Yıl: 2022 Cilt: 46 Sayı: 2 Sayfa Aralığı: 434 - 445 Metin Dili: İngilizce DOI: 10.3906/kim-2106-37 İndeks Tarihi: 05-07-2022

Selective catalytic hydrogenation of cellulose into sorbitol with Ru-based catalysts

Öz:
Sorbitol is one of the platform chemicals and can be produced from various renewable and sustainable sources via different processes. Hydrothermal liquefaction is an effective and promising approach to produce sorbitol, since the subcritical reaction media and appropriate catalysts provide a selective production of platform chemicals. In this study, sorbitol was produced from different renewable sources (cellulose and glucose) in the presence of Ru-based catalysts $(Ru/SiO_2 , Ru/AC, Ru/SBA-15, and Ru/SBA-15-SO_3 )$ under subcritical conditions. The highest cellulose conversion was achieved as 90% in the presence of $Ru/SBA-15-SO_3$ for 1 h of reaction duration. The highest sorbitol yield (%) by hydrothermal liquefaction of cellulose was obtained as 6.2% by using Ru/AC for 1 h of reaction duration. A total of 99.9% of glucose conversion was achieved in the presence of all catalysts. The highest sorbitol yield (%) by hydrothermal liquefaction of glucose was found as 3.8% for 1 h of reaction duration. Owing to the results of GC-MS analysis, the intermediate products were identified, and, thus, a reaction pathway was proposed.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Mizuho Y, Hirokazu K, Atsushi F. Catalytic transformation of cellulose into platform chemicals. Applied Catalysis B: Environental 2014; 145: 1-9. doi: 10.1016/j.apcatb.2013.01.052
  • 2. Andrea K, Axel F, Magdalena TM. Hydrothermal conversion of biomass to fuels and energetic materials. Current Opinion in Chemical Biology 2013; 17 (3): 515-521. doi: 10.1016/j.cbpa.2013.05.004
  • 3. Tekin K, Karagöz S, Bektaş S. A review of hydrothermal biomass processing. Renewable and Sustainable Energy Reviews 2014; 40: 673- 687. doi: 10.1016/j.rser.2014.07.216
  • 4. Möller M, Nilges P, Harnisch F, Schröder U. Subcritical water as reaction environment: fundamentals of hydrothermal biomass transformation. ChemSusChem 2011; 4 (5): 566-579. doi: 10.1002/cssc.201000341
  • 5. Akiya N, Savage PE. Roles of water for chemical reactions in high-temperature water. Chemical Reviews 2002; 102 (8): 2725-2750. doi: 10.1021/cr000668w
  • 6. Hashaikeh R, Fang X, Butler IS, Hawari J, Kozinski JA. Hydrothermal dissolution of willow in hot compressed water as a model for biomass conversion. Fuel 2007; 86 (10-11): 1614-1622. doi: 10.1016/j.fuel.2006.11.005
  • 7. Pavlovič I, Knez Ž, Škerget M. Subcritical water–a perspective reaction media for biomass processing to chemicals: Study on cellulose conversion as a model for biomass. Chemical and Biochemical Engineering Quarterly 2013; 27 (1): 73-82. doi: 10.15255/CABEQ.2014.99
  • 8. Toor SS, Rosendahl LA, Hoffmann J, Pedersen TH, Nielsen RP et al. Hydrothermal liquefaction of biomass. In Application of hydrothermal reactions to biomass conversion. Springer, Berlin, Heidelberg, 2014.
