Yıl: 2022 Cilt: 46 Sayı: 2 Sayfa Aralığı: 404 - 414 Metin Dili: İngilizce DOI: 10.3906/kim-2109-60 İndeks Tarihi: 05-07-2022

Increasing the biocompatibility of graphene-based hybrid nanostructures with glycopolymer

Öz:
Hybrid nanostructures decorated with glycopolymers are appropriate for biomedical applications. In this paper, the results are obtained from nanographene (NG) decorated with glycoblock copolymer to increase their potential in use in therapies and in examining lectin interactions. A pyren-1-ylmethyl 4-cyano-4-((phenylcarbonothioyl)thio)pentanoate (CPADB-py) chain transfer agent was used in the synthesis of methyl methacrylate glycoblock copolymers (P2 and P3) by reversible addition-fragmentation chain transfer (RAFT) polymerization to adhere the polymer to the nanographene surface. Hybrid nanographenes (NG-1 and NG-2) were obtained by the non-covalent interaction of deprotected P2 and P3 with different fructopyranose groups (3-O-methacryloyl-1,2:4,5- di-O-isopropylidene-β-D-fructopyranose and 1-O-methacryloyl-2,3:4,5-di-O-isopropylidene-β-D-fructopyranose) in their backbones. Images obtained from transmission electron microscopy (TEM) of NG-1 and NG-2 show that glycoblock copolymer coating was performed homogeneously. Moreover, thermal gravimetric analysis (TGA) also confirmed a glycoblock copolymer coating of NG-1 and NG-2 by weight loss of 41% and 31%, respectively. In the last step of the study, the binding ability of glycoblock copolymers (P2-hyd and P3-hyd) with concanavalin A (ConA) lectin was investigated by a turbidimetric assay. Promising results were obtained from P3-hyd for the ConA interactions. Hence, this study may open a new avenue in the design of new multifunctional glyconanomaterials that show favorable binding properties with lectins.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Losada-Garcia N, Rodriguez-Oliva I, Simovic M, Bezbradica DI, Palomo JM. New advances in fabrication of graphene glyconanomaterials for application in therapy and diagnosis. ACS Omega. 2020; 5 (9): 4362-9. doi: 10.1021/acsomega.9b04332
  • 2. Nemati F, Pebdeni AB, Hosseini M. Chapter 13 - Graphene-based devices for cancer diagnosis. In: Khan R, Parihar A, Sanghi SK, editors. Biosensor Based Advanced Cancer Diagnostics: Academic Press; 2022. p. 225-43.
  • 3. Barani M, Mukhtar M, Rahdar A, Sargazi G, Thysiadou A et al. Progress in the Application of Nanoparticles and Graphene as Drug Carriers and on the Diagnosis of Brain Infections. Molecules 2021; 26 (1): 186. doi: 10.3390/molecules26010186
  • 4. Cao Y, Dong H, Yang Z, Zhong X, Chen Y et al. Aptamer-conjugated graphene quantum dots/porphyrin derivative theranostic agent for intracellular cancer-related MicroRNA detection and fluorescence-guided photothermal/photodynamic synergetic therapy. ACS Applied Materials & Interfaces 2017; 9 (1): 159-66. doi: 10.1021/acsami.6b13150
  • 5. Birlik Demirel G, Aygul E, Dag A, Atasoy S, Cimen Z et al. Folic Acid-Conjugated pH and Redox-Sensitive Ellipsoidal Hybrid Magnetic Nanoparticles for Dual-Triggered Drug Release. ACS Applied Bio Materials 2020; 3 (8): 4949-61. doi: 10.1021/acsabm.0c00488
  • 6. Tu Z, Qiao H, Yan Y, Guday G, Chen W et al. Directed graphene-based nanoplatforms for hyperthermia: overcoming multiple drug resistance. Angewandte Chemie 2018; 57 (35): 11198-11202. doi: 10.1002/anie.201804291
  • 7. Geim AK, Novoselov KS. The rise of graphene. Nature Materials 2007; 6: 183. doi: 10.1038/nmat1849
  • 8. Bahadır EB, Sezgintürk MK. Applications of graphene in electrochemical sensing and biosensing. TrAC Trends in Analytical Chemistry 2016; 76: 1-14. doi: 10.1016/j.trac.2015.07.008
  • 9. Feng L, Zhang S, Liu Z. Graphene based gene transfection. Nanoscale 2011; 3 (3): 1252-7. doi: 10.1039/C0NR00680G
  • 10. Zhang L, Xia J, Zhao Q, Liu L, Zhang Z. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 2010; 6 (4): 537-44. doi: 10.1002/smll.200901680
