Yıl: 2022 Cilt: 46 Sayı: 1 Sayfa Aralığı: 14 - 26 Metin Dili: İngilizce DOI: 10.3906/kim-2106-21 İndeks Tarihi: 04-07-2022

Preparation of surface plasmon resonance-based nanosensor for curcumin detection

Öz:
In this study, the curcumin imprinted and the non-imprinted poly(2-hydroxyethyl methacrylate-N-methacryloyl-Ltryptophan) (poly(HEMA-MATrp)) nanoparticle based surface plasmon resonance (SPR) nanosensors were prepared for the detection of curcumin and characterized by zeta-size analysis, Fourier transform infrared spectroscopy, and scanning electron microscopy. After, the curcumin imprinted and the non-imprinted nanoparticles are attached on the surface of SPR chips. The curcumin imprinted and the non-imprinted SPR nanosensors are characterized by using atomic force microscope, ellipsometer, and contact angle measurements. Kinetic studies were carried out with curcumin aqueous solution at a concentration range of 0.01–150 mg/L using the curcumin imprinted and the non-imprinted SPR nanosensors. In all kinetic analysis, the response time is 14 min for equilibration, adsorption, and desorption cycles. The limit of detection and limit of quantification for the curcumin imprinted SPR nanosensors was 0.0012 mg/L and 0.0040 mg/L, respectively. The validity of the curcumin imprinted SPR nanosensors in real samples was carried out using liquid chromatography-tandem mass spectrometry (LC-MS).
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Bansal S, Goel M, Aqil F, Vadhanam M, Gupta R. Advanced drug delivery systems of curcumin for cancer chemoprevention. Cancer Prevention Research 2011; 1158-1171. doi: 10.1158/1940-6207.CAPR-10-0006
  • 2. Maiti P, Al-Gharaibeh A, Kolli N, Dunbar GL. Solid lipid curcumin particles induce more DNA fragmentation and cell death in cultured human glioblastoma cells than does natural curcumin. Oxidative Medicine and Cell Longevity 2017; 656-719. doi: 10.1155/2017/9656719
  • 3. Koronyo Y, Salumbides BC, Black KL, Koronyo-Hamaoui M. Alzheimer’s disease in the retina: Imagingretinal abeta plaques for early diagnosis and therapy assessment. Neurodegenerative Disease 2012; 10: 285-293. doi: 10.1159/000335154
  • 4. Impola U, Toriseva M, Suomela S, Jeskanen L, Hieta N, Jahkola T, Grenman R, Kähäri V, Saarialho-Kere U. Matrix metalloproteinase-19 is expressed by proliferating epithelium but disappears with neoplastic dedifferentiation. International Journal of Cancer 2003; 103 (6): 709-716. doi: 10.1002/ijc.10902
  • 5. Pender SL, Braegger C, Gunther C, Monteleone G, Meuli M, Schuppan D, MacDonald TT. Matrix metalloproteinases in necrotising enterocolitis. Pediatric Research 2003; 54 (2): 160-164. doi: 10.1203/01.PDR.0000072326.23442.C3
  • 6. Li B, Konecke S, Wegiel LA, Taylor LS, Edgar KJ. Both solubility and chemical stability of curcumin are enhanced by solid dispersion in cellulose derivative matrices. Carbohydrate Polymers 2013; 98 (1): 1108-1116. doi: 10.1016/j.carbpol.2013.07.017
  • 7. Sharma RA, Gescher AJ, Steward WP. Curcumin: The story so far. European Journal of Cancer 2005; 41 (13): 1955-1968. doi: 10.1016/j.ejca.2005.05.009
  • 8. Yi X, Feng C, Shengqiang H, Li H, Wang J. Surface plasmon resonance biosensors for simultaneous monitoring of amyloid-beta oligomers and fibrils and screening of select modulators. Analyst 2016; 141 (1): 331-336. doi: 10.1039/C5AN01864A
