efflux. Molecular Biology 2020; 54: 396–401. doi: 10.1134/ S0026893320030188
  • 2. Surdem S, Yorukoglu A, Ozturk S, Izci E, Yilmaz G. Synthesis, characterization and investigation of thermal, mechanical and antibacterial properties of boric acid-incorporated polyurethane foams. Bulletin of Materials Science 2022; 45: 5. doi: 10.1007/s12034-021-02577-1
  • 3. Bashir NZ, Krstic M. Boric acid as an adjunct to periodontal therapy: A systematic review and meta-analysis. International Journal of Dental Hygiene 2021; 00: 1–14. doi: 10.1111/idh.12487
  • 4. Jain S, Nehra M, Dilbaghi N, Kumar R, Kumar S. Boric-acid-functionalized luminescent sensor for detection of chromate ions in aqueous solution. Materials Letters 2022; 306: 130933. doi: 10.1016/j.matlet.2021.130933
  • 5. Sakthivel A, Jeyasubramanian K, Thangagiri B, Raja JD. Recent advances in Schiff base metal complexes derived from 4-aminoantipyrine derivatives and their potential applications. Journal of Molecular Structure 2020; 1222: 128885. doi: 10.1016/j.molstruc.2020.128885
  • 6. Kamaci M, Kaya I. 2,4-Diamino-6-hydroxypyrimidine based poly azomethine urethane synthesis and application as a fluorescent probe for detection of Cu2+ in aqueous solution. Journal of Fluorescence 2015; 25: 1339-1349. doi: 10.1007/s10895-015-1624-z
  • 7. Iacopetta D, Ceramella J, Catalano A, Saturnino C, Bonomo MG et al. Schiff bases: interesting scaffolds with promising antitumoral properties. Applied Science 2021; 11: 1877. doi: 10.3390/app11041877
  • 8. Weng Q, Yi J, Chen X, Luo D, Wang Y et al. Controllable synthesis and biological application of Schiff bases from D-glucosamine and terephthalaldehyde. ACS Omega 2020; 5: 24864−24870. doi: 10.1021/acsomega.0c03591
  • 9. Kolcu F, Erdener D, Kaya I. A Schiff base based on triphenylamine and thiophene moieties as a fluorescent sensor for Cr (III) ions: synthesis, characterization and fluorescent applications. Inorganica Chimica Acta 2020; 509: 119676. doi: 10.1016/j.ica.2020.119676
  • 10. Kamaci M, Kaya I. New low-band gap polyurethanes containing azomethine bonding: Photophysical, electrochemical, thermal and morphological properties. Journal of the Taiwan Institute of Chemical Engineers 2016; 59: 536–546. doi: 10.1016/j.jtice.2015.08.018
  • 11. Celestina JJ, Tharmaraj P, Sheela CD, Alphonse L, Shakina J. One-pot green synthesis of optical fluorescent sensor for selective detection of Ni2+ ions and hydro gel studies. Optical Materials 2020; 109: 110444. doi: 10.1016/j.optmat.2020.110444
  • 12. Srinivasan V, Khamrang T, Ponraj C, Saravanan D, Yamini R et al. Pyrene based Schiff bases: Synthesis, crystal structure, antibacterial and BSA binding studies. Journal of Molecular Structure 2021; 1225: 129153. doi: 10.1016/j.molstruc.2020.129153
  • 13. Pundi A, Chang CJ, Chen YS, Chen JK, Yeh JM et al. An aniline trimer-based multifunctional sensor for colorimetric $Fe^{3+}, Cu^{2+}$ and Ag+detection, and its complex for fluorescent sensing of L-tryptophan. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2021; 247: 119075. doi: 10.1016/j.saa.2020.119075
  • 14. Li W, Huang S, Wen H, Luo Y, Cheng J et al. Pyridine functionalized carbon dots for specific detection of tryptophan in human serum samples and living cells. Microchemical Journal 2020; 154: 104579. doi: 10.1016/j.microc.2019.104579
  • 15. Du G, Mao Y, Abed MA, Pu L. Fluorescent recognition of L- and D-tryptophan in water by micelle probes. Materials Chemistry Frontiers 2020; 4: 2384-2388. doi: 10.1039/D0QM00260G
