Yıl: 2022 Cilt: 46 Sayı: 1 Sayfa Aralığı: 86 - 102 Metin Dili: İngilizce DOI: 10.3906/kim-2107-23 İndeks Tarihi: 04-07-2022

Synthesis, molecular modeling, and biological evaluation of novel imatinib derivatives as anticancer agents

Öz:
Different derivatives of imatinib were synthesized by a 3-step reaction method. The structures of the new compounds were characterized by spectroscopic methods. For quantitative evaluation of the biological activity of the compounds, MTT assays were performed, where four BCR-ABL negative leukemic cell lines (Jurkat, Reh, Nalm-6 and Molt-4), one BCR-ABL positive cell line (K562), and one non-leukemic cell line (Hek293T) were incubated with various concentrations of the derivatives. Although imatinib was specifically designed for the BCR-ABL protein, our results showed that it was also effective on BCR-ABL negative cell lines except for Reh cell line. Compound 9 showed lowest I$C_{50}$ values against Nalm-6 cells as 1.639 µM, also the values of Compound 10 for each cell were very close to imatinib. Molecular docking simulations suggest that except for compound 6, the compounds prefer a DFG-out conformation of the ABL kinase domain. Among them, compound 10 has the highest affinity for ABL kinase domain that is close to the affinity of imatinib. The common rings between compound 10 and imatinib adopt exactly the same conformation and same type of interactions in the ATP binding site with the ABL kinase domain.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Tuğlu MM, Melli M. İmatinib: Etki Mekanizması ve Direnç Geliștirme Mekanizmaları. Ankara Üniversitesi Tıp Fakültesi Mecmuası 2012; 65 (2): 77-82. doi: 10.1501/Tıpfak_000000813
  • 2. Sacha T. Imatinib in Chronic Myeloid Leukemia: an Overview. Mediterranean Journal of Hematology and Infectious Diseases 2014; 6 (1): e2014007. doi: 10.4084/MJHID.2014.007
  • 3. Waclaw J, Sacha T, Stoklosa T. Imatinib in the treatment of chronic myeloid leukemia: current perspectives on optimal dose. Blood and Lymphatic Cancer: Targets and Therapy 2015; 5: 101–108. doi: 10.2147/BLCTT.S58845
  • 4. Lopes LF, Bacchi CE. Imatinib treatment for gastrointestinal stromal tumour (GIST). Journal of Cellular and Molecular Medicine 2010; 14 (1-2): 42–50. doi: 10.1111/j.1582-4934.2009.00983.x
  • 5. Murray M, Hatcher H, Jessop F, Williams D, Carroll N et al. Treatment of wild-type gastrointestinal stromal tumor (WT-GIST) with imatinib and sunitinib. Pediatric Blood & Cancer 2008; 50 (2): 386-388. doi: 10.1002/pbc.21312
  • 6. Paul MK, Mukhopadhyay AK. Tyrosine kinase - Role and significance in Cancer. International Journal of Medical Sciences 2004; 1 (2): 101-115. doi: 10.7150/ijms.1.101
  • 7. Rossari F, Minutolo F, Orciuolo E. Past, present, and future of Bcr-Abl inhibitors: from chemical development to clinical efficacy. Journal of Hematology & Oncology 2018; 11: 84-97. doi: 10.1186/s13045-018-0624-2
  • 8. Xing L, Xungui H, Wang Y, Bekhazi M, Krivonos S et al. Imatinib production process. World Intellectual Property Organization International Bureau Patent 2008; 2008135980.
