Yıl: 2022 Cilt: 46 Sayı: 1 Sayfa Aralığı: 1 - 13 Metin Dili: İngilizce DOI: 10.3906/kim-2106-18 İndeks Tarihi: 04-07-2022

Production of NiMn2O4 hollow spheres and $CoFe_2O_4$bowl-like structures by using block copolymer stabilized polystyrene spheres as a hard template

Öz:
The aim of this study is to highlight the use of polystyrene (PS) latexes stabilized with block copolymers as a hard template in the production of metal oxide hollow spheres. PS latexes produced by dispersion polymerization by stabilizing with tertiary amine methacrylate-based diblock copolymer were used as a hard template in the preparation of nickel manganese oxide $(NiMn_2 O_4 )$ hollow spheres and cobalt iron oxide $(CoFe_2 O_4 )$ bowl-like structures. Thanks to the diblock copolymer stabilizer with tertiary amine functional groups on the PS surface, precursor salts of $CoFe_2 O_4 and NiMn_2 O_4$ were first homogeneously deposited on the surface of PS latexes with a controlled precipitation technique. Then, metal oxide hollow spheres and bowl-like structures were produced by calcination. XRD results showed that $CoFe_2 O_4 and NiMn_2 O_4$ structures were successfully obtained after calcination. The thermogravimetric analysis results showed that the $CoFe_2 O_4 and NiMn_2 O_4$ contents of the hybrid PS spheres were in the range of 26.0–28.6 wt%. SEM images showed that the inorganic-polymer spheres fused with each other after calcination to form larger magnetic $CoFe_2 O_4$ bowl-like structures. SEM images also indicated successful production of highly rough $NiMn_2 O_4$ hollow spheres with nanosheets on the surface.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Wang XJ, Feng J, Bai YC, Zhang Q, Yin YD. Synthesis, properties, and applications of hollow micro-/nanostructures. Chemical Reviews 2016; 116 (18): 10983-11060. doi: 10.1021/acs.chemrev.5b00731
  • 2. HuJ, Chen M, Fang XS, Wu LW. Fabrication and application of inorganic hollow spheres. Chemical Society Reviews 2011; 40 (11): 5472- 5491. doi: 10.1039/c1cs15103g
  • 3. Liang J, Kou HR, Ding SJ. Complex hollow bowl-like nanostructures: synthesis, application, and perspective. Advanced Functional Materials 2021; 31 (10). ARTN 2007801, doi: 10.1002/adfm.202007801
  • 4. Yang SK, Lei Y. Recent progress on surface pattern fabrications based on monolayer colloidal crystal templates and related applications. Nanoscale 2011; 3 (7): 2768-2782. doi: 10.1039/c1nr10296f
  • 5. Ai B, Mohwald H, Wang DY,Zhang G. Advanced colloidal lithography beyond surface patterning. Advanced Materials Interfaces 2017; 4 (1): ARTN 1600271doi: 10.1002/admi.201600271
  • 6. Boyjoo Y, Wang MW, Pareek VK, Liu J, Jaroniec M. Synthesis and applications of porous non-silica metal oxide submicrospheres. Chemical Society Reviews 2016; 45 (21): 6013-6047. doi: 10.1039/c6cs00060f
  • 7. Zhang YQ, Huang ZB, Tang FQ, Ren J. Ferrite hollow spheres with tunable magnetic properties. Thin Solid Films 2006; 515 (4): 2555-2561. doi: 10.1016/j.tsf.2006.04.049
  • 8. Zhang DF, Zhang GZ, Zhang L. Multi-shelled $FeCo_2O_4$ hollow porous microspheres/CCFs magnetic hybrid and its dual-functional catalytic performance. Chemical Engineering Journal 2017; 330: 792-803. doi: 10.1016/j.cej.2017.08.018
  • 9. Bhuyan B, Paul B, Paul A, Dhar SS. Paederia foetida Linn. promoted synthesis of CoFe2O4 and NiFe2O4 nanostructures and their photocatalytic efficiency. Iet Nanobiotechnology 2018; 12 (3): 235-240. doi: 10.1049/iet-nbt.2017.0131
