Yıl: 2022 Cilt: 6 Sayı: 2 Sayfa Aralığı: 142 - 149 Metin Dili: İngilizce DOI: 10.14744/ejmo.2022.43656 İndeks Tarihi: 06-07-2022

Structure-Based Molecular Docking Studies toward Exploring Phytoestrogen against Breast Cancer

Öz:
Objectives: Breast cancer (BCa) remains the world’s second biggest cause of cancer death. This occurs as a result of unregulated cell development and can be metastasized to other parts of the human. Estrogen receptor alpha is the renowned target that has piqued the interest of researchers to target BCa. FlexX molecular docking technique was used to predict the aspects of interaction, affinities energy, and orientation of natural compounds in the protein site. Phytoconstituents have a vital role in anticancer activities due to their important scaffolds, which may offer more effective and reduced costs and side effects than synthetic drugs. The present study aims to identify new anticancer agents from natural and dietary compounds with lesser adverse effects. Methods: To accomplish this, we implemented with the help of molecular docking approaches using FlexX for predicting the features of bioactive phytocompounds from natural products and evaluating targeted binding affinity energy. Results: Our results confirm that among various natural compounds, daidzein has the best docking score in the ten compounds compared with the standard drug cytarabine. Conclusion: Our study suggests that daidzein is a potent ligand for ERα BCa among all and can be further investigated through in vitro and in vivo studies.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin 2022;72:7–33. [CrossRef]
  • 2. Chimento A, De Luca A, Avena P, De Amicis F, Casaburi I, Sirianni R, et al. Estrogen receptors-mediated apoptosis in hormone-dependent cancers. Int J Mol Sci 2022;23:1242.
  • 3. Maruthanila VL, Elancheran R, Kunnumakkara AB, Kabilan S, Kotoky J. Recent development of targeted approaches for the treatment of breast cancer. Breast Cancer 2017;24:191–219.
  • 4. Malik JA, Ahmed S, Jan B, Bender O, Al Hagbani T, Alqarni A, et al. Drugs repurposed: An advanced step towards the treatment of breast cancer and associated challenges. Biomed Pharmacother 2022;145:112375. [CrossRef]
  • 5. Palesh O, Scheiber C, Kesler S, Mustian K, Koopman C, Schapira L. Management of side effects during and post treatment in breast cancer survivors. Breast J 2018;24:167–75. [CrossRef]
  • 6. Wang H, Oo Khor T, Shu L, Su ZY, Fuentes F, Lee JH, et al. Plants vs. cancer: a review on natural phytochemicals in preventing and treating cancers and their druggability. Anti-Cancer Agents Med Chem 2012;12:1281–305. [CrossRef]
  • 7. Mushtaq S, Abbasi BH, Uzair B, Abbasi R. Natural products as reservoirs of novel therapeutic agents. EXCLI J 2018;17:420.
  • 8. V L M, Ramakrishnan E, Sankaran M. Carica papaya in cancer prevention: an overview. Mini Rev Med Chem 2021;21:3097– 112. [CrossRef]
  • 9. Rezaei-Seresht H, Cheshomi H, Falanji F, Movahedi-Motlagh F, Hashemian M, Mireskandari E. Cytotoxic activity of caffeic acid and gallic acid against MCF-7 human breast cancer cells: An in silico and in vitro study. Avicenna J Phytomed 2019;9:574–86.
  • 10. Maruthanila VL, Elancheran R, Kunnumakkar AB, Kabilan S, Kotoky J. Pleiotropic effect of mahanine and girinimbine analogs: anticancer mechanism and its therapeutic versatility. Anticancer Agents Med Chem 2018;18:1983–90. [CrossRef]
  • 11. Wang J, Fang F, Huang Z, Wang Y, Wong C. Kaempferol is an estrogen-related receptor alpha and gamma inverse agonist. FEBS Lett 2009;583:643–7. [CrossRef]
  • 12. Liu L, Ma H, Tang Y, Chen W, Lu Y, Guo J, et al. Discovery of estrogen receptor alpha modulators from natural compounds in SiWu-Tang series decoctions using estrogen-responsive MCF-7 breast cancer cells. Bioorg Med Chem Lett 2012;22:154–63.