  • 9. Sun X, Gao C, Cao W, Yang X, Wang E. Capillary electrophoresis with amperometric detection of curcumin in Chinese herbal medicine pretreated by solid-phase extraction. Journal of Chromatography A 2002; 962 (1-2): 117-125. doi: 10.1016/S0021-9673(02)00509-5
  • 10. Altunay N, Elik A, Gürkan R. Preparation and application of alcohol based deep eutectic solvents for extraction of curcumin in food samples prior to its spectrophotometric determination. Food Chemistry 2020; 310: 125933. doi: 10.1016/j.foodchem.2019.125933
  • 11. Liu X, Zhu L, Gao X, Wang Y, Lu H et al. Magnetic molecularly imprinted polymers for spectrophotometric quantification of curcumin in food. Food Chemistry 2016; 202: 309-315. doi: 10.1016/j.foodchem.2016.02.015
  • 12. Gören, AC, Çıkrıkçı S, Çergel M, Bilsel G. Rapid quantitation of curcumin in turmeric via NMR and LC–tandem mass spectrometry. Food Chemistry 2009; 113 (4): 1239-1242. doi: 10.1016/j.foodchem.2008.08.014
  • 13. Garcea G, Jones D, Singh R. Detection of curcumin and its metabolites in hepatic tissue and portal blood of patients following oral administration. British Journal of Cancer 2004; 90: 1011-1015. doi: 10.1038/sj.bjc.6601623
  • 14. Haroon KS, Kai BL, Gabriel OK, Kok KP. Stability indicating HPLC–UV method for detection of curcumin in curcuma longa extract and emulsion formulation. Food Chemistry 2015; 170 (1): 321-326. doi: 10.1016/j.foodchem.2014.08.066
  • 15. Arash A, Mehrorang G, Alipanahpour E, Agarwal S, Gupta VK. Application of response surface methodology and dispersive liquid– liquid microextraction by microvolume spectrophotometry method for rapid determination of curcumin in water, wastewater, and food samples. Food Analytical Methods 2016; 9: 1274-1283. doi: 10.1007/s12161-015-0305-5
  • 16. Yang KY, Lin LC, Tseng TY, Wang SC, Tsai TH. Oral bioavailability of curcumin in rat and the herbal analysis from curcuma longa by LC–MS/MS. Journal of Chromatography B 2007; 853 (1-2): 183-189. doi: 10.1016/j.jchromb.2007.03.010
  • 17. Shin YB, Kim HM, Jung Y, Chung BH. A new palm-sized surface plasmon resonance (SPR) biosensor based on modulation of a light source by a rotating mirror. Sensors and Actuators B 2010; 150 (1): 1-6. doi: 10.1016/j.snb.2010.08.006
  • 18. Liu X, Luo F, Li P, She Y, Gao W. Investigation of the interaction for three Citrus flavonoids and α-amylase by surface plasmon resonance. Food Research International 2017; 97: 1-6. doi: 10.1016/j.foodres.2017.03.023
  • 19. Bereli N, Çimen D, Hüseynli S, Denizli A. Detection of amoxicillin residues in egg extract with a molecularly imprinted polymer on gold microchip using surface plasmon resonance and quartz crystal microbalance methods. Journal of Food Science 2020; 85 (12): 4153-4160. doi: 10.1111/1750-3841.15529
  • 20. Allen D, Taylora J, Ladd Q, Yu S, Chen JH et al. Quantitative and simultaneous detection of four foodborne bacterial pathogens with a multi-channel SPR sensor. Biosensors and Bioelectronics 2006; 22 (5): 752-758. doi: 10.1016/j.bios.2006.03.012
  • 21. Saylan Y, Akgönüllü S, Çimen D, Derazshamshir A, Bereli N et al. Development of surface plasmon resonance sensors based on molecularly imprinted nanofilms for sensitive and selective detection of pesticides. Sensors and Actuators B 2017; 24: 446-454. doi: 10.1016/j.snb.2016.10.017
  • 22. Zurutuza A, Bayoudh S, Cormack PG. Molecularly imprinted solid-phase extraction of cocaine metabolites from aqueous samples. Analytical Chimical Acta 2005; 542 (1): 14-19. doi: 10.1016/j.aca.2004.12.019
