Yıl: 2022 Cilt: 46 Sayı: 1 Sayfa Aralığı: 193 - 205 Metin Dili: İngilizce DOI: 10.3906/kim-2107-28 İndeks Tarihi: 05-07-2022

Adsorption isotherms, kinetic and thermodynamic studies on cadmium and lead ions from water solutions using Amberlyst 15 resin

Öz:
Adsorption isotherms, kinetic and thermodynamic parameters for Cd(II) and Pb(II) ions in water solutions by using Amberlyst 15 resin were performed and evaluated by utilizing solid phase extraction method with the batch system at 298, 308, and 318 K. Flame atomic absorption spectrometry was utilized for absorbance measurements of Cd and Pb in solutions. The Langmuir, Freundlich, and Dubinin–Radushkevich isotherm models, respectively were implemented to equilibrium results obtained. Experimental and theoretical monolayer adsorption capacities of resin for adsorptions of Cd(II) and Pb(II) by the Langmuir isotherm model were approximately the same and they were 120 and 116 mg/g for Cd(II) and Pb(II) ions, respectively at 318 K. Most appropriate kinetic model for adsorption of Cd(II) and Pb(II) on the resin was found as pseudo-second-order. Contact time and temperature for adsorption of analytes on the resin were optimized at 45 min and 298 K. Activation energies $(E_a )$ and thermodynamic values (ΔG°, ΔH° and ΔS°) were determined and assessed. Results showed that adsorptions of Cd(II) and Pb(II) on Amberlyst 15 were spontaneous, exothermic, and chemical ionexchange processes.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Ghasemi N, Ahmadi M, Piri A, Ghasemi M, Sillanpää M. Pb (II) adsorption on pumpkin char and modified pumpkin char: optimisation, kinetics, equilibrium and thermodynamics studies. International Journal of Environmental Analytical Chemistry 2020. doi: 10.1080/ 03067319.2020.1766033
  • 2. Şenol ZM, Şimşek S. Equilibrium, kinetics and thermodynamics of Pb(II) ions from aqueous solution by adsorption onto chitosandolomite composite beads. International Journal of Environmental Analytical Chemistry 2020. doi: 10.1080/03067319.2020. 1790546
  • 3. Baran MF, Duz MZ. Removal of cadmium (II) in the aqueous solutions by biosorption of Bacillus licheniformis isolated from soil in the area of Tigris River. International Journal of Environmental Analytical Chemistry 2019. doi: 10.1080/03067319.2019.1669583
  • 4. Karthik R, Meenakshi S. Removal of Pb(II) and Cd(II) ions from aqueous solution using polyaniline grafted chitosan. Chemical Engineering Journal 2014; 263: 168–177. doi: 10.1016/j. cej.2014.11.015
  • 5. Akinyeye OJ, Ibigbami T, Odeja OO, Sosanolu OM. Evaluation of kinetics and equilibrium studies of biosorption potentials of bamboo stem biomass for removal of Lead (II) and Cadmium (II) ions from aqueous solution. African Journal of Pure and Applied Chemistry 2020; 14 (2): 24–41. doi: 10.5897/AJPAC2019.0812
  • 6. Tirtom VN, Dinçer A. Effective removal of heavy metals from an aqueous solution with poly(N- vinylimidazoleacrylamide) hydrogels. Separation Science and Technology 2021; 56 (5): 912 – 924. doi: 10.1080/01496395.2020.1735434
  • 7. Younes AA, Abdulhady YAM, Shahat NS, El-Din El-Dars FMS. Removal of cadmium ions from wastewaters using corn cobs supporting nano-zero valent iron. Separation Science and Technology 2019; 1-2: 1-13. doi: 10.1080/01496395.2019. 1708109