  • 9. (a) Zimmermann, J. Pyrimidine derivatives and processes for their preparation. European Patent 1993; PT564409E. (b) Zimmermann, J. Pyrimidine derivatives and processes for the preparation thereof. U.S. Patent 1996; 5521184A. (c) Zimmermann J, Buchdunger E, Mett H, Meyer T, Lydon NB et al. (Phenylamino)pyrimidine (PAP) derivatives: a new class of potent and highly selective PDGF-receptor autophosphorylation inhibitors. Bioorganic & Medicinal Chemistry Letters 1996; 6 (11): 1221–1226. doi: 10.1016/0960-894X(96)00197-7
  • 10. Kompella A, Bhujanga Rao AKS, Venkaiah Chowdary NWO. A Facile Total Synthesis for Large-Scale Production of Imatinib Base. Organic Process Research & Development 2012; 16 (11): 1794–1804. doi: 10.1021/op300212u
  • 11. Szczepek W, Luniewski W, Kaczmarek L, Zagrodski B, Samson-Lazinska D et al. A process for preparation of imatinib base. World Intellectual Property Organization International Bureau Patent 2006; 2006071130.
  • 12. Loiseleur O, Kaufmann D, Abel S, Buerger HM, Meisenbach M et al. N-phenyl-2-pyrimidine-amine derivatives. World Intellectual Property Organization International Bureau Patent 2003; WO 03/066613 A1.
  • 13. Zhang X, Sun J, Chen T, Yang C, Yu LA. A Practical Preparation of Imatinib Base. Synlett 2016; 27: 2233-2236. doi: 10.1055/s-0035- 1562498
  • 14. Kang J, Lee JY, Park JH, Chang DJ. Synthesis of imatinib, a tyrosine kinase inhibitor, labeled with carbon‐14. Journal of Label Compounds and Radiopharmaceuticals 2020; 63: 174–182. doi: 10.1002/jlcr.3830
  • 15. Macdonald P and Rossetto P. Process for the preparation of imatinib. World Intellectual Property Organization International Bureau Patent 2008; WO2008051597A1.
  • 16. Ivanov S, Shishkov SV. Synthesis of imatinib: a convergent approach revisited. Monatshefte für Chemie - Chemical Monthly 2009; 140: 619–623. doi: 10.1007/s00706-008-0105-3
  • 17. Zhao Y, Li Z, Liu G, Liu C, Xu L. Method for preparing imatinib. Chinese Patent 2013; CN101921260B.
  • 18. Yan R, Yang H, Hou W, Xu Y. Convenient and quick method for preparing high-purity imatinib and mesylate thereof. Chinese Patent 2011; CN101985442B.
  • 19. Kamath AA, Pai GG, Ujagare AM, He X, Wu S et al. Process for the preparatıon of ımatınıb and salts thereof. World Intellectual Property Organization International Bureau Patent 2011; 2011070588.
  • 20. Hopkin MD, Baxendale IR, Ley SV. A flow-based synthesis of Imatinib: the API of Gleevec. Chemical Communications 2010; 46: 2450-2. doi: 10.1039/C001550D
  • 21. Hopkin MD, Baxendale IR, Ley SV. An expeditious synthesis of imatinib and analogues utilising flow chemistry methods. Organic & Biomolecular Chemistry 2013; 11: 1822-39. doi: 10.1039/C2OB27002A
  • 22. Ingham RJ, Riva E, Nikbin N, Baxendale IR, Ley SV. A “Catch–React–Release” Method for the Flow Synthesis of 2-Aminopyrimidines and Preparation of the Imatinib Base. Organic Letters 2012; 14: 3920–3. doi: 10.1021/ol301673q
  • 23. Leonetti F, Capaldi C, Carotti A. Microwave-assisted solid phase synthesis of Imatinib, a blockbuster anticancer drug. Tetrahedron Letters 2007; 48: 3455–8. doi: 10.1016/j.tetlet.2007.03.033
