Yıl: 2022 Cilt: 46 Sayı: 2 Sayfa Aralığı: 356 - 366 Metin Dili: İngilizce DOI: 10.3906/kim-2105-22 İndeks Tarihi: 05-07-2022

Investigation of hazelnut shells driven hard carbons as anode for sodium-ion batteries produced by hydrothermal carbonization method

Öz:
To be used as Na-ion battery anodes, hard carbon electrodes are synthesized from biomass, explicitly hazelnut shell (HS): via hydrothermal carbonization (HTC) followed by further pyrolysis at different temperatures (500, 750, 1000 °C). Then, the resulting hazelnut shell-based hard carbons are investigated using various methods including Fourier-transform infrared spectroscopy, scanning electron microscope, X-ray diffraction, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. The effects of binders (PVdF, Na-alginate, CMC, and PAA) on electrochemical performance are determined. The obtained composite electrodes with different binders are tested in sodium half-cell configurations. A strong correlation is recognized between carbonization temperature and electrochemical performances and structural characteristics. The better cycling performance is accomplished with the electrode carbonized at 1000 °C with Na-alginate binder. After 100 cycles, specific capacity of 232 mAh × $g^{–1}$ at 0.1C current density is achieved. This work represents an economical and feasible process to convert hazelnut shells into hard carbon.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature 2001; 414 (6861): 359-67. doi: 10.1038/35104644
  • 2. Goodenough JB, Kim Y. Challenges for Rechargeable Li Batteries. Chemistry of Materials 2010; 22 (3): 587-603. doi: 10.1021/cm901452z
  • 3. Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science 2011; 334 (6058): 928-935. doi: 10.1126/ science.1212741
  • 4. Ellis BL, Nazar LF. Sodium and sodium-ion energy storage batteries. Current Opinion in Solid State and Materials Science 2012; 16 (4): 168- 177. doi: 10.1016/j.cossms.2012.04.002
  • 5. Nayak PK, Yang L, Brehm W, Adelhelm P. From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angewandte Chemie International Edition 2018; 57 (1): 102-120. doi: 10.1002/anie.201703772
  • 6. Dahbi M, Yabuuchi N, Kubota K, Tokiwa K, Komaba S. Negative electrodes for Na-ion batteries. Physical Chemistry Chemical Physics 2014; 16 (29): 15007-15028. doi: 10.1039/c4cp00826j
  • 7. Jache B, Adelhelm P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of coıntercalation phenomena. Angewandte Chemie International Edition 2014; 53 (38): 10169-10173. doi: 10.1002/anie.201403734
  • 8. Ponrouch A, Palacin MR. On the high and low temperature performances of Na-ion battery materials: Hard carbon as a case study. Electrochemistry Communications 2015; 54 51-54. doi: 10.1016/j.elecom.2015.03.002
  • 9. Hou H, Qiu X, Wei W, Zhang Y, Ji X. Carbon anode materials for advanced sodium-ion batteries. Advanced Energy Materials 2017; 7 (24): 1602898. doi: 10.1002/aenm. 201602898
  • 10.Wen Y, He K, Zhu Y. Expanded graphite as superior anode for sodium-ion batteries. Nature Communications 2014; 5: 4033. doi: 10.1038/ ncomms5033
  • 11. Li Y, Hu YS, Li H, Chen L, Huang X. A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries. Journal of Materials Chemistry A 2016, 4: 96-104. doi: 10.1039/c5ta08601a
  • 12. Zhou H, Li X, Li Y, Zheng M, Pang H. Applications of M x Se y (M ¼ Fe, Co, Ni) and their composites in electrochemical energy storage and conversion. Nano-Micro Letters 2019; 11 (1). doi: 10.1007/s40820-019-0272-2
  • 13. Zhang N, Han X, Liu Y, Hu X, Zhao Q et al. 3D Porous γ-Fe 2 O 3 @C nanocomposite as high-performance anode material of Na-ion batteries. Advanced Energy Materials 2015, 5: 1401123. doi: 10.1002/aenm.201401123
