Yıl: 2022 Cilt: 54 Sayı: 2 Sayfa Aralığı: 157 - 164 Metin Dili: İngilizce DOI: 10.5152/eurasianjmed.2022.21010 İndeks Tarihi: 05-07-2022

Isolation and Characterization of Lytic Bacteriophages from Wastewater with Phage Therapy Potentials Against Gram-Negative Bacteria

Öz:
Objective: The increase of multidrug resistance in bacteria has increased the efforts in search of alternative methods. The aim of the present study was to isolate and characterize the lytic phages and assess their lytic activity against a number of gram-negative bacteria. Materials and Methods: The phages and their respective hosts were isolated from wastewater collected from the municipal sewer system of Trabzon, Turkey. The lytic activities of phage were determined using the agar spot test. The identification and antibiotic susceptibility of host bacteria were determined using matrix-assisted laser desorption ionization time-of-flight mass spectrometry and Phoenix 100, respectively. The phages were characterized morphologically using transmission electron microscopy. One of the phages, Enteroc21, which has a broad-host-range, was further characterized by genome restriction endonuclease analysis and burst size. Results: Two phages infected strains of four different species, nine phages were able to infect 2-4 strains belonging to one or two species, and three phages showed lytic activity against only the hosts from which they were isolated. All phages belonged to the Siphoviridae, Myoviridae, and Podoviridae family based on transmission electron microscopy morphology. The Enteroc21 had more than 100 kb genome size and a burst size of 180 per infected cell. Most of the host strains were resistant to ampicillin, amoxicillin–clavulanic acid, and in particular, Achromobacter xylosoxidans TRAX 13 was multidrug-resistant showing resistance to cefepime, aztreonam, gentamicin, netilmicin, and ciprofloxacin. Conclusion: This study showed that the isolated phages have the potential to be used in phage therapy against various bacterial infections, including multidrug-resistant bacteria.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
0
0
0
  • 1. Clokie MR, Millard AD, Letarov AV, Heaphy S. Phages in nature. Bacteriophage. 2011;1(1):31- 45. [CrossRef]
  • 2. Batinovic S, Wassef F, Knowler SA, et al. Bacteriophages in natural and artificial environments. Pathogens. 2019;8(3):100. [CrossRef]
  • 3. Lin DM, Koskella B, Lin HC. Phage therapy: an alternative to antibiotics in the age of multi-drug resistance. World J Gastrointest Pharmacol Ther. 2017;8(3):162-173. [CrossRef]
  • 4. Bhetwal A, Maharjan A, Shakya S, et al. Isolation of potential phages against multidrug-resistant bacterial isolates: promising agents in the rivers of Kathmandu, Nepal. BioMed Res Int. 2017;2017:3723254. [CrossRef]
  • 5. World Health Organization. Antimicrobial resistance. Available at: https ://ww w.who .int/ en/ne ws-ro om/fa ct-sh eets/ detai l/ant imicr obial -resi stanc e Accessed 20 December 2020.
  • 6. Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. 2010;74(3):417-433. [CrossRef]
  • 7. Taati Moghadam MM, Amirmozafari N, Shariati A, et al. How phages overcome the challenges of drug resistant bacteria in clinical infections. Infect Drug Resist. 2020;13:45-61. [CrossRef]
  • 8. Lin NT, Chiou PY, Chang KC, Chen LK, Lai MJ. Isolation and characterization of ϕAB2: a novel bacteriophage of Acinetobacter baumannii. Res Microbiol. 2010;161(4):308-314. [CrossRef]
  • 9. De Jonge PA, Nobrega FL, Brouns SJJ, Dutilh BE. Molecular and evolutionary determinants of bacteriophage host range. Trends Microbiol. 2019;27(1):51-63. [CrossRef]
  • 10. The European Committee on Antimicrobial Susceptibility Testing-EUCAST. MIC and zone diameter distributions and ECOFFs, V.9.0 valid from 2019-01.01, 2019. Available from: http://www. eucast.org.
  • 11. Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268-281. [CrossRef]
  • 12. Jamal M, Chaudhry WN, Hussain T, Das CR, Andleeb S. Characterization of new Myoviridae bacteriophage WZ1 against multi-drug resistant (MDR) Shigella dysenteriae. J Basic Microbiol. 2015;55(4):420-431. [CrossRef]
  • 13. Hyman P, Abedon ST. Practical methods for determining phage growth parameters. Methods Mol Biol. 2009;501:175-202. [CrossRef]
  • 14. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning. A Laboratory Manual. 2nd ed. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 1989.