  • 24. Heo Y, Hyun D, Kumar MR, Jung HM, Lee S. Preparation of copper (II) oxide bound on polystyrene beads and its application in the aryl aminations: synthesis of Imatinib. Tetrahedron Letters 2012; 53 (49): 6657-61. doi: 10.1016/j.tetlet.2012.09.097
  • 25. Lee SH, Ryu JC, El-Deeb IM. Synthesis of new N-arylpyrimidin-2-amine derivatives using a palladium catalyst. Molecules 2008; 13 (4): 818–830. doi: 10.3390/molecules13040818
  • 26. Fors BP, Watson DA, Biscoe MR, Buchwald SL. A highly active catalyst for pd-catalyzed amination reactions: cross-coupling reactions using aryl mesylates and the highly selective monoarylation of primary amines using aryl chlorides. Journal of American Chemical Society 2008; 130 (41): 13552-4. doi: 10.1021/ja8055358
  • 27. Maiti D, Fors BP, Henderson JL, Nakamura Y, Buchwald SL. Palladium-catalyzed coupling of functionalized primary and secondary amines with aryl and heteroaryl halides: two ligands suffice in most cases. Chemical Science 2011; 2: 57-68. doi: 10.1039/C0SC00330A
  • 28. Yaghmaie M, Yeung CCS. Molecular Mechanisms of Resistance to Tyrosine Kinase Inhibitors. Current Hematological Malignancy Reports 2019; 14 (5): 395–404. doi: 10.1007/s11899-019-00543-7
  • 29. Bitencourt R, Zalcberg I, Louro ID. Imatinib resistance: a review of alternative inhibitors in chronic myeloid leukemia. Revista Brasileira de Hematologia e Hemoterapia 2011; 33 (6): 470-475. doi: 10.5581/1516-8484.20110124
  • 30. Huang M, Dorsey JF, Epling-Burnett PK, Nimmanapalli R, Landowski TH et al. Inhibition of Bcr-Abl kinase activity by PD180970 blocks constitutive activation of Stat5 and growth of CML cells. Oncogene 2002; 21: 8804-16. doi: 10.1038/sj.onc.1206028
  • 31. Warmuth M, Simon N, Mitina O, Mathes R, Fabbro D et al. Dual-specific Src and Abl kinase inhibitors, PP1 and CGP76030, inhibit growth and survival of cells expressing imatinib mesylate-resistant Bcr-Abl kinases. Blood 2003; 101 (2): 664-672. doi: 10.1182/ blood-2002-01-0288
  • 32. Shah NP, Tran C, Lee FY, Chen P, Norris D et al. Overriding Imatinib Resistance with a Novel ABL Kinase Inhibitor. Science 2004; 305 (5682): 399-401. doi: 10.1126/science.1099480
  • 33. Weisberg E, Manley P, Mestan J, Cowan-Jacob S, Ray A et al. AMN107 (nilotinib): a novel and selective inhibitor of BCR-ABL. British Journal of Cancer 2006; 94 (12): 1765-9. doi: 10.1038/sj.bjc.6603170
  • 34. O’Hare T, Shakespeare WC, Zhu X, Eide CA, Rivera VM et al. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell 2009; 16 (5): 401-412. doi: 10.1016/j.ccr.2009.09.028
  • 35. Hoover RR, Mahon FX, Melo JV, Daley GQ. Overcoming STI571 resistance with the farnesyl transferase inhibitor SCH66336. Blood 2002; 100 (3): 1068-71. doi: 10.1182/blood.v100.3.1068
  • 36. Manley PW, Stie N, Cowan-Jacob SW, Kaufman S, Mestan J et al. Structural resemblances and comparisons of the relative pharmacological properties of imatinib and nilotinib. Bioorganic & Medicinal Chemistry 2018; 26 (15), 4537-43. doi: 10.1016/j.bmc.2010.08.026
  • 37. Cory AH, Owen TC, Barltrop JA, Cory JG. Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Communications 1991; 3 (7): 207-212. doi: 10.3727/095535491820873191