  • 14. Lao M, Zhang Y, Luo W, Yan Q, Sun W et al. Alloy-based anode materials toward advanced sodium-ıon batteries. Advanced Materials 2017; 29 (48): 1700622–1700623. doi: 10.1002/adma.201700622
  • 15.Fang Y, Xu X, Du Y, Zhu X, Zhou X et al. Novel nitrogen-doped reduced graphene oxide-bonded Sb nanoparticles for improved sodium storage performance. Journal of Materials Chemistry A 2018; 6: 11244. doi: 10.1039/c8ta02945h
  • 16. He M, Kravchyk K, Walter M, Kovalenko M. Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: nano versus B. NanoLetters 2014; 14: 1255-1262. doi: 10.1021/nl404165c
  • 17. Wang H, Zhang X. Organic carbonyl compounds for sodium-ion batteries: recent progress and future perspectives. Chemistry 2018; 24: 18235–18245. doi: 10.1002/chem. 201802517
  • 18. Zhao L, Zhao J, Hu YS, Li H, Zhou Z et al. Disodium Terephthalate (Na2C8H4O4) as high performance anode material for low-cost roomtemperature sodium-ıon battery. Advanced Energy Materials 2012; 2: 962-965. doi: 10.1002/aenm.201200166
  • 19. Luo C, Shea JJ, Huang J. A carboxylate group-based organic anode for sustainable and stable sodium ion batteries. Journal of Power Sources 2020; 453: 227904. doi: 10.1016/j.jpowsour.2020.227904
  • 20. Chevrier VL, Ceder G. Challenges for Na-ion negative electrodes. Journal of the Electrochemical Society 2011; 158 (9): A1011-A1014. doi: 10.1149/1.3607983
  • 21. Demir E, Aydin M, Arie AA, Demir-Cakan R. Apricot shell derived hard carbons and their tin oxide composites as anode materials for sodium-ion batteries. Journal of Alloys and Compounds 2019; 788: 1093-1102. doi: 10.1016/j.jallcom.2019.02.264
  • 22. Arie AA, Kristianto H, Muljana H, Stievano L. Rambutan peel based hard carbons as anode materials for sodium ion battery. Fullerenes, Nanotubes and Carbon Nanostructures 2019; 27 (12): 953-960. doi: 10.1080/1536383X.2019.1671372
  • 23. Guney MS. Utilization of hazelnut husk as biomass. Sustainable Energy Technologies and Assessments 2013; 4: 72-77. doi: 10.1016/j. seta.2013.09.004
  • 24. Pérez-Armada L, Rivas S, González B, Moure A. Extraction of phenolic compounds from hazelnut shells by green processes. Journal of Food Engineering 2019; 255: 1-8. doi: 10.1016/j.jfoodeng.2019.03.008
  • 25. Liu T, Li XF. Biomass-derived nanostructured porous carbons for sodium ion batteries: a review. Materials Technology 2019; 34 (4): 232-245. doi: 10.1080/10667857.2018.1545392
  • 26. Demirbas A. Properties of charcoal derived from hazelnut shell and the production of briquettes using pyrolytic oil. Energy 1999; 24 (2): 141-150. doi: 10.1016/S0360-5442(98)00077-2
  • 27. Zhang S, Li Y, Li M. Porous hard carbon derived from walnut shell as an anode material for sodium-ion batteries. The Journal of The Minerals, Metals & Materials Society 2018; 70: 1387–1391. doi: 10.1007/s11837-018-2789-0
  • 28. Manić NG, Janković BŽ, Stojiljković DD, Jovanović VV, Radojević MB. TGA-DSC-MS analysis of pyrolysis process of various agricultural residues. Thermal Science 2019; 23: 1457-1472. doi: 10.2298/TSCI180118182M
  • 29. Xie F, Xu Z, Guo Z, Titirici MM. Hard carbons for sodium-ion batteries and beyond. Progress in Energy 2020; 2: 042002. doi: 10.1088/2516- 1083
  • 30. Alptekin H, Au H, Jensen CS A, Olsson E, Goktas M et al. Sodium storage mechanism investigations through structural changes in hard carbons. ACS Applied Energy Materials 2020; 3 (10): 9918-9927. doi: 10.1021/acsaem.0c01614
  • 31. Kumar M, Gupta RC, Sharma T. X-ray diffraction studies of Acacia and Eucalyptus wood chars. Journal of Materials Science 1993; 28 (3): 805-810.