  • 9. Marques C, Tarek R, Sara M, Brar SK. Sorbitol production from biomass and its global market. Platform Chemical Biorefinery, Future Green Industry 2016: 217-227. doi: 10.1016/B978-0-12-802980-0.00012-2
  • 10. Court J, Damon JP, Masson J, Wierzchowski P. Hydrogenation of glucose with bimetallic catalysts (NiM) of Raney type. Studies in Surface Science and Catalysis 1988; 41: 189-196. doi: 10.1016/S0167-2991(09)60814-4
  • 11. Gallezot P, Cerino C, Blanc B, Fleche G, Fuertes P. Glucose hydrogenation on promoted Raney-nickel catalysts. Journal of Catalysis 1994; 146 (1): 93-102. doi: 10.1016/0021-9517(94)90012-4
  • 12. Geyer R, Kraak P, Pachulski A, Schödel R. New catalysts for the hydrogenation of glucose to sorbitol. Chemie Ingenieur Technik 2012; 84 (4): 513-516. doi: 10.1002/cite.201100108
  • 13. Dhepe PL, Fukuoka A. Cracking of cellulose over supported metal catalysts. Catalysis Surveys from Asia 2007; 11 (4): 186-191. doi: 10.1007/s10563-007-9033-1
  • 14. Hoffer BW, Crezee E, Devred F, Sloof WG, Kooyman PJ et al. The role of the active phase of Raney-type Ni catalysts in the selective hydrogenation of D-glucose to D-sorbitol. Applied Catalysis A: General 2003; 253 (2): 437-452. doi: 10.1016/S0926-860X(03)00553-2
  • 15. Li Z, Liu Y, Wu S. Efficient conversion of D-Glucose into D-sorbitol over carbonized cassava dregs-supported ruthenium nanoparticles catalyst. BioResources 2018; 13 (1): 1278-1288. doi: 10.15376/biores.13.1.1278-1288
  • 16. Lazaridis PA, Karakoulia S, Delimitis A, Coman SM., Parvulescu VI et al. D-Glucose hydrogenation/hydrogenolysis reactions on noble metal (Ru, Pt)/activated carbon supported catalysts. Catalysis Today 2016; 257: 281-290. doi: 10.1016/j.cattod.2014.12.006
  • 17. Deng W, Tan X, Fang W, Zhang Q, Wang Y. Conversion of cellulose into sorbitol over carbon nanotube-supported ruthenium catalyst. Catalysis Letters 2009; 133 (1-2): 167. doi: 10.1007/s10562-009-0136-3
  • 18. Han JW, Lee H. Direct conversion of cellulose into sorbitol using dual-functionalized catalysts in neutral aqueous solution. Catalysis Communications 2012; 19: 115-118. doi: 10.1016/j.catcom.2011.12.032
  • 19. Zhu W, Yang H, Chen J, Chen C, Guo L, et al. Efficient hydrogenolysis of cellulose into sorbitol catalyzed by a bifunctional catalyst. Green Chemistry 2014; 16(3), 1534-1542. doi:10.1039/C3GC41917G
  • 20. Aksoylu AE, Madalena M, Freitas A, Pereira FR, Figueiredo JL. The effects of different activated carbon supports and support modifications on the properties of Pt/AC catalysts. Carbon 2001; 39: 175-185. doi: 10.1016/S0008-6223(00)00102-0
  • 21. Meryemoglu B, Irmak S, Hasanoglu A. Production of activated carbon materials from kenaf biomass to be used as catalyst support in aqueous-phase reforming process. Fuel Processing Technology 2016; 151: 59-63. doi: 10.1016/j.fuproc.2016.05.040
  • 22. Hao C, Li J, Zhang Z, Ji Y, Zhan H et al. Enhancement of photocatalytic properties of $TiO_2$ nanoparticles doped with $CeO_2$ and supported on $SiO_2$ for phenol degradation. Applied Surface Science 2015; 331: 17-26. doi: 10.1016/j.apsusc.2015.01.069
  • 23. Yu X, Wang M, Li H. Study on the nitrobenzene hydrogenation over a $Pd-B/SiO_2$ amorphous catalyst. Applied Catalysis A: General 2000; 202: 17-22. doi: 1010.1016/S0926-860X(00)00454-3
  • 24. Nam J-H, Jang Y-Y, Kwon Y-U, Nam J-D. Direct methanol fuel cell Pt–carbon catalysts by using SBA-15 nanoporous templates. Electrochemistry Communiccations 2004; 6: 737-741. doi: 10.1016/j.elecom.2004.05.016
  • 25. Singh S, Kumar R, Setiabudi H D, Nanda S, Vo D-V N. Advanced synthesis strategies of mesoporous SBA-15 supported catalysts for T catalytic reforming applications: A state-of-the-art review. Applied Catalysis A: General 2008; 559: 57-74. doi: 10.1016/j.apcata.2018.04.015
  • 26. Saxena A, Srivastava A K, Singh B, Goyal A. Removal of sulphur mustard, sarin and simulants on impregnated silica nanoparticles. Journal of Hazardous Materials 2012; 211, 226-232. doi:10.1016/j.jhazmat.2011.07.117
  • 27. Prasad GK, Singh B. Impregnated carbon for degradation of diethyl sulphide. Journal of Hazardous Materials 2005; 126 (1-3): 195-197. doi: 10.1016/j.jhazmat.2005.06.005
  • 28. Li Y, Feng Z, Lian Y, Sun K, Zhang L et al. Direct synthesis of highly ordered Fe-SBA-15 mesoporous materials under weak acidic conditions. Microporous Mesoporous Materials 2005; 84 (1-3): 41-49. doi: 10.1016/j.micromeso.2005.05.021
  • 29. Dongyuan Z, Jianglin F, Qisheng H, Nicholas M, Glenn HF et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998; 279: 548-552.