  • 38. Carvalho BS, Irizarry RA. A framework for oligonucleotide microarray preprocessing. Bioinformatics 2010; 26 (19): 2363-7. doi: 10.1093/ bioinformatics/btq431
  • 39. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research 2015; 43(7): e47. doi: 10.1093/nar/gkv007
  • 40. Keiser MJ, Roth BL, Armbruster BN, Ernsberger P, Irwin JJ et al. Relating protein pharmacology by ligand chemistry. Nature Biotechnology 2007; 25 (2): 197-206. doi: 10.1038/nbt1284
  • 41. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T et al. Open Babel: An open chemical toolbox. Journal of Cheminformatics 201; 3 (33): 1-14. doi: 10.1186/1758-2946-3-33
  • 42. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK et al. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. Journal of Computational Chemistry 2009; 30 (16): 2785-2791. doi: 10.1002/jcc.21256
  • 43. Gasteiger J, Marsili MA. A new model for calculating atomic charges in molecules. Tetrahedron Letters 1978; 19 (34): 3181-3184. doi: 10.1016/S0040-4039(01)94977-9
  • 44. Kumar S, Deep A, Narasimhan B. A Review on Synthesis, Anticancer and Antiviral Potentials of Pyrimidine Derivatives. Current Bioactive Compounds 2019; 15 (3): 289-303. doi: 10.2174/1573407214666180124160405
  • 45. Gatta L, Vitiello L, Gorini S, Chiandotto S, Costelli P et.al. Modulating the metabolism by trimetazidine enhances myoblast differentiation and promotes myogenesis in cachectic tumorbearing c26 mice. Oncotarget 2017; 8 (69): 113938-56. doi: 10.18632/oncotarget.23044
  • 46. Jakubowska J, Wasowska-Lukawska M, Czyz M. STI571 and morpholine derivative of doxorubicin collaborate in inhibition of K562 cell proliferation by inducing differentiation and mitochondrial pathway of apoptosis. European Journal of Pharmacology 2008; 596 (1–3): 41. doi:10.1016/j.ejphar.2008.08.021
  • 47. Hamidian H, Aziz S. Synthesis of novel compounds containing morpholine and 5(4H)-oxazolone rings as potent tyrosinase inhibitors. Bioorganic & Medicinal Chemistry 2015; 23 (21): 7089-7094. doi: 10.1016/j.bmc.2015.09.015
  • 48. Goud NS, Pooladanda V, Mahammad GS, Jakkula P, Gatreddi S et al. Synthesis and biological evaluation of morpholines linked coumarin– triazole hybrids as anticancer agents. Chemical Biology & Drug Design 2019; 94: 1919–29. doi: 10.1111/cbdd.13578
  • 49. Manley PW, Cowan-Jacob SW, Buchdunger E, Fabbro D, Fendrich G et al. Imatinib: a selective tyrosine kinase inhibitor. European Journal of Cancer 2002; 38 (S5): S19-S27. doi: 10.1016/S0959-8049(02)80599-8
  • 50. Levinson NM, Kuchment O, Shen K, Young MA, Koldobskiy M et al. A Src-like inactive conformation in the Abl tyrosine kinase domain. Plos Biology 2006; 4 (5): 753-767. doi: 10.1371/journal.pbio.0040144
  • 51. Cowan-Jacob SW, Fendrich G, Floersheimer A, Furet P, Liebetanz J et al. Structural biology contributions to the discovery of drugs to treat chronic myelogenous leukaemia. Acta Crystallographica, Section D, Biological Crystallography 2007; 63 (Pt 1): 80-93. doi: 10.1107/ S0907444906047287