  • 11. Yang K, Zhang S, Zhang G, Sun X, Lee S-T et al. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Letters 2010; 10 (9): 3318-23. doi: 10.1021/nl100996u
  • 12. Kantheti S, Gaddam RR, Narayan R, Raju KVSN. Hyperbranched polyol decorated carbon nanotube by click chemistry for functional polyurethane urea hybrid composites. RSC Adv 2014; 4 (47): 24420-7. doi: 10.1039/c4ra02442g
  • 13. Bagri A, Mattevi C, Acik M, Chabal YJ, Chhowalla M et al. Structural evolution during the reduction of chemically derived graphene oxide. Nature Chemistry 2010; 2 (7): 581-7. doi: 10.1038/nchem.686
  • 14. Shim G, Kim M-G, Park JY, Oh Y-K. Graphene-based nanosheets for delivery of chemotherapeutics and biological drugs. Advanced Drug Delivery Reviews 2016; 105: 205-27. doi: 10.1016/j.addr.2016.04.004
  • 15. Jaleel JA, Sruthi S, Pramod K. Reinforcing nanomedicine using graphene family nanomaterials. Journal of Controlled Release 2017; 255: 218-30. doi: 10.1016/j.jconrel.2017.04.041
  • 16. Ting SRS, Chen G, Stenzel MH. Synthesis of glycopolymers and their multivalent recognitions with lectins. Polymer Chemistry 2010; 1 (9): 1392-412. doi: 10.1039/C0PY00141D
  • 17. Pramudya I, Chung H. Recent progress of glycopolymer synthesis for biomedical applications. Biomaterials Science 2019; 7 (12): 4848-72. doi: 10.1039/C9BM01385G
  • 18. Abdouni Y, Yilmaz G, Becer CR. Sequence and architectural control in glycopolymer synthesis. Macromol Rapid Commun 2017; 38 (24). doi: 10.1002/marc.201700212
  • 19. Bhattacharya K, Banerjee SL, Kundu M, Mandal M, Singha NK. Glycopolymer ornamented octa-arm POSS based organic-inorganic hybrid star block copolymer as a lectin binding ligand. Materials Science and Engineering: C 2020; 116:111210. doi: 10.1016/j.msec.2020.111210
  • 20. Wilkins LE, Badi N, Du Prez F, Gibson MI. Double-Modified Glycopolymers from Thiolactones to Modulate Lectin Selectivity and Affinity. ACS Macro Letters 2018; 7 (12): 1498-502. doi: 10.1021/acsmacrolett.8b00825
  • 21. Kursun TT, Cimen D, Caykara T. Glycopolymer brushes with specific protein recognition property. Journal of Applied Polymer Science 2017; 134 (36). doi: 10.1002/app.45238
  • 22. Gou Y, Geng J, Richards SJ, Burns J, Remzi Becer C et al. A Detailed Study on Understanding Glycopolymer Library and Con A Interactions. Journal of Polymer Science Part A Polymer Chemistry 2013; 51 (12): 2588-97. doi: 10.1002/pola.26646
  • 23. Oz Y, Abdouni Y, Yilmaz G, Becer CR, Sanyal A. Magnetic glyconanoparticles for selective lectin separation and purification. Polymer Chemistry 2019; 10 (24): 3351-61. doi: 10.1039/C8PY01748D
  • 24. Hartweg M, Jiang Y, Yilmaz G, Jarvis CM, Nguyen HVT, Primo GA et al. Synthetic glycomacromolecules of defined valency, absolute configuration, and topology distinguish between human lectins. JACS Au. 2021. doi: 10.1021/jacsau.1c00255
  • 25. Bandaru NM, Voelcker NH. Glycoconjugate-functionalized carbon nanotubes in biomedicine. Journal of Materials Chemistry 2012; 22 (18): 8748-58. doi: 10.1039/C2JM16636D
  • 26. Omurtag Ozgen PS, Atasoy S, Zengin Kurt B, Durmus Z, Yigit G et al. Glycopolymer decorated multiwalled carbon nanotubes for dual targeted breast cancer therapy. Journal of Materials Chemistry B 2020; 8 (15): 3123-37. doi: 10.1039/c9tb02711d
  • 27. Zhao J, Babiuch K, Lu H, Dag A, Gottschaldt M et al. Fructose-coated nanoparticles: a promising drug nanocarrier for triple-negative breast cancer therapy. Chemical Communications 2014; 50 (100): 15928-31. doi: 10.1039/c4cc06651k
  • 28. Dag A, Cakilkaya E, Omurtag Ozgen PS, Atasoy S, Yigit Erdem G et al. Phthalocyanine-conjugated glyconanoparticles for chemophotodynamic combination therapy. Biomacromolecules 2021; 22 (4): 1555-67. doi: 10.1021/acs.biomac.0c01811
  • 29. Hummers WS, Offeman RE. Preparation of Graphitic Oxide. Journal of the American Chemical Society. 1958; 80 (6): 1339. doi: 10.1021/ ja01539a017
