Bovine serum albumin detection by using molecularly imprinted surface plasmon resonance sensors

Yıl: 2022 Cilt: 46 Sayı: 2 Sayfa Aralığı: 487 - 498 Metin Dili: İngilizce DOI: 10.3906/kim-2109-6 İndeks Tarihi: 05-07-2022

Bovine serum albumin detection by using molecularly imprinted surface plasmon resonance sensors

Öz:
Molecular imprinted polymers (MIP) have key-lock pattern binding properties specific to the size and shape of target molecules. In this study, we have prepared detection platforms based on a molecularly imprinted surface plasmon resonance (SPR) sensor that can detect bovine serum albumin (BSA) sensitively, selectively, quickly, and in real time. The polymeric film prepared on the SPR sensor surface by molecular imprinting method was obtained by selecting the N-methacryloyl-(L)-glutamic acid molecule as a suitable functional monomer using ultraviolet polymerization. Three different imprinting methods, such as epitope, bulk, and surface imprinting methods, were used to examine the imprinting efficiency. Real-time measurements were performed with BSA imprinted SPR sensor provide linearity in the concentration range from 0.10 to 7.50 nM and indicate a detection limit value of 0.015 nM. Furthermore, we performed the selectivity experiments, where transferrin and hemoglobin were chosen as competitor agents. Overall, the SPR sensor prepared by the epitope imprinting approach has been found to be highly selective and sensitive for bovine serum albumin. To statistically assess the reusability of the sensor, intraday experiments were tested three times with five replicates. The RSD% value less than <1.3 indicates high reproducibility for both sensor production and reproducibility of the method. Validation studies were carried out via enzyme-linked immunosorbent analysis technique (ELISA) in order to demonstrate the applicability of the BSA imprinted SPR sensor. Due to their features such as reusability, fast response time, and ease of use, these SPR sensors, which could be used as an alternative to albumin monitoring approaches, can also be adapted to detect and monitor other proteins in real time.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Alexander C, Andersson HS, Andersson LI, Ansell RJ, Kirsch N et al. Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. Journal of Molecular Recognition 2006; 19: 106-180. doi: 10.1002/jmr.760
  • 2. Lofgreen JE, Ozin GA. Controlling morphology and porosity to improve performance of molecularly imprinted sol–gel silica. Chemical Society Reviews 2014; 43: 911-933. doi: 10.1039/c3cs60276a
  • 3. Castell OK, Barrow DA, Kamarudin AR, Allender CJ. Current practices for describing theperformance of molecularly imprintedpolymers can be misleading and may behampering the development of the field. Journal of Molecular Recognition 2011; 24: 1115-1122. doi:10.1002/jmr.1161
  • 4. Chen L, Xu S, Li J. Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chemical Society Reviews 2011; 40: 2922-2942. doi: 10.1039/c0cs00084a
  • 5. Hoshino Y, Shea KJ. The evolution of plastic antibodies. Journal of Materials Chemistry A 2011; 21: 3517-3521. doi: 10.1039/c0jm03122d
  • 6. Schirhagl R. Bioapplications for Molecularly Imprinted Polymers. Analytical Chemistry 2013; 86: 250-261. doi: 10.1021/ac401251j
  • 7. Tarannum N, Khatoon S, Dzantiev BB. Perspective and application of molecular imprinting approach for antibiotic detection in food and environmental samples: A critical review. Food Control 2020; 118: 107381. doi: 10.1016/j.foodcont.2020.107381
  • 8. Chen L, Wang X, Lu W, Wua X, Lia J. Molecular imprinting: perspectives and applications. Chemical Society Reviews 2016; 45: 2137. doi: 10.1039/C6CS00061D
  • 9. Saylan Y, Akgönüllü S, Yavuz H, Ünal S, Denizli A. Molecularly Imprinted Polymer Based Sensors for Medical Applications. Sensors 2019; 19: 1279. doi: 10.3390/s19061279
  • 10. Madeira A, Vikeved E, Nilsson A, Sjögren B, Andrén PE et al. Identification of protein-protein interactions by surface plasmon resonance followed by mass spectrometry. Current Protocols in Protein Science 2011; 65: 19. doi: 10.1002/0471140864.ps1921s65