  • 15. Gordillo Altamirano FL, Barr JJ. Phage therapy in the postantibiotic era. Clin Microbiol Rev. 2019;32(2):e00066-18. [CrossRef]
  • 16. Sharma S, Datta S, Chatterjee S, et al. Isolation and characterization of lytic bacteriophages from wastewater and its application in pathogen reduction. Def Life Sc Jl;5(2):80-86. [CrossRef]
  • 17. Mahgoub S, Muhammad M, Abd-Elsalam S, Alkhazindar M, Abdel-Shafy HI. Isolation and characterization of Pseudomonas aeruginosa and Enterococcus faecalis lytic bacteriophages from wastewater for controlling multidrug resistant bacterial strains. Plant Arch. 2020;20:450-464.
  • 18. Lingga R, Budiarti S, Rusmana I, Wahyudi AT. Isolation, characterization and efficacy of lytic bacteriophages against pathogenic Escherichia coli from hospital liquid waste. Biodivers J Biol Divers. 2020;21(7):3234-3241. [CrossRef]
  • 19. Hyman P. Phages for phage therapy: isolation, characterization, and host range breadth. Pharmaceuticals (Basel). 2019;12(1):35. [CrossRef]
  • 20. Pulkkinen E, Wicklund A, Oduor JMO, Skurnik M, Kiljunen S. Characterization of vB_ApiM_fHy- Aci03, a novel lytic bacteriophage that infects clinical Acinetobacter strains. Arch Virol. 2019;164(8):2197-2199. [CrossRef]
  • 21. Cheng M, Luo M, Xi H, et al. The characteristics and genome analysis of vB_ApiP_XC38, a novel phage infecting Acinetobacter pittii. Virus Genes. 2020;56(4):498-507. [CrossRef]
  • 22. Jamal M, Andleeb S, Jalil F, et al. Isolation and characterization of a bacteriophage and its utilization against multi-drug resistant Pseudomonas aeruginosa-2995. Life Sci. 2017;190:21-28. [CrossRef]
  • 23. Parmar K, Dafale N, Pal R, Tikariha H, Purohit H. An Insight into phage diversity at environmental habitats using comparative metagenomics approach. Curr Microbiol. 2018;75(2):132-141. [CrossRef]
  • 24. Abdurahman MA, Tosun İ, Durukan İ, Khorshidtalab M, Kılıç AO. Four temperate bacteriophages from methicillin-resistant Staphylococcus aureus show broad bactericidal and biofilm removal activities. Kafkas Univ Vet Fak Derg. 2021;27(1):29-36. [CrossRef]
  • 25. Jasna V, Parvathi A, Dash A. Genetic and functional diversity of double-stranded DNA viruses in a tropical monsoonal estuary, India. Sci Rep. 2018;8:16036.
  • 26. Bradley DE. Ultrastructure of bacteriophage and bacteriocins. Bacteriol Rev. 1967;31(4):230-314. [CrossRef]
  • 27. Kulikov EE, Golomidova AK, Letarova MA, et al. Genomic sequencing and biological characteristics of a novel Escherichia coli bacteriophage 9g, a putative representative of a new Siphoviridae genus. Viruses. 2014;6(12):5077-5092. [CrossRef]
  • 28. Hulo C, de Castro E, Masson P, et al. ViralZone: a knowledge resource to understand virus diversity. Nucleic Acids Res. 2011;39(Database issue):D576-D582. [CrossRef]
  • 29. Abedon ST, Herschler TD, Stopar D. Bacteriophage latent-period evolution as a response to resource availability. Appl Environ Microbiol. 2001;67(9):4233-4241. [CrossRef]
  • 30. Manohar P, Tamhankar AJ, Lundborg CS, Nachimuthu R. Therapeutic characterization and efficacy of bacteriophage cocktails infecting Escherichia coli, Klebsiella pneumoniae, and Enterobacter species. Front Microbiol. 2019;10:574. [CrossRef]
  • 31. Chen CW, Yuan L, Zhou WY, et al. Isolation and genomic characterization of P.A-5, a novel virulent bacteriophage against Enterobacter hormaechei. Microb Pathog. 2021;152:104767. [CrossRef]
APA KHORSHIDTALAB M, Durukan İ, TÜFEKCİ E, NAS S, Abdurahman M, Kilic A (2022). Isolation and Characterization of Lytic Bacteriophages from Wastewater with Phage Therapy Potentials Against Gram-Negative Bacteria. , 157 - 164. 10.5152/eurasianjmed.2022.21010