  • 30. Durmus Z, Durmus A, Kavas H. Synthesis and characterization of structural and magnetic properties of graphene/hard ferrite nanocomposites as microwave-absorbing material. Journal of Materials Science 2014; 50 (3): 1201-13. doi: 10.1007/s10853-014-8676-3
  • 31. Liu J, Yang W, Tao L, Li D, Boyer C et al. Thermosensitive graphene nanocomposites formed using pyrene-terminal polymers made by RAFT polymerization. 2010; 48 (2): 425-33. doi: 10.1002/pola.23802
  • 32. Dag A, Omurtag Ozgen PS, Atasoy S. Glyconanoparticles for targeted tumor therapy of platinum anticancer drug. Biomacromolecules 2019; 20 (8): 2962-72. doi: 10.1021/acs.biomac.9b00528
  • 33. Cakir N, Hizal G, Becer CR. Supramolecular glycopolymers with thermo-responsive self-assembly and lectin binding. Polymer Chemistry 2015; 6 (37): 6623-31. doi: 10.1039/c5py00939a
  • 34. Dag A, Lu H, Stenzel M. Controlling the morphology of glyco-nanoparticles in water using block copolymer mixtures: the effect on cellular uptake. Polymer Chemistry 2015; 6 (45): 7812-20. doi: 10.1039/c5py01360g
  • 35. Yilmaz G, Becer CR. Glyconanoparticles and their interactions with lectins. Polymer Chemistry 2015; 6 (31): 5503-14. doi: 10.1039/ c5py00089k
APA Dag A, OMURTAG OZGEN P, Zengin Kurt B, Durmus Z (2022). Increasing the biocompatibility of graphene-based hybrid nanostructures with glycopolymer. , 404 - 414. 10.3906/kim-2109-60
Chicago Dag Aydan,OMURTAG OZGEN PINAR SINEM,Zengin Kurt Belma,Durmus Zehra Increasing the biocompatibility of graphene-based hybrid nanostructures with glycopolymer. (2022): 404 - 414. 10.3906/kim-2109-60
MLA Dag Aydan,OMURTAG OZGEN PINAR SINEM,Zengin Kurt Belma,Durmus Zehra Increasing the biocompatibility of graphene-based hybrid nanostructures with glycopolymer. , 2022, ss.404 - 414. 10.3906/kim-2109-60
AMA Dag A,OMURTAG OZGEN P,Zengin Kurt B,Durmus Z Increasing the biocompatibility of graphene-based hybrid nanostructures with glycopolymer. . 2022; 404 - 414. 10.3906/kim-2109-60
Vancouver Dag A,OMURTAG OZGEN P,Zengin Kurt B,Durmus Z Increasing the biocompatibility of graphene-based hybrid nanostructures with glycopolymer. . 2022; 404 - 414. 10.3906/kim-2109-60
IEEE Dag A,OMURTAG OZGEN P,Zengin Kurt B,Durmus Z "Increasing the biocompatibility of graphene-based hybrid nanostructures with glycopolymer." , ss.404 - 414, 2022. 10.3906/kim-2109-60
ISNAD Dag, Aydan vd. "Increasing the biocompatibility of graphene-based hybrid nanostructures with glycopolymer". (2022), 404-414. https://doi.org/10.3906/kim-2109-60
APA Dag A, OMURTAG OZGEN P, Zengin Kurt B, Durmus Z (2022). Increasing the biocompatibility of graphene-based hybrid nanostructures with glycopolymer. Turkish Journal of Chemistry, 46(2), 404 - 414. 10.3906/kim-2109-60
Chicago Dag Aydan,OMURTAG OZGEN PINAR SINEM,Zengin Kurt Belma,Durmus Zehra Increasing the biocompatibility of graphene-based hybrid nanostructures with glycopolymer. Turkish Journal of Chemistry 46, no.2 (2022): 404 - 414. 10.3906/kim-2109-60
MLA Dag Aydan,OMURTAG OZGEN PINAR SINEM,Zengin Kurt Belma,Durmus Zehra Increasing the biocompatibility of graphene-based hybrid nanostructures with glycopolymer. Turkish Journal of Chemistry, vol.46, no.2, 2022, ss.404 - 414. 10.3906/kim-2109-60
AMA Dag A,OMURTAG OZGEN P,Zengin Kurt B,Durmus Z Increasing the biocompatibility of graphene-based hybrid nanostructures with glycopolymer. Turkish Journal of Chemistry. 2022; 46(2): 404 - 414. 10.3906/kim-2109-60
Vancouver Dag A,OMURTAG OZGEN P,Zengin Kurt B,Durmus Z Increasing the biocompatibility of graphene-based hybrid nanostructures with glycopolymer. Turkish Journal of Chemistry. 2022; 46(2): 404 - 414. 10.3906/kim-2109-60
IEEE Dag A,OMURTAG OZGEN P,Zengin Kurt B,Durmus Z "Increasing the biocompatibility of graphene-based hybrid nanostructures with glycopolymer." Turkish Journal of Chemistry, 46, ss.404 - 414, 2022. 10.3906/kim-2109-60
ISNAD Dag, Aydan vd. "Increasing the biocompatibility of graphene-based hybrid nanostructures with glycopolymer". Turkish Journal of Chemistry 46/2 (2022), 404-414. https://doi.org/10.3906/kim-2109-60