  • 23. Faalnouri S, Çimen D, Bereli N, Denizli A. Surface plasmon resonance nanosensors for detecting amoxicillin in milk samples with amoxicillin imprinted poly(hydroxyethylmethacrylate-N-methacryloyl-(L)-glutamicacid). ChemistrySelect 2020; 5 (15): 4761-4769. doi: 10.1002/slct.20200062
  • 24. Wie X, Samadi A, Husson SM. Synthesis and characterization of molecularly imprinted polymers for chromatographic separations. Separation Science and Technology 2005; 40 (1-3): 109-129. doi: 10.1081/SS-200041880
  • 25. Bereli N, Andaç M, Baydemir G, Say R, Galaev IY. et al. Protein recognition via ion-coordinated molecularly imprinted supermacroporous cryogels. Journal of Chromatography A 2008; 1190 (1-2): 18-26. doi: 10.1016/j.chroma.2008.02.110
  • 26. Çimen D, Denizli A. Development of rapid, sensitive, and effective plasmonic nanosensor for the detection of vitamins in infact formula and milk samples. Photonic Sensors 2020; 10 (4): 316-332. doi: 10.1007/s13320-020-0578-1
  • 27. Yılmaz F, Bereli N, Yavuz H, Denizli A. Supermacroporous hydrophobic affinity cryogels for protein chromatography. Biochemical Engineering Journal 2009; 43 (3): 272-279. doi: 10.1016/j.bej.2008.10.009
  • 28. Unsal YE, Tuzen M. Ultrasound-assisted ıonic liquid-dispersive liquid–liquid of curcumin in food samples microextraction and its spectrophotometric determination. Journal of Association of Official Analytical Chemists International 2019; 102 (1): 217-221. doi: 10.5740/jaoacint.18-0095
  • 29. Bereli N, Çimen D, Denizli A. Optical sensor-based molecular imprinted poly(hydroxyethyl methacrylate-N-methacryloyl-(L)-histidine methyl ester) thin films for determination of tartrazine in fruit juice. IEEE Sensors Journal 2021; 21 (12): 13215- 13222.
  • 30. Liu Y, Gong X, Dong W, Zhou R, Shuang S et al. Nitrogen and phosphorus dual-doped carbon dots as a label-free sensor for curcumin determination in real sample and cellular imaging. Talanta 2018; 183: 61-69. doi: 10.1016/j.talanta.2018.02.060
  • 31. Hu Q, Gao L, Rao S, Yang Z, Li T et al. Nitrogen and chlorine dual-doped carbon nanodots for determination of curcumin in food matrix via inner filter effect. Food Chemistry 2019; 280: 195-202. doi: 10.1016/j.foodchem.2018.12.050
  • 32. Wu B, Liu X, Shi X, Han W, Wang C et al. Highly photoluminescent and temperature sensitive P, N, B-co-doped carbon quantum dots and their highly sensitive recognition for curcumin. Royal Societes of Chemistry Advances 2019; 9: 8340-8349. doi: 10.1039/c9ra00183b
  • 33. Guo Z, Zhu Z, Sun Z, Zhang X, Chen Y. Synthesis of dual-emitting (Gd,Eu)2O3-PEI@CD composite and its potential as ratiometric fluorescent sensor for curcumin. Materials Research Bulletin 2018; 108: 83-88. doi: 10.1016/j.materresbull.2018.08.038
  • 34. Gong X, Wang H, Liu Y, Hu Q, Gao Y et al. A di-functional and label-free carbon-based chem-nanosensor for real-time monitoring of pH fluctuation and quantitative determining of curcumin. Analytical Chimical Acta 2019; 1057: 132-144. doi: 10.1016/j.aca.2019.01.012
  • 35. Jiang S, Qiu J, Lina B, Guo H, Yang F. First fluorescent sensor for curcumin in aqueous media based on acylhydrazone-bridged bistetraphenylethylene. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2020; 229: 117916. doi: 10.1016/j. saa.2019.117916
  • 36. Du X, Wen G, Li Z, Li H-W. Paper sensor of curcumin by fluorescence resonance energy transfer on nitrogen-doped carbon quantum dot. Spectrochimical Acta Part A: Molecular and Biomolecular Spectroscopy 2020; 227: 117538. doi: 10.1016/j.saa.2019.117538