  • 32. Zhang N, Liu Q, Chen W, Wan M, Li X et al. High capacity hard carbon derived from lotus stem as anode for sodium ion batteries. Journal of Power Sources 2018; 378: 331-337. doi:10.1016/j.jpowsour.2017.12.054
  • 33. Sevilla M, Fuertes AB. Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chemistry – A European Journal 2009; 15 (16): 4195-4203. doi: 10.1002/chem.200802097
  • 34.Wang L, Schnepp Z, Titirici MM. Rice husk-derived carbon anodes for lithium ion batteries. Journal of Materials Chemistry A 2013; 1 (17). doi: 10.1039/C3TA10650K
  • 35. Falco C, Baccile N, Titirici MM. Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons. Green Chemistry 2011; 13 (11): 3273-3281. doi: 10.1039/C1GC15742F
  • 36. Aydin M, Demir E, Unal B, Dursun, B, Ahsen AS et al. Chitosan derived N-doped carbon coated SnO2 nanocomposite anodes for Na-ion batteries. Solid State Ionics 2019; 341. doi: 10.1016/j.ssi.2019.115035
  • 37. Zhang WJ, Dahbi M, Komaba S. Polymer binder: a key component in negative electrodes for high-energy Na-ion batteries. Current Opinion in Chemical Engineering 2016; 13: 36- 44. doi: 10.1016/j.coche.2016.08.001
  • 38. Kovalenko I, Zdyrko B, Magasinski A, Hertzberg B, Milicev Z et al. A major constituent of brown algae for use in high-capacity Li-Ion batteries. Science 2011; 334 (6052): 75-79. doi: 10.1126/science.1209150
  • 39. Bayram O, Kiskan B, Demir E, Remir Cakan R, Yagci Y. Advanced thermosets from sulfur and renewable benzoxazine and ıonones via ınverse vulcanization. ACS Sustainable Chemistry & Engineering 2020 8 (24): 9145-9155 doi: 10.1021/acssuschemeng.0c02773
  • 40. Arie AA, Kristianto H, Demir E, Demir Cakan R. Activated porous carbons derived from the Indonesian snake fruit peel as anode materials for sodium ion batteries. Material Chemistry and Physics 2018 (217): 254-261. doi: 10.1016/j.matchemphys
  • 41. Dogrusoz M, Demir Cakan R. Mechanochemical synthesis of SnS anodes for sodium ion batteries. International Journal of Energy Research 2020; 44: 10809-10820.
  • 42.Wang J, Polleux J, Lim J, Dunn B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (Anatase) nanoparticles. Journal of Physical Chemistry C 2007; 111 (40): 14925–14931. doi: 10.1021/jp074464w
  • 43. Halim EM, Demir-Cakan R, Debiemme-Chouvy C, Perrot H et al. Poly (ortho -phenylenediamine) overlaid fibrous carbon networks exhibiting synergistic effect for enhanced performance in hybrid micro energy storage devices. Journal of Materials Chemistry A. 2021 9(16). doi: 10.1039/D1TA00763G.
  • 44. Zhang N, Liu Q, Chen W, Wan M, Li X et al. High capacity hard carbon derived from lotus stem as anode for sodium ion batteries. Journal of Power Sources 2018; 378: 331-337. doi: 10.1016/j.jpowsour.2017.12.054
  • 45. Rybarczyk MK, Li Y, Qiao M, Hu YS, Titirici MM et al. Hard carbon derived from rice husk as low cost negative electrodes in Na-ion batteries, Journal of Energy Chemistry 2019; 29: 17-22. doi: 10.1016/j.jechem.2018.01.025
  • 46. Zhang F, Yao Y, Wan J, Henderson D, Zhang X et al. High Temperature Carbonized Grass as a High Performance Sodium Ion Battery Anode. ACS Applied Materials & Interfaces 2017; 9 (1): 391-397 doi: 10.1021/acsami.6b12542
  • 47. Wang K, Jin Y, Sun S, Huang Y, Peng J. Low-cost and high-performance hard carbon anode materials for sodium-ion batteries. ACS Omega 2017; 2: 1687-1695. doi: 10.1021/acsomega.7b00259.