  • 30. Won J-H, Lee H J, Yoon KS, Hong YT, Lee S-Y. Sulfonated SBA-15 mesoporous silica-incorporated sulfonated poly (phenylsulfone) composite membranes for low-humidity proton exchange membrane fuel cells: Anomalous behavior of humidity-dependent proton conductivity. International Journal of Hydrogen Energy 2012; 37 (11): 9202-9211. doi: 10.1016/j.ijhydene.2012.03.036
  • 31. Lin Z, Yadong C, Chunping Z, Lei W, Hui W et al. Biodiesel production by esterification of oleic acid over Brønsted acidic ionic liquid supported onto Fe-incorporated SBA-15. Industrial & Engineering Chemistry Research 2012; 51: 16590−16596. doi: 10.1021/ie302419y
  • 32. Reyes-Luyanda D, Flores-Cruz J, Morales-Pérez PJ, Encarnación-Gómez LG, Shi F et al. Bifunctional materials for the catalytic conversion of cellulose into soluble renewable biorefinery feedstocks. Topics in Catalysis 2012; 55 (3-4): 148-161. doi: 10.1007/s11244-012-9791-5
  • 33. Nurunnabi M, Turn S Q. Pore size effects on $Ru/SiO_2$ catalysts with Mn and Zr promoters for Fischer–Tropsch synthesis. Fuel Processing Technology 2015; 130, 155–164. http://dx.doi.org/10.1016/j.fuproc.2014.10.004
  • 34. Song X, Li S, Li K, Ning P, Wang C et al. Preparation of Cu-Fe composite metal oxide loaded SBA-15 and its capacity for simultaneous catalytic oxidation of hydrogen sulfide and phosphine. Microporous Mesoporous Materials 2018; 259: 89-98. doi: 10.1016/j.micromeso.2017.10.004
  • 35. Ribeiro LS, Delgado JJ, Órfão JJ, Pereira MFR. Carbon supported Ru-Ni bimetallic catalysts for the enhanced one-pot conversion of cellulose to sorbitol. Applied Catalysis B: Environ. 2017; 217: 265-274. doi: 10.1016/j.apcatb.2017.04.078
  • 36. Prahas D, Kartika Y, Indraswati N, Ismadji S. Activated carbon from jackfruit peel waste by $H_3 $-PO_4$ chemical activation: Pore structure and surface chemistry characterization. Chemical Engineering Journal 2008; 140: 32-42. doi: 10.1016/j.cej.2007.08.032
  • 37. Chary KVR, Srikanth CS. Selective Hydrogenation of Nitrobenzene to Aniline over Ru/SBA-15 Catalysts. Catalysis Letters 2009; 128: 164–170. doi: 10.1007/s10562-008-9720-1
  • 38. Chen S-J, You H-X, Vo-Thanh G, Liu Y. Heterogeneous transfer hydrogenation over mesoporous SBA-15 co-modified by anionic sulfonate and cationic Ru(III) complex. Monatshefte für Chemie – Chemial Monthly 2013; 144: 851–858. doi: 10.1007/s00706-012-0889-z
  • 39. Lin B, Wei K, Ma X, Lin J, Ni J. Study of potassium promoter effect for Ru/AC catalysts for ammonia synthesis. Catalysis Science & Technology 2013; 3: 1367-1375. doi: 10.1039/c3cy20830c
  • 40. Ribeiro LS, Órfão JJ, Pereira MFR. Enhanced direct production of sorbitol by cellulose ball-milling. Green Chemistry 2015; 17 (5): 2973- 2980. doi: 10.1039/C5GC00039D
  • 41. Shurong W, Xiujuan G, Tao L, Yan Z, Zhongyang L. Mechanism research on cellulose pyrolysis by Py-GC/MS and subsequent density functional theory studies. Bioresource Technology 2012; 104: 722–728. doi: 10.1016/j.biortech.2011.10.078