  • 10. Elmaci G. Magnetic hollow biocomposites prepared from lycopodium clavatum pollens as efficient recyclable catalyst. Chemistryselect 2020; 5 (7): 2225-2231. doi: 10.1002/slct.201904152
  • 11. Syouflan A, Inoue Y, Yada M, Nakashima K. Preparation of submicrometer-sized titania hollow spheres by ternplating sulfonated polystyrene latex particles. Materials Letters 2007; 61 (7): 1572-1575. doi: 10.1016/j.matlet.2006.07.081
  • 12. Watanabe M, Aritomo H, Yamaguchi I, Shinagawa T, Tamai T et al. Selective preparation of zinc oxide nanostructures by electrodeposition on the templates of surface-functionalized polymer particles. Chemistry Letters 2007; 36 (5): 680-681. doi: 10.1246/cl.2007.680
  • 13. Amari H, Guerrouache M, Mahouche-Chergui S, Abderrahim R, Carbonnier B. 2-Aminothiazole-functionalized triazine-modified polystyrene decorated with gold nanoparticles as composite catalyst for the reduction of 4-nitrophenol. Reactive & Functional Polymers 2017; 121: 58-66. doi: 10.1016/j.reactfunctpolym.2017.10.018
  • 14. Zhu Y, Chen KM, Wang X, Guo XH. Spherical polyelectrolyte brushes as a nanoreactor for synthesis of ultrafine magnetic nanoparticles. Nanotechnology 2012; 23 (26): ARTN 265601. doi: 10.1088/0957-4484/23/26/265601
  • 15. Nie G, Li G, Wang L, Zhang X. Nanocomposites of polymer brush and inorganic nanoparticles: preparation, characterization and application. Polymer Chemistry 2016; 7 (4): 753-769. doi: 10.1039/C5PY01333J
  • 16. Lu Y, Hoffmann M, Yelamanchili RS, Terrenoire A, Schrinner M et al. Well-Defined crystalline TiO2 nanoparticles generated and immobilized on a colloidal nanoreactor. Macromolecular Chemistry and Physics 2009; 210 (5): 377-386. doi: 10.1002/macp.200800608
  • 17. Polzer F, Holub-Krappe E, Rossner H, Erko A, Kirmse H et al. Structural analysis of colloidal MnOx composites. Colloid and Polymer Science 2013; 291 (3): 469-481. doi: 10.1007/s00396-012-2725-8
  • 18. Kocak G. Use of block copolymer stabilized polystyrene microspheres as templates for preparation of hollow metal oxide spheres. Afyon Kocatepe University Journal of Science and Engineering 2020; 20 (3): 398-406. doi: 10.35414/akufemubid.680013
  • 19. Kocak G. The use of block copolymer stabilized polystyrene microspheres as a template in the preparation of hollow nickel oxide spheres, In: The 32nd National Chemistry Congress; Online, Turkey; 2020. pp. 51. (in Turkish).
  • 20. Kocak G. Use of block copolymer stabilized polystyrene microspheres as templates for preparation of magnetic hollow $NiFe_2O_4$spheres, In: 4th International Mardin Artuklu Scientific Researches Conference; Mardin, Turkey; 2020. pp. 165-166.(in Turkish with an abstract in English).
  • 21. Dicker IB, Cohen GM, Farnham WB, Hertler WR, Laganis ED et al. Oxyanions catalyze group-transfer polymerization to give living polymers. Macromolecules 1990; 23 (18): 4034-4041. doi: 10.1021/ma00220a002
  • 22. Butun V, Armes SP, Billingham NC. Synthesis and aqueous solution properties of near-monodisperse tertiary amine methacrylate homopolymers and diblock copolymers. Polymer 2001; 42 (14): 5993-6008. doi: 10.1016/s0032-3861(01)00066-0.
  • 23. Bütün V, Kaynak B, Esenoğlu E, Gül G. Synthesis and selective quaternization of tertiary amine methacrylate-containing water-soluble copolymers and their use in latex synthesis as stabilizers, In: Polymer Processing and Recycling Symposium and Exhibition;Mersin, Turkey; 2004. pp. 1-12. (in Turkish).
