Yıl: 2022 Cilt: 44 Sayı: 2 Sayfa Aralığı: 148 - 155 Metin Dili: İngilizce DOI: 10.14744/etd.2021.73920 İndeks Tarihi: 05-07-2022

A Comparison of Automated Segmentation and Manual Tracing of Magnetic Resonance Imaging to Quantify Lateral Ventricle Volumes

Öz:
Objective: Ventricular volume measurements have been proposed as a useful biomarker for several neurological diseases. The goal of this study was to compare the performance of 3 fully-automated tools, volBrain (http://volbrain.upv.es), ALVIN (Automatic Lateral Ventricle Delineation) (https://sites.google.com/site/mrilateralventricle/), and MRICloud (http://mricloud.org), with expert hand tracing to quantify lateral ventricle (LV) volume using magnetic resonance images. Materials and Methods: The sample comprised 24 healthy subjects (age: 25.1±5.7 years, all male). Volumes derived from each automated measurement were compared to hand tracing results performed by 2 specialists to assess the percent volume difference using the intraclass correlation coefficient (ICC), concordance correlation coefficient (CCC), Dice index value, and Bland-Altman analysis. Results: The ICC agreement of the Manual_1 and Manual_2 was very good (0.979), and there was no statistically significant difference (p>0.001). The volume difference of all methods was similar. The CCC with MRICloud and ALVIN was higher than that of volBrain. Bland-Altman plots indicated that the 3 automated methods demonstrated acceptable agreement. Conclusion: Compared with hand tracing, the LV volumes generated by MRICloud were more accurate than those of volBrain and ALVIN. LV volume values can provide valuable data related to the volumetric dependencies of the anatomical structures in various clinical conditions that can now be easily obtained using automated tools.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Milovanović N, Damjanović A, Puškaš L, Milovanović S, Barišić J, Mališ M, et al. Reliability of the bicaudate parameter in the revealing of the enlarged lateral Ventricles in schizophrenia patients. Psychiatr Danub 2018; 30(2): 150–6.
  • 2. Zidan M, Boban J, Bjelan M, Todorović A, Stankov Vujanić T, Semnic M, et al. Thalamic volume loss as an early sign of amnestic mild cognitive impairment. J Clin Neurosci 2019; 68: 168–73.
  • 3. Ertekin T, Acer N, Köseoğlu E, Zararsız G, Sönmez A, Gümüş K, et al. Total intracranial and lateral ventricle volumes measurement in Alzheimer’s disease: A methodological study. J Clin Neurosci 2016; 34: 133–9.
  • 4. Kocaman H, Acer N, Köseoğlu E, Gültekin M, Dönmez H. Evaluation of intracerebral ventricles volume of patients with Parkinson’s disease using the atlas-based method: A methodological study. J Chem Neuroanat 2019; 98: 124–30.
  • 5. Doring TM, Kubo TT, Cruz LC Jr, Juruena MF, Fainberg J, Domingues RC, et al. Evaluation of hippocampal volume based on MR imaging in patients with bipolar affective disorder applying manual and automatic segmentation techniques. J Magn Reson Imaging 2011; 33(3): 565–72.
  • 6. Hedderich DM, Spiro JE, Goldhardt O, Kaesmacher J, Wiestler B, Yakushev I, et al. Increasing diagnostic accuracy of mild cognitive impairment due to Alzheimer’s disease by user-independent, web-based whole-brain volumetry. J Alzheimers Dis 2018; 65(4): 1459–67.
  • 7. Palancı Ö, Kalaycıoğlu A, Acer N, Eyüpoğlu İ, Çakmak V. Volume calculation of brain structures in migraine disease by using mristudio. NeuroQuantology 2018; 16(10): 8–13.
  • 8. Sánchez-Benavides G, Gómez-Ansón B, Sainz A, Vives Y, Delfino M, Peña-Casanova J. Manual validation of FreeSurfer’s automated hippocampal segmentation in normal aging, mild cognitive impairment, and Alzheimer disease subjects. Psychiatry Res 2010; 181(3): 219–25.
  • 9. Kim JH, Choi DS, Kim S, Shin HS, Seo H, Choi HC, et al. Evaluation of hippocampal volume based on various inversion time in normal adults by manual tracing and automated segmentation methods. Investigative Magnetic Resonance Imaging 2015; 19(2): 67–75.
  • 10. Manjon JV, Coupe P. volBrain: An online MRI brain volumetry system. Front Neuroinform 2016; 10: 30.
  • 11. Næss-Schmidt E, Tietze A, Blicher JU, Petersen M, Mikkelsen IK, Coupé P, et al. Automatic thalamus and hippocampus segmentation from MP2RAGE: comparison of publicly available methods and implications for DTI quantification. Int J Comput Assist Radiol Surg 2016; 11(11): 1979–91.
  • 12. Coupé P, Manjón JV, Fonov V, Pruessner J, Robles M, Collins DL. Patch-based segmentation using expert priors: application to hip- pocampus and ventricle segmentation. Neuroimage 2011; 54(2): 940–54.