Chicago KHORSHIDTALAB MONA,Durukan İnci,TÜFEKCİ Enis Fuat,NAS Seyran Sakine,Abdurahman Mujib Abdulkadir,Kilic Ali Osman Isolation and Characterization of Lytic Bacteriophages from Wastewater with Phage Therapy Potentials Against Gram-Negative Bacteria. (2022): 157 - 164. 10.5152/eurasianjmed.2022.21010
MLA KHORSHIDTALAB MONA,Durukan İnci,TÜFEKCİ Enis Fuat,NAS Seyran Sakine,Abdurahman Mujib Abdulkadir,Kilic Ali Osman Isolation and Characterization of Lytic Bacteriophages from Wastewater with Phage Therapy Potentials Against Gram-Negative Bacteria. , 2022, ss.157 - 164. 10.5152/eurasianjmed.2022.21010
AMA KHORSHIDTALAB M,Durukan İ,TÜFEKCİ E,NAS S,Abdurahman M,Kilic A Isolation and Characterization of Lytic Bacteriophages from Wastewater with Phage Therapy Potentials Against Gram-Negative Bacteria. . 2022; 157 - 164. 10.5152/eurasianjmed.2022.21010
Vancouver KHORSHIDTALAB M,Durukan İ,TÜFEKCİ E,NAS S,Abdurahman M,Kilic A Isolation and Characterization of Lytic Bacteriophages from Wastewater with Phage Therapy Potentials Against Gram-Negative Bacteria. . 2022; 157 - 164. 10.5152/eurasianjmed.2022.21010
IEEE KHORSHIDTALAB M,Durukan İ,TÜFEKCİ E,NAS S,Abdurahman M,Kilic A "Isolation and Characterization of Lytic Bacteriophages from Wastewater with Phage Therapy Potentials Against Gram-Negative Bacteria." , ss.157 - 164, 2022. 10.5152/eurasianjmed.2022.21010
ISNAD KHORSHIDTALAB, MONA vd. "Isolation and Characterization of Lytic Bacteriophages from Wastewater with Phage Therapy Potentials Against Gram-Negative Bacteria". (2022), 157-164. https://doi.org/10.5152/eurasianjmed.2022.21010
APA KHORSHIDTALAB M, Durukan İ, TÜFEKCİ E, NAS S, Abdurahman M, Kilic A (2022). Isolation and Characterization of Lytic Bacteriophages from Wastewater with Phage Therapy Potentials Against Gram-Negative Bacteria. Eurasian Journal of Medicine, 54(2), 157 - 164. 10.5152/eurasianjmed.2022.21010
Chicago KHORSHIDTALAB MONA,Durukan İnci,TÜFEKCİ Enis Fuat,NAS Seyran Sakine,Abdurahman Mujib Abdulkadir,Kilic Ali Osman Isolation and Characterization of Lytic Bacteriophages from Wastewater with Phage Therapy Potentials Against Gram-Negative Bacteria. Eurasian Journal of Medicine 54, no.2 (2022): 157 - 164. 10.5152/eurasianjmed.2022.21010
MLA KHORSHIDTALAB MONA,Durukan İnci,TÜFEKCİ Enis Fuat,NAS Seyran Sakine,Abdurahman Mujib Abdulkadir,Kilic Ali Osman Isolation and Characterization of Lytic Bacteriophages from Wastewater with Phage Therapy Potentials Against Gram-Negative Bacteria. Eurasian Journal of Medicine, vol.54, no.2, 2022, ss.157 - 164. 10.5152/eurasianjmed.2022.21010
AMA KHORSHIDTALAB M,Durukan İ,TÜFEKCİ E,NAS S,Abdurahman M,Kilic A Isolation and Characterization of Lytic Bacteriophages from Wastewater with Phage Therapy Potentials Against Gram-Negative Bacteria. Eurasian Journal of Medicine. 2022; 54(2): 157 - 164. 10.5152/eurasianjmed.2022.21010
Vancouver KHORSHIDTALAB M,Durukan İ,TÜFEKCİ E,NAS S,Abdurahman M,Kilic A Isolation and Characterization of Lytic Bacteriophages from Wastewater with Phage Therapy Potentials Against Gram-Negative Bacteria. Eurasian Journal of Medicine. 2022; 54(2): 157 - 164. 10.5152/eurasianjmed.2022.21010
IEEE KHORSHIDTALAB M,Durukan İ,TÜFEKCİ E,NAS S,Abdurahman M,Kilic A "Isolation and Characterization of Lytic Bacteriophages from Wastewater with Phage Therapy Potentials Against Gram-Negative Bacteria." Eurasian Journal of Medicine, 54, ss.157 - 164, 2022. 10.5152/eurasianjmed.2022.21010
ISNAD KHORSHIDTALAB, MONA vd. "Isolation and Characterization of Lytic Bacteriophages from Wastewater with Phage Therapy Potentials Against Gram-Negative Bacteria". Eurasian Journal of Medicine 54/2 (2022), 157-164. https://doi.org/10.5152/eurasianjmed.2022.21010