  • 16. Lefevre A, Mavel S, Nadal-Desbarats N, Galineau L, Attucci S et al. Validation of a global quantitative analysis methodology of tryptophan metabolites in mice using LC-MS. Talanta 2019; 195: 593–598. doi: 10.1016/j.talanta.2018.11.094
  • 17. Kamaci M, Kaya I. Melamine-based poly(azomethine) hydrogels: Mechanical, biodegradability, drug loading and antibacterial properties. European Polymer Journal 2018; 108: 107–115. doi: 10.1016/j.eurpolymj.2018.08.035
  • 18. Kaya I, Yildirim M, Avci A, Kamaci M. Synthesis and thermal characterization of novel poly(azomethine-urethane)s derived from azomethine containing phenol and polyphenol species. Macromolecular Research 2011; 19: 286-293. doi: 10.1007/s13233-011-0306-1
  • 19. Zhang Y, Yao W, Liang D, Sun M, Wang S et al. Selective detection and quantification of tryptophan and cysteine with pyrenedione as a turn-on fluorescent probe. Sensors and Actuators B: Chemical 2018; 259: 768–774. doi: 10.1016/j.snb.2017.12.059
  • 20. Kamaci M, Kaya I. The novel poly(azomethine-urethane) synthesis morphological properties and application as a fluorescent probe for detection of $Zn^{2+$ ions. Journal of Inorganic and Organometallic Polymers and Materials 2015; 25: 1250-1259. doi: 10.1007/s10904-015- 0234-1
  • 21. Duru Kamaci D, Kamaci M. Selective and sensitive ZnO quantum dots based fluorescent biosensor for detection of cysteine. Journal of Fluorescence 2021; 31: 401–414. doi: 10.1007/s10895-020-02671-3
  • 22. Duru Kamaci U, Kamaci M, Peksel A. Poly(azomethine-urethane) and zeolite-based composite: fluorescent biosensor for DNA detection. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2019; 212: 232-239. doi: 10.1016/j.saa.2019.01.011
  • 23. Prongmanee W, Alam I, Asanithi P. Hydroxyapatite/graphene oxide composite for electrochemical detection of L-tryptophan. Journal of the Taiwan Institute of Chemical Engineers 2019; 102: 415–423. doi: 10.1016/j.jtice.2019.06.004
  • 24. Zhou S, Deng Z, Wu Z, Xie M, Tian Y et al. $Ta_2 O_5/rGO$ nanocomposite modified electrodes for detection of tryptophan through electrochemical route. Nanomaterials 2019; 9: 811. doi: 10.3390/nano9060811
  • 25. Zhang R, Wang LX, Zhang YD, Ge CH, Wang JP et al. A fluorescent sensor of 3-aminobenzeneboronic acid functionalized hydrothermal carbon spheres for facility detection of L-tryptophan. Journal of Fluorescence 2018; 28: 439–444. doi: 10.1007/s10895-017-2205-0
  • 26. Zhang Y, Yao W, Liang D, Sun M, Wang S et al. Selective detection and quantification of tryptophan and cysteine with pyrenedione as a turn-on fluorescent probe. Sensors and Actuators B: Chemical 2018; 259: 768–774. doi: 10.1016/j.snb.2017.12.059
  • 27. Liu J, Dong S, He Q, Yang S, Xie M et al. Facile preparation of $Fe_3O_4$ /C nanocomposite and its application for cost-effective and sensitive detection of tryptophan. Biomolecules 2019; 9: 245. doi: 10.3390/biom9060245
  • 28. Pundi A, Chang CJ, Chen J, Hsieh SR, Lee MC. A chiral carbazole based sensor for sequential “on-off-on” fluorescence detection of Fe3+ and tryptophan/histidine. Sensors and Actuators B: Chemical 2021; 328: 129084. doi: 10.1016/j.snb.2020.129084
  • 29. Du G, Mao Y, Abed MA, Pu L. Fluorescent recognition of L- and D-tryptophan in water by micelle probes, Materials Chemistry Frontiers 2020; 4: 2384-2388. doi: 10.1039/d0qm00260g
  • 30. Duru Kamaci U, Kamaci M, Peksel A. A dual responsive colorimetric biosensor based on polyazomethine and ascorbic acid for the detection of Al (III) and Fe (II) ions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2021; 254: 19650. doi: 10.1016/j.saa.2021.119650