  • 52. Bernstein FC, Koetzle TF, Williams GJ, Meyer Jr EF, Brice MD et al. Protein Data Bank - Computer-Based Archival File for Macromolecular Structures. Journal of Molecular Biology 1977; 112 (3): 535-542. doi: 10.1016/s0022-2836(77)80200-3
  • 53. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN et al. The Protein Data Bank. Nucleic Acids Research 2000; 28 (1): 235-242. doi: 10.1093/nar/28.1.235
  • 54. Horio T, Hamasaki T, Inoue T, Wakayama T, Itou S et al. Structural factors contributing to the Abl/Lyn dual inhibitory activity of 3-substituted benzamide derivatives. Bioorganic & Medicinal Chemistry Letters 2007; 17 (10): 2712-2717. doi: 10.1016/j.bmcl.2007.03.002
  • 55. Weisberg E, Manley PW, Breitenstein W, Brüggen J, Cowan-Jacob SW et al. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 2005; 7 (2): 129-141. doi: 10.1016/j.ccr.2005.01.007
  • 56. Levinson NM, Boxer SG. Structural and Spectroscopic Analysis of the Kinase Inhibitor Bosutinib and an Isomer of Bosutinib Binding to the Abl Tyrosine Kinase Domain. Plos One. 2012; 7 (4): e29828. doi: 10.1371/journal.pone.0029828
  • 57. Jensen CN, Mielke T, Farrugia JE, Frank A, Man H et al. Structures of the Apo and FAD-Bound Forms of 2-Hydroxybiphenyl 3-monooxygenase (HbpA) Locate Activity Hotspots Identified by Using Directed Evolution. Chembiochem. 2015; 16 (6): 968-976. doi: 10.1002/cbic.201402701
  • 58. Laskowski RA, Swindells MB. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modelling 2011; 51 (10): 2778-86. doi:10.1021/ci200227u
  • 59. Wan PTC, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 2004; 116 (6): 855-86. doi: 10.1016/s0092-8674(04)00215-6
  • 60. Okaniwa M, Hirose M, Arita T, Yabuki M, Nakamura A et al. Discovery of a Selective Kinase Inhibitor (TAK-632) Targeting Pan-RAF Inhibition: Design, Synthesis, and Biological Evaluation of C-7-Substituted 1,3-Benzothiazole Derivatives. Journal of Medicinal Chemistry 2013; 56 (16): 6478-6494. doi: 10.1021/jm400778d
  • 61. Lavoie H, Thevakumaran N, Gavory G, Li JJ, Padeganeh A et al. Inhibitors that stabilize a closed RAF kinase domain conformation induce dimerization. Nature Chemical Biology 2013; 9 (7): 428-436. doi: 10.1038/nchembio.1257
  • 62. Tsai J , Lee JT, Wang W, Zhang J, Cho H et al. Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proceedings of the National Academi of Sciences 2008; 105 (8): 3041-6. doi: 10.1073/pnas.0711741105
  • 63. Waizenegger IC, Baum A, Steurer S, Stadtmüller H, Bader G et al. A Novel RAF Kinase Inhibitor with DFG-Out-Binding Mode: High Efficacy in BRAF-Mutant Tumor Xenograft Models in the Absence of Normal Tissue Hyperproliferation. Molecular Cancer Therapeutics 2016; 15 (3): 354-365. doi: 10.1158/1535-7163.MCT-15-0617
  • 64. King AJ, Patrick DR, Batorsky RS, Ho ML, Do HT et al. Demonstration of a genetic therapeutic index for tumors expressing oncogenic BRAF by the kinase inhibitor SB-590885. Cancer Research 2006; 66 (23): 11100-11105. doi: 10.1158/0008-5472.CAN-06-2554
  • 65. Hansen JD, Grina J, Newhouse B, Welch M, Topalov G et al. Potent and selective pyrazole-based inhibitors of B-Raf kinase. Bioorganic & Medicinal Chemistry Letters 2008; 18 (16): 4692-4695. doi: 10.1016/j.bmcl.2008.07.002