  • 11. Teh HF, Wendy PYX, Su X, Thomsen JS. Characterization of protein-DNA interactions using surface plasmon resonance spectroscopy with various assay schemes. Biochemistry 2007; 46: 2127-2135. doi: 10.1021/bi061903t
  • 12. Geitmann M, Danielson UH. Studies of substrate-induced conformational changes in human cytomegalovirus protease using optical biosensor technology. Analytical Biochemistry 2004; 332: 203-214. doi: 10.1016/j.ab.2004.06.008
  • 13. Rich RL, Hoth LR, Geoghegan KF, Brown TA, LeMotte PK et al. Kinetic analysis of estrogen receptor/ligand interactions. Proceedings of the National Academy of Sciences 2002; 99: 8562-8567. doi: 10.1073/pnas.142288199
  • 14. Baron OL, Pauron D. Protein-lipid interaction analysis by surface plasmon resonance (SPR). Bio-Protocol 2014; 4: 1-8. doi: 10.21769/ BioProtoc.1237
  • 15. Beccati D, Halkes KM, Batema GD, Guillena G, Carvalho de Souza A et al. SPR studies of carbohydrate-protein interactions: Signal enhancement of low-molecular-mass analytes by organoplatinum(II)-labeling. Chembiochem 2005; 6: 1196-1203. doi: 10.1002/cbic.200400402
  • 16. Zhang H, Yang L, Zhou B, Wang X, Liu G et al. Investigation of biological cell-protein interactions using SPR sensor through laser scanning confocal imaging-surface plasmon resonance system. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2014; 121: 381- 386. doi: 10.1016/j.saa.2013.10.100
  • 17. Safran V, Göktürk I, Derazshamshir A, Yılmaz F, Sağlam N et al. Rapid sensing of Cu2+ in water and biological samples by sensitive molecularly imprinted based plasmonic biosensor. Microchemical Journal 2019; 148: 141-150. doi: 10.1016/j.microc.2019.04.069
  • 18. Topçu AA, Özgür E, Yılmaz F, Bereli N, Denizli A. Real time monitoring and label free creatinine detection with artificial receptors. Materials Science and Engineering: B 2019; 244: 6-11. doi: 10.1016/j.mseb.2019.04.018
  • 19. Grasso G, D’Agata R, Rizzarelli E, Spoto G, D’Andrea L et al. Activity of anchored human matrix metalloproteinase-1 catalytic domain on Au (111) surfaces monitored by ESI-MS. Journal of Mass Spectrometry 2005; 40: 1565-1571. doi: 10.1002/jms.929
  • 20. Çimen D, Bereli N, Denizli A. Surface plasmon resonance based on molecularly imprinted polymeric film for L-Phenylalanine detection. Biosensors 2021; 11: 21. doi: 10.3390/bios11010021
  • 21. Ertürk G, Özen H, Tümer MA, Mattiasson B, Denizli A. Microcontact imprinting based surface plasmon resonance (SPR) biosensor for realtime and ultrasensitive detection of prostate specific antigen (PSA) from clinical samples. Sensors and Actuators B-Chemical 2016; 224: 823- 832. doi: 10.1016/j.snb.2015.10.093
  • 22. Cooper MA. Label-free screening of bio-molecular interactions. Analytical and Bioanalytical Chemistry 2003; 377: 834-842. doi: 10.1007/ s00216-003-2111-y
  • 23. Mullett WM, Lai EP, Yeung JM. Surface plasmon resonance-based immunoassays. Methods 2000; 22: 77-91. doi: 10.1006/meth.2000.1039
  • 24. Hu CH, Chou TC. Albumin molecularly imprinted polymer with high template affinity-prepared by systematic optimization in mixed organic/ aqueous media. Microchemical Journal 2009; 91: 53-58. doi: 10.1016/j.microc.2008.07.005
  • 25. Soleimani M, Ghaderi S, Afshar MG, Soleimani S. Synthesis of molecularly imprinted polymer as a sorbent for solid phase extraction of bovine albumin from whey, milk, urine and serum. Microchemical Journal 2012; 100: 1-7. doi: 10.1016/j.microc.2011.06.026
  • 26. Ying X, Cheng G, Liu G, Qu R, Wang Y et al. Specific rebinding property of protein macromolecularly imprinted polymer microspheres based on calcium alginate hydrogel via gas jetting-dropping method. Journal of Applied Polymer Science 2010; 117: 2331-2339. doi: 10.1002/ app.32061
  • 27. Wei QH, Han LJ, Chen JH, Xiao FN, Zeng SI et al. Electrochemical behavior of Ru(H2bpp)2(PF6)2 and its interaction with bovine serum albumin (BSA). Chinese Chemical Letters 2011; 22: 713-716. doi: 10.1016/j.cclet.2010.12.040
  • 28. Xu MB, Ye T, Lu SY, Hu QQ, Zhou J, Lu JQ. Synthesis of bovine serum albumin imprinted Mn:ZnS quantum dots. Chinese Chemical Letters 2012; 23: 1403-1406. doi: 10.1016/j.cclet.2012.10.008
  • 29. Wittemann A, Ballauff M. Secondary structure analysis of proteins embedded in spherical polyelectrolyte brushes by FT-IR spectroscopy. Analytical Chemistry 2004; 76: 2813-2819. doi: 10.1021/ac0354692