  • 42. Guo H, Qi X, Li L, Smith Jr. RL. Hydrolysis of cellulose over functionalized glucose-derived carbon catalyst in ionic liquid. Bioresource Technology 2012; 116: 355-359. doi: 10.1016/j.biortech.2012.03.098
  • 43. Dhepe PL, Fukuoka A. Cellulose conversion under heterogeneous catalysis. ChemSusChem 2008; 1: 969-975. doi: 10.1002/cssc.200800129
APA Orak C, SAPMAZ A, YÜKSEL ÖZŞEN A (2022). Selective catalytic hydrogenation of cellulose into sorbitol with Ru-based catalysts. , 434 - 445. 10.3906/kim-2106-37
Chicago Orak Ceren,SAPMAZ AYCAN,YÜKSEL ÖZŞEN ASLI Selective catalytic hydrogenation of cellulose into sorbitol with Ru-based catalysts. (2022): 434 - 445. 10.3906/kim-2106-37
MLA Orak Ceren,SAPMAZ AYCAN,YÜKSEL ÖZŞEN ASLI Selective catalytic hydrogenation of cellulose into sorbitol with Ru-based catalysts. , 2022, ss.434 - 445. 10.3906/kim-2106-37
AMA Orak C,SAPMAZ A,YÜKSEL ÖZŞEN A Selective catalytic hydrogenation of cellulose into sorbitol with Ru-based catalysts. . 2022; 434 - 445. 10.3906/kim-2106-37
Vancouver Orak C,SAPMAZ A,YÜKSEL ÖZŞEN A Selective catalytic hydrogenation of cellulose into sorbitol with Ru-based catalysts. . 2022; 434 - 445. 10.3906/kim-2106-37
IEEE Orak C,SAPMAZ A,YÜKSEL ÖZŞEN A "Selective catalytic hydrogenation of cellulose into sorbitol with Ru-based catalysts." , ss.434 - 445, 2022. 10.3906/kim-2106-37
ISNAD Orak, Ceren vd. "Selective catalytic hydrogenation of cellulose into sorbitol with Ru-based catalysts". (2022), 434-445. https://doi.org/10.3906/kim-2106-37
APA Orak C, SAPMAZ A, YÜKSEL ÖZŞEN A (2022). Selective catalytic hydrogenation of cellulose into sorbitol with Ru-based catalysts. Turkish Journal of Chemistry, 46(2), 434 - 445. 10.3906/kim-2106-37
Chicago Orak Ceren,SAPMAZ AYCAN,YÜKSEL ÖZŞEN ASLI Selective catalytic hydrogenation of cellulose into sorbitol with Ru-based catalysts. Turkish Journal of Chemistry 46, no.2 (2022): 434 - 445. 10.3906/kim-2106-37
MLA Orak Ceren,SAPMAZ AYCAN,YÜKSEL ÖZŞEN ASLI Selective catalytic hydrogenation of cellulose into sorbitol with Ru-based catalysts. Turkish Journal of Chemistry, vol.46, no.2, 2022, ss.434 - 445. 10.3906/kim-2106-37
AMA Orak C,SAPMAZ A,YÜKSEL ÖZŞEN A Selective catalytic hydrogenation of cellulose into sorbitol with Ru-based catalysts. Turkish Journal of Chemistry. 2022; 46(2): 434 - 445. 10.3906/kim-2106-37
Vancouver Orak C,SAPMAZ A,YÜKSEL ÖZŞEN A Selective catalytic hydrogenation of cellulose into sorbitol with Ru-based catalysts. Turkish Journal of Chemistry. 2022; 46(2): 434 - 445. 10.3906/kim-2106-37
IEEE Orak C,SAPMAZ A,YÜKSEL ÖZŞEN A "Selective catalytic hydrogenation of cellulose into sorbitol with Ru-based catalysts." Turkish Journal of Chemistry, 46, ss.434 - 445, 2022. 10.3906/kim-2106-37
ISNAD Orak, Ceren vd. "Selective catalytic hydrogenation of cellulose into sorbitol with Ru-based catalysts". Turkish Journal of Chemistry 46/2 (2022), 434-445. https://doi.org/10.3906/kim-2106-37