  • 31. Elbeyli IY. Production of crystalline boric acid and sodium citrate from borax decahydrate. Hydrometallurgy 2015; 158: 19–26. doi: 10.1016/j.hydromet.2015.09.022
  • 32. Sadhasivam B, Muthusamy S. Thermal and dielectric properties of newly developed L-tryptophan-based optically active polyimide and its POSS nanocomposites. Designed Monomers and Polymers 2016; 19: 236-247. doi: 10.1080/15685551.2015.1136530
  • 33. Kamaci M, Kaya I. A highly selective, sensitive and stable fluorescent chemosensor based on Schiff base and poly(azomethine-urethane) for $Fe^{3+}$ ions. Journal of Industrial and Engineering Chemistry 2017; 46: 234-243. doi: 10.1016/j.jiec.2016.10.035
APA DURU KAMACI Ü, Kamaci M (2022). Boric acid and Schiff base-based fluorescent sensor for detection of L-tryptophan in milk and BSA samples. , 929 - 940. 10.55730/1300-0527.3381
Chicago DURU KAMACI ÜMRAN,Kamaci Musa Boric acid and Schiff base-based fluorescent sensor for detection of L-tryptophan in milk and BSA samples. (2022): 929 - 940. 10.55730/1300-0527.3381
MLA DURU KAMACI ÜMRAN,Kamaci Musa Boric acid and Schiff base-based fluorescent sensor for detection of L-tryptophan in milk and BSA samples. , 2022, ss.929 - 940. 10.55730/1300-0527.3381
AMA DURU KAMACI Ü,Kamaci M Boric acid and Schiff base-based fluorescent sensor for detection of L-tryptophan in milk and BSA samples. . 2022; 929 - 940. 10.55730/1300-0527.3381
Vancouver DURU KAMACI Ü,Kamaci M Boric acid and Schiff base-based fluorescent sensor for detection of L-tryptophan in milk and BSA samples. . 2022; 929 - 940. 10.55730/1300-0527.3381
IEEE DURU KAMACI Ü,Kamaci M "Boric acid and Schiff base-based fluorescent sensor for detection of L-tryptophan in milk and BSA samples." , ss.929 - 940, 2022. 10.55730/1300-0527.3381
ISNAD DURU KAMACI, ÜMRAN - Kamaci, Musa. "Boric acid and Schiff base-based fluorescent sensor for detection of L-tryptophan in milk and BSA samples". (2022), 929-940. https://doi.org/10.55730/1300-0527.3381
APA DURU KAMACI Ü, Kamaci M (2022). Boric acid and Schiff base-based fluorescent sensor for detection of L-tryptophan in milk and BSA samples. Turkish Journal of Chemistry, 46(3), 929 - 940. 10.55730/1300-0527.3381
Chicago DURU KAMACI ÜMRAN,Kamaci Musa Boric acid and Schiff base-based fluorescent sensor for detection of L-tryptophan in milk and BSA samples. Turkish Journal of Chemistry 46, no.3 (2022): 929 - 940. 10.55730/1300-0527.3381
MLA DURU KAMACI ÜMRAN,Kamaci Musa Boric acid and Schiff base-based fluorescent sensor for detection of L-tryptophan in milk and BSA samples. Turkish Journal of Chemistry, vol.46, no.3, 2022, ss.929 - 940. 10.55730/1300-0527.3381
AMA DURU KAMACI Ü,Kamaci M Boric acid and Schiff base-based fluorescent sensor for detection of L-tryptophan in milk and BSA samples. Turkish Journal of Chemistry. 2022; 46(3): 929 - 940. 10.55730/1300-0527.3381
Vancouver DURU KAMACI Ü,Kamaci M Boric acid and Schiff base-based fluorescent sensor for detection of L-tryptophan in milk and BSA samples. Turkish Journal of Chemistry. 2022; 46(3): 929 - 940. 10.55730/1300-0527.3381
IEEE DURU KAMACI Ü,Kamaci M "Boric acid and Schiff base-based fluorescent sensor for detection of L-tryptophan in milk and BSA samples." Turkish Journal of Chemistry, 46, ss.929 - 940, 2022. 10.55730/1300-0527.3381
ISNAD DURU KAMACI, ÜMRAN - Kamaci, Musa. "Boric acid and Schiff base-based fluorescent sensor for detection of L-tryptophan in milk and BSA samples". Turkish Journal of Chemistry 46/3 (2022), 929-940. https://doi.org/10.55730/1300-0527.3381