  • 24. Suba V,Rathika G, Kumar ER, Saravanabhavan M. Influence of magnetic nanoparticles on surface changes in $CoFe_2O_4$ /nerium oleander leaf waste activated carbon nanocomposite for water treatment. Journal of Inorganic and Organometallic Polymers and Materials 2018; 28 (5): 1706-1717. doi: 10.1007/s10904-018-0831-x
  • 25. Narsimulu D, Padmaraj O, Srinadhu ES, Satyanarayana N. Synthesis, characterization and electrical properties of mesoporous nanocrystalline $CoFe_2 O_4$ as a negative electrode material for lithium battery applications. Journal of Materials Science-Materials in Electronics 2017; 28 (22): 17208-17214. doi: 10.1007/s10854-017-7650-7
  • 26. Li WC, Qiao XJ, Zheng QY, Zhang TL. One-step synthesis of $MFe_2 O_4$ (M = Fe, Co) hollow spheres by template-free solvothermal method. Journal of Alloys and Compounds 2011; 509 (21): 6206-6211. doi: 10.1016/j.jallcom.2011.02.157
  • 27. Yoon S. Facile microwave synthesis of $CoFe_2 O_4$ spheres and their application as an anode for lithium-ion batteries. Journal of Applied Electrochemistry 2014; 44 (9): 1069-1074. doi: 10.1007/s10800-014-0716-9
  • 28. Yan HL, Li T, Qiu KW, Lu Y, Cheng JB et al. Growth and electrochemical performance of porous $NiMn_2O_4$ nanosheets with high specific surface areas. Journal of Solid State Electrochemistry 2015; 19 (10): 3169-3175. doi: 10.1007/s10008-015-2946-0
  • 29. Wang XL, Zhang JQ, Yang SB, Yan HY, Hong XD et al. Interlayer space regulating of NiMn layered double hydroxides for supercapacitors by controlling hydrothermal reaction time. Electrochimica Acta 2019; 295: 1-6. doi: 10.1016/j.electacta.2018.10.021
  • 30. Bousquet A, Ibarboure E, Heroguez V, Papon E, Labrugere C et al. Single-step process to produce functionalized multiresponsive polymeric particles. Journal of Polymer Science Part A-Polymer Chemistry 2010; 48 (16): 3523-3533. doi: 10.1002/pola.24112
  • 31. Reis BM, Armes SP, Fujii S, Biggs S. Characterisation of the dispersion stability of a stimulus responsive core-shell colloidal latex. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2010; 353 (2-3): 210-215. doi: 10.1016/j.colsurfa.2009.11.015
  • 32. Amalvy JI, Unali GF, Li Y, Granger-Bevan S, Armes SP et al. Synthesis of sterically stabilized polystyrene latex particles using cationic block copolymers and macromonomers and their application as stimulus-responsive particulate emulsifiers for oil-in-water emulsions. Langmuir 2004; 20 (11): 4345-4354. doi: 10.1021/la035921c
  • 33. Munoz-Bonilla A,Van Herk AM, Heuts JPA. Adding stimuli-responsive extensions to antifouling hairy particles. Polymer Chemistry 2010; 1 (5): 624-627. doi: 10.1039/c0py00054j
  • 34. Itoh T, Abe I, Tamamitsu T, Shimomoto H, Inoue K et al. Surface structure of stimuli-responsive polystyrene particles prepared by dispersion polymerization with a polystyrene/poly(L-lysine) block copolymer as a stabilizer. Polymer 2014; 55 (16): 3961-3969. doi: 10.1016/j.polymer.2014.06.069
  • 35. Baines FL, Dionisio S, Billingham NC, Armes, SP. Use of block copolymer stabilizers for the dispersion polymerization of styrene in alcoholic media. Macromolecules 1996; 29 (9): 3096-3102. doi: 10.1021/ma951767s
  • 36. Tuncel A, Kahraman R, Piskin E. Monosize polystyrene latices carrying functional-groups on their surfaces. Journal of Applied Polymer Science 1994; 51 (8): 1485-1498. doi: 10.1002/app.1994.070510816
  • 37. Wang Y, Angelatos AS, Caruso F. Template synthesis of nanostructured materials via layer-by-layer assembly. Chemistry of Materials 2008; 20 (3): 848-858. doi: 10.1021/cm7024813
  • 38. Rivas BL, Pereira ED, Moreno-Villoslada I. Water-soluble polymer-metal ion interactions. Progress in Polymer Science 2003; 28 (2): 173- 208. doi: 10.1016/s0079-6700(02)00028-x