  • 13. Kempton MJ, Underwood TS, Brunton S, Stylios F, Schmechtig A, Ettinger U, et al. A comprehensive testing protocol for MRI neuroanatomical segmentation techniques: Evaluation of a novel lateral ventricle segmentation method. Neuroimage 20115; 58(4): 1051–9.
  • 14. Hannoun S, Tutunji R, El Homsi M, Saaybi S, Hourani R. Automatic thalamus segmentation on unenhanced 3D T1 weighted images: Comparison of publicly available segmentation methods in a pediatric population. Neuroinformatics 2019; 17(3): 443–50.
  • 15. Acer N, Unur E, Sönmez M, Zararsiz G, Arslan A, Sagiroglu A, et al. Characterization of tympanic cavity volume in newborns using computerized tomography scanning. Int J Morphology 2016; 34(1): 189–96.
  • 16. Igual L, Soliva JC, Hernández-Vela A, Escalera S, Jiménez X, Vilarroya O, et al. A fully-automatic caudate nucleus segmentation of brain MRI: application in volumetric analysis of pediatric attention-deficit/hyperactivity disorder. Biomed Eng Online 2011; 10: 105.
  • 17. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. FSL. Neuroimage 2012; 62(2): 782–90.
  • 18. Cox RW. AFNI: what a long strange trip it’s been. Neuroimage 2012; 62(2): 743–7.
  • 19. Goebel R. BrainVoyager--past, present, future. Neuroimage 2012; 62(2): 748–56.
  • 20. Ashburner J. SPM: a history. Neuroimage 2012; 62(2): 791–800.
  • 21. Fischl B. FreeSurfer. Neuroimage 2012; 62(2): 774–81.
  • 22. Öz F, Acer N, Katayıfçı N, Aytaç G, Karaali K, Sindel M. The role of lateralisation and sex on insular cortex: 3D volumetric analysis. Turk J Med Sci 2021; 51(3): 1240–8.
  • 23. Guenette JP, Stern RA, Tripodis Y, Chua AS, Schultz V, Sydnor VJ, et al. Automated versus manual segmentation of brain region volumes in former football players. Neuroimage Clin 2018; 18: 888–96.
  • 24. Wang Y, Xu Q, Luo J, Hu M, Zuo C. Effects of age and sex on subcortical volumes. Front Aging Neurosci 2019; 11: 259.
  • 25. Bhalla M, Mahmood H. Assessing accuracy of automated segmentation methods for brain lateral ventricles in MRI data. Queen’s Scien Undergraduate Res J 2015; 1(1): 25–30.
  • 26. Soysal H, Acer N, Özdemir M, Eraslan Ö. Volumetric measurements of the subcortical structures of healthy adult brains in the Turkish population. Folia Morphol (Warsz). 2021 Mar 29. doi: 10.5603/ FM.a2021.0033. [Epub ahead of print]
  • 27. Kassubek J, Pinkhardt EH, Dietmaier A, Ludolph AC, Landwehrmeyer GB, Huppertz HJ. Fully automated atlas-based MR imaging volumetry in Huntington disease, compared with manual volumetry. AJNR Am J Neuroradiol 2011; 32(7): 1328–32.
  • 28. Rezende TJR, Campos BM, Hsu J, Li Y, Ceritoglu C, Kutten K, et al. Test-retest reproducibility of a multi-atlas automated segmentation tool on multimodality brain MRI. Brain Behav 2019; 9(10): e01363.
  • 29. Vojinovic D, Adams HH, Jian X, Yang Q, Smith AV, Bis JC, et al. Genome-wide association study of 23,500 individuals identifies 7 loci associated with brain ventricular volume. Nat Commun 2018; 9(1): 3945.
  • 30. Bartos A, Gregus D, Ibrahim I, Tintěra J. Brain volumes and their ratios in Alzheimer´s disease on magnetic resonance imaging segmented using Freesurfer 6.0. Psychiatry Res Neuroimaging 2019; 287: 70–4.