  • 30. Shi YW, Ming YF, Wang CP. Determination of amino acids from hydrolyzed bovine serum albumin by high-performance liquid chromatography and identification with electrospray ionization mass spectrometry. Chinese Journal of Analytical Chemistry 2006; 34: 503-508. doi: 10.1016/ S1872-2040(06)60028-5
  • 31. Wang H, He Y, He X, Li W, Chen L et al. BSA-imprinted synthetic receptor for reversible template recognition. Journal of Separation Science 2009; 32: 1981-1986. doi: 10.1002/jssc.200800562
  • 32. Huang BX, Kim HY, Dass C Probing three-dimensional structure of bovineserum albumin by chemical cross-linking and mass spectrometry. Journal of the American Society for Mass Spectrometry 2004; 15: 1237-1247. doi: 10.1016/j.jasms.2004.05.004
  • 33. Lu YM, Yang YZ, Zhao XD, Xia CB. Bovine serum albumin partitioning in polyethylene glycol (PEG)/potassium citrate aqueous two-phase systems. Food and Bioproducts Processing 2010; 88: 40-46. doi: 10.1016/j.fbp.2009.12.002
  • 34. Sulkowska A, Maciazek M, Rownicka J, Bojko B, Pentak DA et al. Effect of temperature on the methotrexate-BSA interaction: Spectroscopic study. Journal of Molecular Structure 2007; 834-836: 162-169. doi: 10.1016/j.molstruc.2006.10.058
  • 35. Denizli A, Garipcan B, Karabakan A, Senöz H. Synthesis and characterization of poly (hydroxyethyl methacrylate-N-methacryloyl-(l)-glutamic acid) copolymer beads for removal of lead ions. Materials Science and Engineering C 2005; 25: 448-454. doi: 10.1016/j.msec.2004.12.001
  • 36. Lin LP, Huang LS, Lin CW, Lee CK, Chen JL et al. Determination of binding constant of DNA-binding drug to target DNA by surface plasmon resonance biosensor technology. Current Drug Targets 2005; 5: 61-72. doi: 10.2174/1568008053174697.
  • 37. Ertürk G, Uzun L, Tümer MA, Say R, Denizli A. Fab fragments imprinted SPR biosensor for real-time human immunoglobulin G detection. Biosensors and Bioelectronics 2011; 28: 97-104. doi: 10.1016/j.bios.2011.07.004
  • 38. Quinlan GJ, Martin GS, Evans TW. Albumin: biochemical properties andtherapeutic potential. Hepatology 2005; 41: 1211-1219. doi: 10.1002/ hep.20720
  • 39. Yubo W, Qiang Z, Qiong H, Min W, Jia T et al. Self-cleaned electrochemical protein imprinting biosensor basing on a thermo-responsive memory hydrogel. Biosensors and Bioelectronics 2018; 99: 136-141. doi: 10.1016/j.bios.2017.07.049
  • 40. Huong VT, Phuong NT, Tai NT, An NT, Lam VD et al. Gold nanoparticles modified a multimode clad-free fiber for ultrasensitive detection of bovine serum albumin. Journal of Nanomaterials 2021: 1–6. doi: 10.1155/2021/5530709
  • 41. Li MX, Wang XH, Zhang LM, Wei XP. A high sensitive epitope imprinted electrochemical sensor for bovine serum albumin based on enzyme amplifying. Analytical Biochemistry 2017; 530: 68-74. doi: 10.1016/j.ab.2017.05.006
  • 42. Shi Y, Yu Z, Chen M, Lang T. Bovine serum albumin detection using side-hole fiber sensors. Optical Fiber Technology 2021; 65: 102596. doi: 10.1016/j.yofte.2021.102596
  • 43. Kwon DH, An HH, Kim HS, Lee JH et al. Electrochemical albumin sensing based on silicon nanowires modified by gold nanoparticles. Applied Surface Science 2011; 257: 4650-4654. doi:10.1016/j.apsusc.2010.12.109
  • 44. Li Z, Liao C, Chen D, Song J, Jin W et al. Label-free detection of bovine serum albumin based on an in-fiber mach-zehnder interferometric biosensor. Optics Express 2017; 25 (15): 17105. doi: 10.1364/oe.25.017105
  • 45. Kaushik S, Tiwari UK, Deep A, Sinha RK. Two-dimensional transition metal dichalcogenides assisted biofunctionalized optical fiber SPR biosensor for efficient and rapid detection of bovine serum albumin. Scientific Reports 2019; 9: 6987. doi: 10.1038/s41598-019-43531-w
  • 46. Wang Y, Wei TX. Surface plasmon resonance sensor chips for the recognition of bovine serum albumin via electropolymerized molecularly imprinted polymers. Chinese Chemical Letters 2013; 24: 813-816. doi: 10.1016/j.cclet.2013.05.004
  • 47. Ghuman J, Zunszain PA, Petitpas I, Bhattacharya AA, Otagiri M et al. Structural basis of the drug-binding specificity of human serum albumin. Journal of Molecular Biology 2005; 353: 38-52.