  • 39. Rivas BL, Pereira E, Maureira A. Functional water-soluble polymers: polymer-metal ion removal and biocide properties. Polymer International 2009; 58 (10): 1093-1114. doi: 10.1002/pi.2632
  • 40. Jiang J, Yang YM, Li LC. Surfactant-assisted synthesis of nanostructured $NiFe_2O_4$ via a refluxing route. Materials Letters 2008; 62 (12-13): 1973-1975. doi: 10.1016/j.matlet.2007.10.063
  • 41. Periyasamy S, Subramanian P, Levi E, Aurbach D, Gedanken A et al. Exceptionally active and stable spinel nickel manganese oxide electrocatalysts for urea oxidation reaction. ACS Applied Materials & Interfaces 2016; 8 (19): 12176-12185. doi: 10.1021/acsami.6b02491
  • 42. Srivastava AK, Madhavi S, White TJ, Ramanujan RV. Cobalt-ferrite nanobowl arrays: Curved magnetic nanostructures. Journal of Materials Research 2007; 22 (5): 1250-1254. doi: 10.1557/JMR.2007.0149
  • 43. Li YY, Zhou F, Gao L, Duan GT. $Co_3 O_4$ nanosheet-built hollow spheres containing ultrafine neck-connected grains templated by PS@CoLDH and their ppb-level gas-sensing performance. Sensors and Actuators B-Chemical 2018; 261: 537-549. doi: 10.1016/j.snb.2018.01.162
  • 44. Chu SS, Li H, Wang YZ, Ma Q, Li H et al. Porous NiO/ZnO flower-like heterostructures consisting of interlaced nanosheet/particle framework for enhanced photodegradation of tetracycline. Materials Letters 2019; 252: 219-222. doi: 10.1016/j.matlet.2019.05.145
  • 45. Charan C, Shahi VK. Cobalt ferrite $(CoFe_2O_4)$ nanoparticles (size: similar to 10 nm) with high surface area for selective non-enzymatic detection of uric acid with excellent sensitivity and stability. Rsc Advances 2016; 6 (64): 59457-59467. doi: 10.1039/c6ra08746a
  • 46. Wang Y, Liu Q, Hu TJ, Zhang, LM, Deng YQ. Carbon supported $MnO_2-CoFe_2O_4$ with enhanced electrocatalytic activity for oxygen reduction and oxygen evolution. Applied Surface Science 2017; 403: 51-56. doi: 10.1016/j.apsusc.2017.01.127
  • 47. Kharat PB, Somvanshi SB, Khirade PP, Jadhav KM. Induction heating analysis of surface-functionalized nanoscale CoFe2O4 for magnetic fluid hyperthermia toward noninvasive cancer treatment. ACS Omega 2020; 5 (36): 23378-23384. doi: 10.1021/acsomega.0c03332
  • 48. Erdem D, Bingham NS, Heiligtag FJ, Pilet N, Warnicke P et al. CoFe2O4 and CoFe2O4-SiO2 nanoparticle thin films with perpendicular magnetic anisotropy for magnetic and magneto-optical applications. Advanced Functional Materials 2016; 26 (12): 1954-1963. doi: 10.1002/adfm.201504538
  • 49. Sapna, Budhiraja N, Kumar V, Singh SK. Synergistic effect in structural and supercapacitor performance of well dispersed $CoFe_2O_4/Co_3O4$ nano-hetrostructures. Ceramics International 2018; 44 (12): 13806-13814. doi: 10.1016/j.ceramint.2018.04.224 50. Casbeer E, Sharma VK, Li XZ. Synthesis and photocatalytic activity of ferrites under visible light: A review. Separation and Purification Technology 2012; 87: 1-14. doi: 10.1016/j.seppur.2011.11.034
  • 51. Umar A, Akhtar MS, Ameen S, Imran M, Kumar R et al. Colloidal synthesis of $NiMn_2O_4$ nanodisks decorated reduced graphene oxide for electrochemical applications. Microchemical Journal 2021; 160: ARTN 105630. doi: 10.1016/j.microc.2020.105630
  • 52. Schubert M, Munch C, Schuurman S, Poulain V, Kita J et al. Novel method for ntc thermistor production by aerosol co-deposition and combined sintering. Sensors 2019; 19 (7): ARTN 1632. doi: 10.3390/s19071632
  • 53. Abel MJ, Pramothkumar A, Archana V, Senthilkumar N, Jothivenkatachalam K et al. Facile synthesis of solar light active spinel nickel manganite $(NiMn_2O_4)$ by co-precipitation route for photocatalytic application. Research on Chemical Intermediates 2020; 46 (7): 3509- 3525. doi: 10.1007/s11164-020-04159-y
  • 54. Qin Q, Chen LL, Wei T, Wang YM, Liu XE. $Ni/NiM_2O_4$ (M = Mn or Fe) supported on N-doped carbon nanotubes as trifunctional electrocatalysts for ORR, OER and HER. Catalysis Science & Technology 2019; 9 (7): 1595-1601. doi:10.1039/c8cy02504e