  • 8. Naseri MT, Hemmatkhah P, Hosseini MRM, Assadi Y. Combination of dispersive liquid-liquid micro-extraction with flame atomic absorption spectrometry using microsample introduction for determination of lead in water samples. Analytica Chimica Acta 2008; 610: 135–141. doi: 10.1016/j.aca.2008.01.020
  • 9. Liang P, Sang H. Determination of trace lead in biological and water samples with dispersive liquid-liquid microextraction preconcentration. Analytical Biochemistry 2008; 380 (1): 21–25. doi: 10.1016/j.ab.2008.05.008
  • 10. Portugal LA, Ferreira HS, Santos W, Ferreira SLC. Simultaneous pre-concentration procedure for the determination of cadmium and lead in drinking water employing sequential multi-element flame atomic absorption spectrometry. Microchemical Journal 2011; 87 (1): 77–80. doi: 10.1016/j.microc.2007.05.008
  • 11. Silva EL, Roldan PS. Simultaneous flow injection preconcentration of lead and cadmium using cloud point extraction and determination by atomic absorption spectrometry. Journal of Hazardous Materials 2009; 161 (1): 142–147. doi: 10.1016/j.jhazmat.2008.03.100
  • 12. Ghaedi M, Shokrollahi A, Nikham K, Nikham E, Najibi A et al. Cloud point extraction and flame atomic absorption spectrometric determination of cadmium(II), lead(II), palladium(II) and silver(I) in environmental samples. Journal of Hazardous Materials 2009; 168 (2-3): 1022–1027. doi: 10.1016/j.jhazmat.2009.02.130
  • 13. Oymak T, Tokalıoğlu Ş, Yılmaz V, Kartal Ş, Aydın D. Determination of lead and cadmium in food samples by the coprecipitation method. Food Chemistry 2009; 113: 1314-1317. doi: 10.1016/j.foodchem.2008.08.064
  • 14. Burham N. Separation and preconcentration system for lead and cadmium determination in natural samples using 2-aminoacetylthiophenol modified polyurethane foam. Desalination 2009; 249 (3): 1199–1205. doi: 10.1016/j.desal.2009.04.009
  • 15. Kalfa OM, Yalçınkaya O, Türker AR. Synthesis of nano $B_2O_3/TiO_2$ composite material as a new solid phase extractor and its application to preconcentration and separation of cadmium. Journal of Hazardous Materials 2009; 166: 455–461. doi: 10.1016/j.jhazmat.2008.11.112
  • 16. Xie F, Lin X, Wu X, Xie Z. Solid phase extraction of lead(II), copper(II), cadmium(II) and nickel(II) using gallic acid-modified silica gel prior to determination by flame atomic absorption spectrometry. Talanta 2007; 74 (4): 836–843. doi: 10.1016/j.talanta.2007.07 .018
  • 17. Parham H, Pourreza N, Rahbar N. Solid phase extraction of lead and cadmium using solid sulfur as a new metal extractor prior to determination by flame atomic absorption spectrometry. Journal of Hazardous Materials 2008; 163 (2-3): 588–592. doi: 10.1016/j.jhazmat. 2008.07.007
  • 18. Ciftci H. Separation and solid phase extraction method for the determination of cadmium in environmental samples. Desalination 2010; 263 (1): 18–22. doi: 10.1016/ j.desal. 2010.06.028
  • 19. Baytak S, Kendüzler E, Türker AR. Separation/preconcentration of Zn(II), Cu(II) and Cd(II) by Saccharomyces carisbergensis immobilized on silica gel 60 in various samples. Separation Science and Technology 2006; 41: 3449–3465. doi: 10.1080/ 01496390600915098
  • 20. Jagirani MS, Soylak M. A review: Recent advances in solid phase microextraction of toxic pollutants using nanotechnology scenario. Microchemical Journal 2020; 159: 105436. doi: 10.1016/j.microc.2020.105436
  • 21. Ngah WSW, Fatinathan S. Pb(II) biosorption using chitosan and chitosan derivatives beads: Equilibrium, ion Exchange and mechanism studies. Journal of Environmental Science 2010; 22 (3): 338–346. doi: 10.1016/s1001-0742(09)60113-3