  • 48. Arie, AA, Tekin, B, Demir E, Demir-Cakan R. Utilization of the Indonesian’s spent tea leaves as promising porous hard carbon precursors for anode materials in sodium ion batteries. Waste Biomass Valorization 2020; 11: 3121–3131. doi: 10.1007/s12649-019-00624-x
  • 49. Kumar U, Wu J, Sharma N, Sahajwalla V. Biomass derived high areal and specific capacity hard carbon anodes for sodium-ion batteries. Energy & Fuels 2021; 35 (2): 1820-1830 doi: 10.1021/acs.energyfuels.0c03741
  • 50. Yu HY, Liang HJ, Gu ZY, Meng YF, Yang M et al. Waste-to-wealth: low-cost hard carbon anode derived from unburned charcoal with high capacity and long cycle life for sodium-ion/lithium-ion batteries. Electrochimica Acta 2020; 361: 137041, ISSN 0013-4686. doi: 10.1016/j. electacta.2020.137041
APA CANBAZ E, AYDIN M, Demir-Cakan R (2022). Investigation of hazelnut shells driven hard carbons as anode for sodium-ion batteries produced by hydrothermal carbonization method. , 356 - 366. 10.3906/kim-2105-22
Chicago CANBAZ ELİF,AYDIN Meral,Demir-Cakan Rezan Investigation of hazelnut shells driven hard carbons as anode for sodium-ion batteries produced by hydrothermal carbonization method. (2022): 356 - 366. 10.3906/kim-2105-22
MLA CANBAZ ELİF,AYDIN Meral,Demir-Cakan Rezan Investigation of hazelnut shells driven hard carbons as anode for sodium-ion batteries produced by hydrothermal carbonization method. , 2022, ss.356 - 366. 10.3906/kim-2105-22
AMA CANBAZ E,AYDIN M,Demir-Cakan R Investigation of hazelnut shells driven hard carbons as anode for sodium-ion batteries produced by hydrothermal carbonization method. . 2022; 356 - 366. 10.3906/kim-2105-22
Vancouver CANBAZ E,AYDIN M,Demir-Cakan R Investigation of hazelnut shells driven hard carbons as anode for sodium-ion batteries produced by hydrothermal carbonization method. . 2022; 356 - 366. 10.3906/kim-2105-22
IEEE CANBAZ E,AYDIN M,Demir-Cakan R "Investigation of hazelnut shells driven hard carbons as anode for sodium-ion batteries produced by hydrothermal carbonization method." , ss.356 - 366, 2022. 10.3906/kim-2105-22
ISNAD CANBAZ, ELİF vd. "Investigation of hazelnut shells driven hard carbons as anode for sodium-ion batteries produced by hydrothermal carbonization method". (2022), 356-366. https://doi.org/10.3906/kim-2105-22
APA CANBAZ E, AYDIN M, Demir-Cakan R (2022). Investigation of hazelnut shells driven hard carbons as anode for sodium-ion batteries produced by hydrothermal carbonization method. Turkish Journal of Chemistry, 46(2), 356 - 366. 10.3906/kim-2105-22
Chicago CANBAZ ELİF,AYDIN Meral,Demir-Cakan Rezan Investigation of hazelnut shells driven hard carbons as anode for sodium-ion batteries produced by hydrothermal carbonization method. Turkish Journal of Chemistry 46, no.2 (2022): 356 - 366. 10.3906/kim-2105-22
MLA CANBAZ ELİF,AYDIN Meral,Demir-Cakan Rezan Investigation of hazelnut shells driven hard carbons as anode for sodium-ion batteries produced by hydrothermal carbonization method. Turkish Journal of Chemistry, vol.46, no.2, 2022, ss.356 - 366. 10.3906/kim-2105-22
AMA CANBAZ E,AYDIN M,Demir-Cakan R Investigation of hazelnut shells driven hard carbons as anode for sodium-ion batteries produced by hydrothermal carbonization method. Turkish Journal of Chemistry. 2022; 46(2): 356 - 366. 10.3906/kim-2105-22
Vancouver CANBAZ E,AYDIN M,Demir-Cakan R Investigation of hazelnut shells driven hard carbons as anode for sodium-ion batteries produced by hydrothermal carbonization method. Turkish Journal of Chemistry. 2022; 46(2): 356 - 366. 10.3906/kim-2105-22
IEEE CANBAZ E,AYDIN M,Demir-Cakan R "Investigation of hazelnut shells driven hard carbons as anode for sodium-ion batteries produced by hydrothermal carbonization method." Turkish Journal of Chemistry, 46, ss.356 - 366, 2022. 10.3906/kim-2105-22
ISNAD CANBAZ, ELİF vd. "Investigation of hazelnut shells driven hard carbons as anode for sodium-ion batteries produced by hydrothermal carbonization method". Turkish Journal of Chemistry 46/2 (2022), 356-366. https://doi.org/10.3906/kim-2105-22