  • 55. Li LJ, Yao Q, Liu JQ, Ye KB, Liu BY et al. Porous hollow superlattice $NiMn_2 O_4/NiCo_2O_4$ mesocrystals as a highly reversible anode material for lithium-ion batteries. Frontiers in Chemistry 2018; 6:ARTN 153. doi: 10.3389/fchem.2018.00153
  • 56. Wang ZB, Zhu ZH, Zhang CL, Xu CQ, Chen CN. Facile synthesis of reduced graphene oxide/$NiMn_2O_4$ nanorods hybrid materials for high-performance supercapacitors. Electrochimica Acta 2017; 230: 438-444. doi: 10.1016/j.electacta.2017.02.023
APA Kocak G, Butun V (2022). Production of NiMn2O4 hollow spheres and $CoFe_2O_4$bowl-like structures by using block copolymer stabilized polystyrene spheres as a hard template. , 1 - 13. 10.3906/kim-2106-18
Chicago Kocak Gökhan,Butun Vural Production of NiMn2O4 hollow spheres and $CoFe_2O_4$bowl-like structures by using block copolymer stabilized polystyrene spheres as a hard template. (2022): 1 - 13. 10.3906/kim-2106-18
MLA Kocak Gökhan,Butun Vural Production of NiMn2O4 hollow spheres and $CoFe_2O_4$bowl-like structures by using block copolymer stabilized polystyrene spheres as a hard template. , 2022, ss.1 - 13. 10.3906/kim-2106-18
AMA Kocak G,Butun V Production of NiMn2O4 hollow spheres and $CoFe_2O_4$bowl-like structures by using block copolymer stabilized polystyrene spheres as a hard template. . 2022; 1 - 13. 10.3906/kim-2106-18
Vancouver Kocak G,Butun V Production of NiMn2O4 hollow spheres and $CoFe_2O_4$bowl-like structures by using block copolymer stabilized polystyrene spheres as a hard template. . 2022; 1 - 13. 10.3906/kim-2106-18
IEEE Kocak G,Butun V "Production of NiMn2O4 hollow spheres and $CoFe_2O_4$bowl-like structures by using block copolymer stabilized polystyrene spheres as a hard template." , ss.1 - 13, 2022. 10.3906/kim-2106-18
ISNAD Kocak, Gökhan - Butun, Vural. "Production of NiMn2O4 hollow spheres and $CoFe_2O_4$bowl-like structures by using block copolymer stabilized polystyrene spheres as a hard template". (2022), 1-13. https://doi.org/10.3906/kim-2106-18
APA Kocak G, Butun V (2022). Production of NiMn2O4 hollow spheres and $CoFe_2O_4$bowl-like structures by using block copolymer stabilized polystyrene spheres as a hard template. Turkish Journal of Chemistry, 46(1), 1 - 13. 10.3906/kim-2106-18
Chicago Kocak Gökhan,Butun Vural Production of NiMn2O4 hollow spheres and $CoFe_2O_4$bowl-like structures by using block copolymer stabilized polystyrene spheres as a hard template. Turkish Journal of Chemistry 46, no.1 (2022): 1 - 13. 10.3906/kim-2106-18
MLA Kocak Gökhan,Butun Vural Production of NiMn2O4 hollow spheres and $CoFe_2O_4$bowl-like structures by using block copolymer stabilized polystyrene spheres as a hard template. Turkish Journal of Chemistry, vol.46, no.1, 2022, ss.1 - 13. 10.3906/kim-2106-18
AMA Kocak G,Butun V Production of NiMn2O4 hollow spheres and $CoFe_2O_4$bowl-like structures by using block copolymer stabilized polystyrene spheres as a hard template. Turkish Journal of Chemistry. 2022; 46(1): 1 - 13. 10.3906/kim-2106-18
Vancouver Kocak G,Butun V Production of NiMn2O4 hollow spheres and $CoFe_2O_4$bowl-like structures by using block copolymer stabilized polystyrene spheres as a hard template. Turkish Journal of Chemistry. 2022; 46(1): 1 - 13. 10.3906/kim-2106-18
IEEE Kocak G,Butun V "Production of NiMn2O4 hollow spheres and $CoFe_2O_4$bowl-like structures by using block copolymer stabilized polystyrene spheres as a hard template." Turkish Journal of Chemistry, 46, ss.1 - 13, 2022. 10.3906/kim-2106-18
ISNAD Kocak, Gökhan - Butun, Vural. "Production of NiMn2O4 hollow spheres and $CoFe_2O_4$bowl-like structures by using block copolymer stabilized polystyrene spheres as a hard template". Turkish Journal of Chemistry 46/1 (2022), 1-13. https://doi.org/10.3906/kim-2106-18