  • 22. Pehlivan E, Altun T. The study of various parameters affecting the ion Exchange of $Cu^{2+}, Zn^{2+}, Ni^{2+}, Cd^{2+}and Pb^{2+}$ from aqueous solution on Dowex 50W synthetic resin. Journal of Hazardous Materials 2006; 134 (1-3): 149–156. doi: 10.1016/j.jhazmat.2005.10.052
  • 23. Maltez HF, Borges DL, Carasek E, Welz B, Curtis AJ. Single drop micro-extraction with O, O-diethyl dithiophosphate for the determination of lead by electrothermal atomic absorption spectrometry. Talanta 2008; 74 (4): 800–805. doi: 10.1016/ j.talanta.2007.07.010
  • 24. Yang B, Gong Q, Zhao L, Sun H, Ren N et al. Preconcentration and determination of lead and cadmium in water samples with a MnO2 coated carbon nanotubes by using ETAAS. Desalination 2011; 278: 65–69. doi: 10.1016/ j.desal.2011.05.010
  • 25. Kummrow F, Silva FF, Kuno R, Souza AL, Oliveira PV. Biomonitoring method for the simultaneous determination of cadmium and lead in whole blood by electrothermal atomic absorption spectrometry for assessment of environmental exposure. Talanta 2008; 75: 246–252. doi: 10.1016/j.talanta.2007.11.003
  • 26. Maranhão TA, Martendal E, Borges DLG, Carasek E, Welz B et al. Cloud point extraction for the determination of lead and cadmium in urine by graphite furnace atomic absorption spectrometry with multivariate optimization using Box-Behnken design. Spectrochimica Acta Part B 2007; 62 (9): 1019–1027. doi: 10.1016/ j.sab.2007.05.008
  • 27. Trujillo I, Alonso E, Pavón J. Development of a solid phase extraction method for the multielement determination of trace metals in natural waters including sea-water by FI-ICP-MS. Microchemical Journal 2012; 101: 87–94. doi: 10.1016/J.MICROC. 2011.11.003
  • 28. Dong L, Zhu Z, Ma H, Qui Y, Zhao J. Simultaneous adsorption of lead and cadmium on $MnO_2$ -loaded resin. Journal of Environmental Science 2010; 22 (2): 225–229. doi: 10.1016/S1001-0742(09)60097-8
  • 29. Rao KS, Chaudhury GR, Mishra BK. Kinetics and equilibrium studies for the removal of cadmium ions from aqueous solutions using Duolite ES 467 resin. International Journal of Mineral Processing 2010; 97 (1-4): 68-73. doi: 10.1016/j.minpro.2010.08.003
  • 30. Türker AR. Separation, preconcentration and speciation of metal ions by solid phase extraction. Separation and Purification Review 2012; 41 (3): 169–206. doi: 10.1080/15422119.2011.585682
  • 31. Türker AR. New sorbents for solid-phase extraction for metal enrichment. Clean-Soil Air Water 2007; 35: 548–557. doi: 10.1002/ clen.200700130
  • 32. Öztürk Ş, Aslım B, Türker AR. Removal of cadmium ions from aqueous samples by Synechocystis sp. Separation Science and Technology 2009; 44: 1467–1483. doi: 10.1080/ 01496390902766124
  • 33. Subbaiah MV, Gutha Y, Vijiya Y, Krishnaiah A. Equilibrium, kinetic and thermodynamic studies on biosorption of Pb(II) and Cd(II) from aqueous solution by fungus (Trameters versicolor) biomass. Journal of Taiwan Institute of Chemical. Engineers 2011; 42: 965–971. doi: 10.1016/J.JTICE.2011.04.007
  • 34. Sarı A, Tüzen M. Kinetic and equilibrium studies of biosorption of Pb(II) and Cd(II) from aqueous solution by macrofungus (Amanita rubescens) biomass. Journal of Hazardous Materials 2009; 164: 1004–1011. doi: 10.1016/j.jhazmat.2008.09.002