APA Günay F, Balta S, NG Y, Ulucan O, Turgut Z, Gunkara O (2022). Synthesis, molecular modeling, and biological evaluation of novel imatinib derivatives as anticancer agents. , 86 - 102. 10.3906/kim-2107-23
Chicago Günay Fulya,Balta Sevcan,NG YUK YIN,Ulucan Ozlem,Turgut Zuhal,Gunkara Omer Tahir Synthesis, molecular modeling, and biological evaluation of novel imatinib derivatives as anticancer agents. (2022): 86 - 102. 10.3906/kim-2107-23
MLA Günay Fulya,Balta Sevcan,NG YUK YIN,Ulucan Ozlem,Turgut Zuhal,Gunkara Omer Tahir Synthesis, molecular modeling, and biological evaluation of novel imatinib derivatives as anticancer agents. , 2022, ss.86 - 102. 10.3906/kim-2107-23
AMA Günay F,Balta S,NG Y,Ulucan O,Turgut Z,Gunkara O Synthesis, molecular modeling, and biological evaluation of novel imatinib derivatives as anticancer agents. . 2022; 86 - 102. 10.3906/kim-2107-23
Vancouver Günay F,Balta S,NG Y,Ulucan O,Turgut Z,Gunkara O Synthesis, molecular modeling, and biological evaluation of novel imatinib derivatives as anticancer agents. . 2022; 86 - 102. 10.3906/kim-2107-23
IEEE Günay F,Balta S,NG Y,Ulucan O,Turgut Z,Gunkara O "Synthesis, molecular modeling, and biological evaluation of novel imatinib derivatives as anticancer agents." , ss.86 - 102, 2022. 10.3906/kim-2107-23
ISNAD Günay, Fulya vd. "Synthesis, molecular modeling, and biological evaluation of novel imatinib derivatives as anticancer agents". (2022), 86-102. https://doi.org/10.3906/kim-2107-23
APA Günay F, Balta S, NG Y, Ulucan O, Turgut Z, Gunkara O (2022). Synthesis, molecular modeling, and biological evaluation of novel imatinib derivatives as anticancer agents. Turkish Journal of Chemistry, 46(1), 86 - 102. 10.3906/kim-2107-23
Chicago Günay Fulya,Balta Sevcan,NG YUK YIN,Ulucan Ozlem,Turgut Zuhal,Gunkara Omer Tahir Synthesis, molecular modeling, and biological evaluation of novel imatinib derivatives as anticancer agents. Turkish Journal of Chemistry 46, no.1 (2022): 86 - 102. 10.3906/kim-2107-23
MLA Günay Fulya,Balta Sevcan,NG YUK YIN,Ulucan Ozlem,Turgut Zuhal,Gunkara Omer Tahir Synthesis, molecular modeling, and biological evaluation of novel imatinib derivatives as anticancer agents. Turkish Journal of Chemistry, vol.46, no.1, 2022, ss.86 - 102. 10.3906/kim-2107-23
AMA Günay F,Balta S,NG Y,Ulucan O,Turgut Z,Gunkara O Synthesis, molecular modeling, and biological evaluation of novel imatinib derivatives as anticancer agents. Turkish Journal of Chemistry. 2022; 46(1): 86 - 102. 10.3906/kim-2107-23
Vancouver Günay F,Balta S,NG Y,Ulucan O,Turgut Z,Gunkara O Synthesis, molecular modeling, and biological evaluation of novel imatinib derivatives as anticancer agents. Turkish Journal of Chemistry. 2022; 46(1): 86 - 102. 10.3906/kim-2107-23
IEEE Günay F,Balta S,NG Y,Ulucan O,Turgut Z,Gunkara O "Synthesis, molecular modeling, and biological evaluation of novel imatinib derivatives as anticancer agents." Turkish Journal of Chemistry, 46, ss.86 - 102, 2022. 10.3906/kim-2107-23
ISNAD Günay, Fulya vd. "Synthesis, molecular modeling, and biological evaluation of novel imatinib derivatives as anticancer agents". Turkish Journal of Chemistry 46/1 (2022), 86-102. https://doi.org/10.3906/kim-2107-23