  • 48. Heuberger J, Schmidt S, Derendorf H. When is protein binding important? Journal of Pharmaceutical Sciences 2013; 9: 3458-3467. doi: 10.1002/jps.23559
  • 49. Kratochwil NA, Huber W, Müller F, Kansy M, Gerber PR. Predicting plasmaprotein binding of drugs: a new approach. Biochemical Pharmacology 2002; 64: 1355-1374. doi: 10.1016/s0006-2952(02)01074-2
  • 50. Naseri A, Hosseini S, Rasoulzadeh F, Rashidi MR, Zakery M et al. Interaction of norfloxacin with bovine serum albumin studied by different spectrometric methods; displacement studies, molecular modeling and chemometrics approaches. Journal of Luminescence 2015; 157: 104- 112. doi: 10.1016/j.jlumin.2014.08.031.
  • 51. Seetharamappa J, Kamat BP. Spectroscopic studies on the mode ofinteraction of an anticancer drug with bovine serum albumin. Chemical and Pharmaceutical Bulletin 2004; 52: 1053-1057. doi: 10.1248/cpb.52.1053
  • 52. Shahabadi N, Maghsudi M, Rouhani S. Study on the interaction of food colourant quinoline yellow with bovine serum albumin by spectroscopic techniques. Food Chemistry 2012; 135: 1836-1841. doi: 10.1016/j.foodchem.2012.06.095
APA ARAZ A (2022). Bovine serum albumin detection by using molecularly imprinted surface plasmon resonance sensors. , 487 - 498. 10.3906/kim-2109-6
Chicago ARAZ Ali Bovine serum albumin detection by using molecularly imprinted surface plasmon resonance sensors. (2022): 487 - 498. 10.3906/kim-2109-6
MLA ARAZ Ali Bovine serum albumin detection by using molecularly imprinted surface plasmon resonance sensors. , 2022, ss.487 - 498. 10.3906/kim-2109-6
AMA ARAZ A Bovine serum albumin detection by using molecularly imprinted surface plasmon resonance sensors. . 2022; 487 - 498. 10.3906/kim-2109-6
Vancouver ARAZ A Bovine serum albumin detection by using molecularly imprinted surface plasmon resonance sensors. . 2022; 487 - 498. 10.3906/kim-2109-6
IEEE ARAZ A "Bovine serum albumin detection by using molecularly imprinted surface plasmon resonance sensors." , ss.487 - 498, 2022. 10.3906/kim-2109-6
ISNAD ARAZ, Ali. "Bovine serum albumin detection by using molecularly imprinted surface plasmon resonance sensors". (2022), 487-498. https://doi.org/10.3906/kim-2109-6
APA ARAZ A (2022). Bovine serum albumin detection by using molecularly imprinted surface plasmon resonance sensors. Turkish Journal of Chemistry, 46(2), 487 - 498. 10.3906/kim-2109-6
Chicago ARAZ Ali Bovine serum albumin detection by using molecularly imprinted surface plasmon resonance sensors. Turkish Journal of Chemistry 46, no.2 (2022): 487 - 498. 10.3906/kim-2109-6
MLA ARAZ Ali Bovine serum albumin detection by using molecularly imprinted surface plasmon resonance sensors. Turkish Journal of Chemistry, vol.46, no.2, 2022, ss.487 - 498. 10.3906/kim-2109-6
AMA ARAZ A Bovine serum albumin detection by using molecularly imprinted surface plasmon resonance sensors. Turkish Journal of Chemistry. 2022; 46(2): 487 - 498. 10.3906/kim-2109-6
Vancouver ARAZ A Bovine serum albumin detection by using molecularly imprinted surface plasmon resonance sensors. Turkish Journal of Chemistry. 2022; 46(2): 487 - 498. 10.3906/kim-2109-6
IEEE ARAZ A "Bovine serum albumin detection by using molecularly imprinted surface plasmon resonance sensors." Turkish Journal of Chemistry, 46, ss.487 - 498, 2022. 10.3906/kim-2109-6
ISNAD ARAZ, Ali. "Bovine serum albumin detection by using molecularly imprinted surface plasmon resonance sensors". Turkish Journal of Chemistry 46/2 (2022), 487-498. https://doi.org/10.3906/kim-2109-6