APA ACER N, Kamaşak Arpaçay B, Karapınar B, akkus yetkin e, IPEKTEN F, Bastepe-Gray S, Değirmencioğlu L, Ilica A (2022). A Comparison of Automated Segmentation and Manual Tracing of Magnetic Resonance Imaging to Quantify Lateral Ventricle Volumes. , 148 - 155. 10.14744/etd.2021.73920
Chicago ACER Niyazi,Kamaşak Arpaçay BURCU,Karapınar Burak Oğuzhan,akkus yetkin esra,IPEKTEN Funda,Bastepe-Gray Serap,Değirmencioğlu Levent,Ilica A. Turan A Comparison of Automated Segmentation and Manual Tracing of Magnetic Resonance Imaging to Quantify Lateral Ventricle Volumes. (2022): 148 - 155. 10.14744/etd.2021.73920
MLA ACER Niyazi,Kamaşak Arpaçay BURCU,Karapınar Burak Oğuzhan,akkus yetkin esra,IPEKTEN Funda,Bastepe-Gray Serap,Değirmencioğlu Levent,Ilica A. Turan A Comparison of Automated Segmentation and Manual Tracing of Magnetic Resonance Imaging to Quantify Lateral Ventricle Volumes. , 2022, ss.148 - 155. 10.14744/etd.2021.73920
AMA ACER N,Kamaşak Arpaçay B,Karapınar B,akkus yetkin e,IPEKTEN F,Bastepe-Gray S,Değirmencioğlu L,Ilica A A Comparison of Automated Segmentation and Manual Tracing of Magnetic Resonance Imaging to Quantify Lateral Ventricle Volumes. . 2022; 148 - 155. 10.14744/etd.2021.73920
Vancouver ACER N,Kamaşak Arpaçay B,Karapınar B,akkus yetkin e,IPEKTEN F,Bastepe-Gray S,Değirmencioğlu L,Ilica A A Comparison of Automated Segmentation and Manual Tracing of Magnetic Resonance Imaging to Quantify Lateral Ventricle Volumes. . 2022; 148 - 155. 10.14744/etd.2021.73920
IEEE ACER N,Kamaşak Arpaçay B,Karapınar B,akkus yetkin e,IPEKTEN F,Bastepe-Gray S,Değirmencioğlu L,Ilica A "A Comparison of Automated Segmentation and Manual Tracing of Magnetic Resonance Imaging to Quantify Lateral Ventricle Volumes." , ss.148 - 155, 2022. 10.14744/etd.2021.73920
ISNAD ACER, Niyazi vd. "A Comparison of Automated Segmentation and Manual Tracing of Magnetic Resonance Imaging to Quantify Lateral Ventricle Volumes". (2022), 148-155. https://doi.org/10.14744/etd.2021.73920
APA ACER N, Kamaşak Arpaçay B, Karapınar B, akkus yetkin e, IPEKTEN F, Bastepe-Gray S, Değirmencioğlu L, Ilica A (2022). A Comparison of Automated Segmentation and Manual Tracing of Magnetic Resonance Imaging to Quantify Lateral Ventricle Volumes. Erciyes Medical Journal, 44(2), 148 - 155. 10.14744/etd.2021.73920
Chicago ACER Niyazi,Kamaşak Arpaçay BURCU,Karapınar Burak Oğuzhan,akkus yetkin esra,IPEKTEN Funda,Bastepe-Gray Serap,Değirmencioğlu Levent,Ilica A. Turan A Comparison of Automated Segmentation and Manual Tracing of Magnetic Resonance Imaging to Quantify Lateral Ventricle Volumes. Erciyes Medical Journal 44, no.2 (2022): 148 - 155. 10.14744/etd.2021.73920
MLA ACER Niyazi,Kamaşak Arpaçay BURCU,Karapınar Burak Oğuzhan,akkus yetkin esra,IPEKTEN Funda,Bastepe-Gray Serap,Değirmencioğlu Levent,Ilica A. Turan A Comparison of Automated Segmentation and Manual Tracing of Magnetic Resonance Imaging to Quantify Lateral Ventricle Volumes. Erciyes Medical Journal, vol.44, no.2, 2022, ss.148 - 155. 10.14744/etd.2021.73920
AMA ACER N,Kamaşak Arpaçay B,Karapınar B,akkus yetkin e,IPEKTEN F,Bastepe-Gray S,Değirmencioğlu L,Ilica A A Comparison of Automated Segmentation and Manual Tracing of Magnetic Resonance Imaging to Quantify Lateral Ventricle Volumes. Erciyes Medical Journal. 2022; 44(2): 148 - 155. 10.14744/etd.2021.73920
Vancouver ACER N,Kamaşak Arpaçay B,Karapınar B,akkus yetkin e,IPEKTEN F,Bastepe-Gray S,Değirmencioğlu L,Ilica A A Comparison of Automated Segmentation and Manual Tracing of Magnetic Resonance Imaging to Quantify Lateral Ventricle Volumes. Erciyes Medical Journal. 2022; 44(2): 148 - 155. 10.14744/etd.2021.73920
IEEE ACER N,Kamaşak Arpaçay B,Karapınar B,akkus yetkin e,IPEKTEN F,Bastepe-Gray S,Değirmencioğlu L,Ilica A "A Comparison of Automated Segmentation and Manual Tracing of Magnetic Resonance Imaging to Quantify Lateral Ventricle Volumes." Erciyes Medical Journal, 44, ss.148 - 155, 2022. 10.14744/etd.2021.73920
ISNAD ACER, Niyazi vd. "A Comparison of Automated Segmentation and Manual Tracing of Magnetic Resonance Imaging to Quantify Lateral Ventricle Volumes". Erciyes Medical Journal 44/2 (2022), 148-155. https://doi.org/10.14744/etd.2021.73920