  • 35. Zheng L, Dang Z, Yi X, Zhang H. Equilibrium and kinetic studies of adsorption of Cd(II) from aqueous solution using modified corn stalk. Journal of Hazardous Materials 2010; 176 (1-3): 650–656. doi: 10.1016/j.jhazmat.2009.11.081
  • 36. Lasheen MR, Ammar NS, Ibrahim HS. Adsorption/desorption of Cd(II), Cu(II) and Pb(II) using chemically modified orange peel: Equilibrium and kinetic studies. Solid State Science 2012; 14 (2): 202–210. doi: 10.1016/j.solidstatesciences.2011.11.029
  • 37. Gupta VK, Rastogi A. Biosorption of lead from aqueous solutions by gren algae Spirogyra species: Kinetics and equilibrium studies. Journal of Hazardous Materials 2008; 152 (1): 407–414. doi: 10.1016/j.jhazmat.2007.07.028
  • 38. Yalçınkaya O, Kalfa OM, Türker AR. Preconcentration of trace copper, cobalt and lead from various samples by hybrid nano sorbent and determination by FAAS. Current Analytical Chemistry 2011; 7 (3): 225–234. doi: 10.2174/1573411011107030225
  • 39. Yalçınkaya O, Kalfa OM, Türker AR. Chelating agent free- solid phase extraction (CAF-SPE) of Co(II), Cu(II) and Cd(II) by new nano hybrid material $(ZrO_2 /B_2O_3)$. Journal of Hazardous Materials 2011; 195: 332–339. doi: 10.1016/j.jhazmat. 2011.08.048
  • 40. Jeon W, Ban C, Kim JE, Woo HC, Kim DH. Production of furfural from macroalgae-derived alginic acid over Amberlyst – 15. Journal of Molecular Catalysis A-Chemical 2016; 423: 264–269. doi: 10.1016/j.molcata.2016.07.020
  • 41. Razzaq R, Shah KH, Fahad M, Naeem A, Sherazi TA. Adsorption potential of macroporous Amberlyst-15 for Cd(II) removal from aqueous solutions. Material Research Express 2020; 7 (2): 025509. doi: 10.1088/2053-1591/ab6e7a
  • 42. Otrembska P, Gega J. Kinetic studies on sorption of Ni(II) and Cd(II) from chloride solutions using selected acidic cation exchangers. Physicochemical Problems of Mineral. Processing 2013; 49 (1): 301–312. doi: 10.5277/ppmp130127
  • 43. Tunçeli A, Ulaş A, Acar O, Türker AR. Solid phase extraction of cadmium and lead from water by amberlyst 15 and determination by flame atomic absorption spectrometry. Bulletin of Environmental Contamination and Toxicology 2018; 102: 297–302. doi: 10.1007/ s00128-018-2498-y
  • 44. Tunçeli A, Yalçınkaya Ö, Türker AR. Solid phase extraction of Pb(II) in water samples on amberlyst 36 and determination of the equilibrium, kinetic and thermodynamic parameters of the adsorption. Current Analytical Chemistry 2013; 9 (3): 513–521. doi: 10.274/1573411011309030021
  • 45. Feng Y, Gong JL, Zeng GM, Niu QY, Zhang HY et al. Adsorption of Cd(II) and Zn (II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents. Chemical Engineering Journal 2010; 162: 487–494. doi: 10.1016/ j.cej.2010.05.049
  • 46. Mustapha S, Shuaib DT, Ndamitso MM, Etsuyankpa MB, Sumaila A et al. Adsorption isotherm, kinetic and thermodynamic studies for the removal of Pb(II), Cd(II), Zn(II) and Cu(II) ions from aqueous solutions using Albizia lebbeck pods. Applied Water Science 2019; 9 (6): Article number: 142. doi: 10.1007/s13201-019-1021-x
  • 47. Malik UR, Hasany SM, Subhani MS. Sorptive potential of sunflower stem for Cr(III) ions from aqueous solutions and its kinetic and thermodynamic profile. Talanta 2005; 66 (1): 166–173. doi: 10.1016/j.talanta.2004.11.013
  • 48. Goel J, Kadirvelu K, Rajagopal C, Garg VK. Removal of lead (II) by adsorption using treated granular activated carbon: Batch and column studies. Journal of Hazardous Materials 2005; 125: 211-220. doi: 10.1016/j.jhazmat.2005.05.032