  • 37. Cheraghi S, Taher MA, Maleh HK. Electroanalysis fabrication of fas tand sensitive nanostructure voltammetric sensor for determination of curcumin in the presence of vitamin B9 in food samples. Electroanalysis 2016; 28: 2590-2597. doi: 10.1002/elan.201600252
  • 38. Raril C, Manjunatha JG, Tigari G. Low-cost voltammetric sensor based on an anionic surfactant modified carbon nanocomposite material for the rapid determination of curcumin in natural food supplement. Instrumentation Science and Technology 2020; 48: 561-582. doi: 10.1080/10739149.2020.1756317
  • 39. Li W, Yang H, Buckley B, Wang L, Kong AN. A novel triple stage ion trap MS method validated for curcumin pharmacokinetics application: A comparison summary of the latest validated curcumin LC/MS methods. Journal of Pharmaceutical and Biomedical Analysis 2018; 156:116–124. doi: 10.1016/j.jpba.2018.04.022
APA CIKRIK S, Çimen D, Bereli N, Denizli A (2022). Preparation of surface plasmon resonance-based nanosensor for curcumin detection. , 14 - 26. 10.3906/kim-2106-21
Chicago CIKRIK SEBNEM,Çimen Duygu,Bereli Nilay,Denizli Adil Preparation of surface plasmon resonance-based nanosensor for curcumin detection. (2022): 14 - 26. 10.3906/kim-2106-21
MLA CIKRIK SEBNEM,Çimen Duygu,Bereli Nilay,Denizli Adil Preparation of surface plasmon resonance-based nanosensor for curcumin detection. , 2022, ss.14 - 26. 10.3906/kim-2106-21
AMA CIKRIK S,Çimen D,Bereli N,Denizli A Preparation of surface plasmon resonance-based nanosensor for curcumin detection. . 2022; 14 - 26. 10.3906/kim-2106-21
Vancouver CIKRIK S,Çimen D,Bereli N,Denizli A Preparation of surface plasmon resonance-based nanosensor for curcumin detection. . 2022; 14 - 26. 10.3906/kim-2106-21
IEEE CIKRIK S,Çimen D,Bereli N,Denizli A "Preparation of surface plasmon resonance-based nanosensor for curcumin detection." , ss.14 - 26, 2022. 10.3906/kim-2106-21
ISNAD CIKRIK, SEBNEM vd. "Preparation of surface plasmon resonance-based nanosensor for curcumin detection". (2022), 14-26. https://doi.org/10.3906/kim-2106-21
APA CIKRIK S, Çimen D, Bereli N, Denizli A (2022). Preparation of surface plasmon resonance-based nanosensor for curcumin detection. Turkish Journal of Chemistry, 46(1), 14 - 26. 10.3906/kim-2106-21
Chicago CIKRIK SEBNEM,Çimen Duygu,Bereli Nilay,Denizli Adil Preparation of surface plasmon resonance-based nanosensor for curcumin detection. Turkish Journal of Chemistry 46, no.1 (2022): 14 - 26. 10.3906/kim-2106-21
MLA CIKRIK SEBNEM,Çimen Duygu,Bereli Nilay,Denizli Adil Preparation of surface plasmon resonance-based nanosensor for curcumin detection. Turkish Journal of Chemistry, vol.46, no.1, 2022, ss.14 - 26. 10.3906/kim-2106-21
AMA CIKRIK S,Çimen D,Bereli N,Denizli A Preparation of surface plasmon resonance-based nanosensor for curcumin detection. Turkish Journal of Chemistry. 2022; 46(1): 14 - 26. 10.3906/kim-2106-21
Vancouver CIKRIK S,Çimen D,Bereli N,Denizli A Preparation of surface plasmon resonance-based nanosensor for curcumin detection. Turkish Journal of Chemistry. 2022; 46(1): 14 - 26. 10.3906/kim-2106-21
IEEE CIKRIK S,Çimen D,Bereli N,Denizli A "Preparation of surface plasmon resonance-based nanosensor for curcumin detection." Turkish Journal of Chemistry, 46, ss.14 - 26, 2022. 10.3906/kim-2106-21
ISNAD CIKRIK, SEBNEM vd. "Preparation of surface plasmon resonance-based nanosensor for curcumin detection". Turkish Journal of Chemistry 46/1 (2022), 14-26. https://doi.org/10.3906/kim-2106-21