  • 49. Younes AA, Abdulhady YAM, Shahat NS, El-Din El-Dars FMS. Removal of cadmium ions from wastewaters using corn cobs supporting nano-zero valent iron. Separation Science and Technology 2021; 56 (1): 1-13. doi: 10.1080/01496395.2019. 1708109
  • 50. Bagheri S, Amini MM, Behbahani M, Rabiee G. Low cost thiol-functionalized mesoporous silica, KIT-6-SH, as A useful adsorbent for cadmium ions removal: A study on the adsorption isotherms and kinetics of KIT-6-SH. Microchemical Journal 2019; 145: 460–469. doi: 10.1016/j.microc.2018.11.006
  • 51. Karim MR, Aijaz MO, Alharth NH, Alharbi HF, Al-Mubaddel FS et al. Composite nanofibers membranes of poly(vinyl Alcohol)/chitosan for selective lead(II) and cadmium- (II) ions removal from wastewater. Ecotoxicology and Environmental Safety 2019; 169: 479–486. doi: 10.1016/j.ecoenv.2018.11.049
  • 52. Zhou N, Wang Y, Yao D, Li S, Tang J et al. Novel wet pyrolysis providing simultaneous conversion and activation to produce surfacefunctionalized biochars for cadmium remediation. Journal of Cleaner Production 2019; 221: 63–72. doi: 10.1016/j.jclepro.2019.02.176
  • 53. Luoa M, Lin H, Hea Y, Lia B, Donga Y et al. Efficient simultaneous removal of cadmium and arsenic in aqueous solution by titaniummodified ultrasonic biochar. Bioresour. Technology 2019; 284: 333–339. doi: 10.1016/j.biortech. 2019.03.108
  • 54. Nyairo WN, Eker YR, Kowenje C, Akin I, Bingol H et al. Efficient adsorption of lead (II) and copper (II) from aqueous phase using oxidized multiwalled carbon nanotubes/polypyrrole composite. Separation Science and Technology 2018; 53 (10); 1498 – 1510. doi: 10.1080/01496395.2018.1424203
  • 55. Kabbashi NA, Atieh MA, Mamun AA, Mirghami MES, Alam MDZ et al. Kinetic adsorption of application of carbon nanotubes for Pb(II) removal from aqueous solution. Journal of Environmental Science 2009; 21; 539–544. doi: 10.1016/S1001-0742(08)62305-0
  • 56. Tofighy MA, Mohammadi T. Adsorption of divalent heavy metal ions from water using carbon nanotube sheets. Journal of Hazardous Materials 2011; 185: 140–147. doi: 10.1016/ j.jhazmat.2010.09.008
  • 57. Karthik R, Meenakshi S. Synthesis, characterization and Cr(VI) uptake study of polyaniline coated chitin. International Journal of Biological Macromolecules 2015; 72: 235–242. doi: 10.1016/ j.ijbiomac.2014.08.022
  • 58. Deng S, Wang P, Zhang G, Dou Y. Polyacrylonitrile-based fiber modified with thiosemicarbazide by microwave irradiation and its adsorption behavior for Cd(II) and Pb(II). Journal of Hazardous Materials 2016; 307: 64–72. doi: 10.1016/j.jhazmat. 2016.01.002
  • 59. Chu L, Liu C, Zhou G, Xu R, Tang Y et al. A double network gel as low cost and easy recycle adsorbent: Highly efficient removal of Cd(II) and Pb(II) pollutants from wastewater. Journal of Hazardous Materials 2015; 300: 153–160. doi: 10.1016/j.jhazmat. 2015.06.070
  • 60. Wang F, Lu X, Yan Li -X. Selective removals of heavy metals $(Pb^{2+}, Cu^{2+}, and Cd^{2+})$ from wastewater by gelation with alginate for effective metal recovery. Journal of Hazardous Materials 2016; 308: 75–83. doi: 10.1016/j.jhazmat.2016.01.021
  • 61. Karatas M. Removal of Pb(II) from water by natural zeolitic tuff: Kinetics and thermodynamics. Journal of Hazardous Materials 2012; 199–200: 383–389. doi: 10.1016/j.jhazmat. 2011.11.035
  • 62. Xiong C, Wang W, Tan F, Luo F, Chen J et al. Investigation on the efficiency and mechanism of Cd(II) and Pb(II) removal from aqueous solutions using MgO nanoparticles. Journal of Hazardous Materials 2015; 299: 664–674. doi: 10.1016/j.jhazmat.2015.08.008
APA Tunçeli A, ulaş a, ACAR O, Türker A (2022). Adsorption isotherms, kinetic and thermodynamic studies on cadmium and lead ions from water solutions using Amberlyst 15 resin. , 193 - 205. 10.3906/kim-2107-28
Chicago Tunçeli Adalet,ulaş abdullah,ACAR ORHAN,Türker Ali Rehber Adsorption isotherms, kinetic and thermodynamic studies on cadmium and lead ions from water solutions using Amberlyst 15 resin. (2022): 193 - 205. 10.3906/kim-2107-28
MLA Tunçeli Adalet,ulaş abdullah,ACAR ORHAN,Türker Ali Rehber Adsorption isotherms, kinetic and thermodynamic studies on cadmium and lead ions from water solutions using Amberlyst 15 resin. , 2022, ss.193 - 205. 10.3906/kim-2107-28
AMA Tunçeli A,ulaş a,ACAR O,Türker A Adsorption isotherms, kinetic and thermodynamic studies on cadmium and lead ions from water solutions using Amberlyst 15 resin. . 2022; 193 - 205. 10.3906/kim-2107-28
Vancouver Tunçeli A,ulaş a,ACAR O,Türker A Adsorption isotherms, kinetic and thermodynamic studies on cadmium and lead ions from water solutions using Amberlyst 15 resin. . 2022; 193 - 205. 10.3906/kim-2107-28
IEEE Tunçeli A,ulaş a,ACAR O,Türker A "Adsorption isotherms, kinetic and thermodynamic studies on cadmium and lead ions from water solutions using Amberlyst 15 resin." , ss.193 - 205, 2022. 10.3906/kim-2107-28
ISNAD Tunçeli, Adalet vd. "Adsorption isotherms, kinetic and thermodynamic studies on cadmium and lead ions from water solutions using Amberlyst 15 resin". (2022), 193-205. https://doi.org/10.3906/kim-2107-28
APA Tunçeli A, ulaş a, ACAR O, Türker A (2022). Adsorption isotherms, kinetic and thermodynamic studies on cadmium and lead ions from water solutions using Amberlyst 15 resin. Turkish Journal of Chemistry, 46(1), 193 - 205. 10.3906/kim-2107-28
Chicago Tunçeli Adalet,ulaş abdullah,ACAR ORHAN,Türker Ali Rehber Adsorption isotherms, kinetic and thermodynamic studies on cadmium and lead ions from water solutions using Amberlyst 15 resin. Turkish Journal of Chemistry 46, no.1 (2022): 193 - 205. 10.3906/kim-2107-28
MLA Tunçeli Adalet,ulaş abdullah,ACAR ORHAN,Türker Ali Rehber Adsorption isotherms, kinetic and thermodynamic studies on cadmium and lead ions from water solutions using Amberlyst 15 resin. Turkish Journal of Chemistry, vol.46, no.1, 2022, ss.193 - 205. 10.3906/kim-2107-28
AMA Tunçeli A,ulaş a,ACAR O,Türker A Adsorption isotherms, kinetic and thermodynamic studies on cadmium and lead ions from water solutions using Amberlyst 15 resin. Turkish Journal of Chemistry. 2022; 46(1): 193 - 205. 10.3906/kim-2107-28
Vancouver Tunçeli A,ulaş a,ACAR O,Türker A Adsorption isotherms, kinetic and thermodynamic studies on cadmium and lead ions from water solutions using Amberlyst 15 resin. Turkish Journal of Chemistry. 2022; 46(1): 193 - 205. 10.3906/kim-2107-28
IEEE Tunçeli A,ulaş a,ACAR O,Türker A "Adsorption isotherms, kinetic and thermodynamic studies on cadmium and lead ions from water solutions using Amberlyst 15 resin." Turkish Journal of Chemistry, 46, ss.193 - 205, 2022. 10.3906/kim-2107-28
ISNAD Tunçeli, Adalet vd. "Adsorption isotherms, kinetic and thermodynamic studies on cadmium and lead ions from water solutions using Amberlyst 15 resin". Turkish Journal of Chemistry 46/1 (2022), 193-205. https://doi.org/10.3906/kim-2107-28