  • 13. Montalesi E, Cipolletti M, Cracco P, Fiocchetti M, Marino M. Divergent effects of daidzein and its metabolites on estrogen-induced survival of breast cancer cells. Cancers (Basel) 2020;12:167. [CrossRef]
  • 14. Izhaki I. Emodin a secondary metabolite with multiple ecological functions in higher plants. New Phytol 2002;155:205–17.
  • 15. Chen J, Zhu Y, Zhang W, Peng X, Zhou J, Li F, et al. Delphinidin induced protective autophagy via mTOR pathway suppression and AMPK pathway activation in HER-2 positive breast cancer cells. BMC Cancer 2018;18:342. [CrossRef]
  • 16. Tang J, Oroudjev E, Wilson L, Ayoub G. Delphinidin and cyanidin exhibit antiproliferative and apoptotic effects in MCF7 human breast cancer cells. Integr Cancer Sci Ther 2015;2:82–6.
  • 17. Yan X, Qi M, Li P, Zhan Y, Shao H. Apigenin in cancer therapy: anti-cancer effects and mechanisms of action. Cell Biosci 2017;7:50.
  • 18. Liao XZ, Gao Y, Zhao HW, Zhou M, Chen DL, Tao LT, et al. Cordycepin reverses cisplatin resistance in non-small cell lung cancer by activating AMPK and inhibiting AKT signaling pathway. Front Cell Dev Biol 2021;8:1640.
  • 19. Li HB, Chen JK, Su ZX, Jin QL, Deng LW, Huang G, et al. Cordycepin augments the chemosensitivity of osteosarcoma to cisplatin by activating AMPK and suppressing the AKT signaling pathway. Cancer Cell Int 2021;21:706. [CrossRef]
  • 20. Ciska E, Honke J, Drabińska N. Changes in glucosinolates and their breakdown products during the fermentation of cabbage and prolonged storage of sauerkraut: Focus on sauerkraut juice. Food Chem 2021;365:130498. [CrossRef]
  • 21. Yu C, Zhang P, Lou L, Wang Y. Perspectives regarding the role of biochanin A in humans. Front Pharmacol 2019;10:793.
  • 22. Balam FH, Ahmadi ZS, Ghorbani A. Inhibitory effect of chrysin on estrogen biosynthesis by suppression of enzyme aromatase (CYP19): A systematic review. Heliyon 2020;6:e03557.
  • 23. Huang C, Lu HF, Chen YH, Chen JC, Chou WH, Huang HC. Curcumin, demethoxycurcumin, and bisdemethoxycurcumin induced caspase-dependent and -independent apoptosis via Smad or Akt signaling pathways in HOS cells. BMC Complement Med Ther 2020;20:68. [CrossRef]
  • 24. Hatamipour M, Ramezani M, Tabassi SAS, Johnston TP, Sahebkar A. Demethoxycurcumin: A naturally occurring curcumin analogue for treating non-cancerous diseases. J Cell Physiol 2019;234:19320–30.
  • 25. Fajardo-Orduña GR, Ledesma-Martínez E, Aguiñiga-Sánchez I, Mora-García MDL, Weiss-Steider B, Santiago-Osorio E. Inhibitors of chemoresistance pathways in combination with Ara-C to overcome multidrug resistance in AML. A mini review. Int J Mol Sci 2021;22:4955. [CrossRef]
  • 26. Rarey M, Kramer B, Lengauer T, Klebe G. A fast flexible docking method using an incremental construction algorithm. J Mol Biol 1996;261:470–89. [CrossRef]
  • 27. Fan YC, Hsu KC, Lin TE, Zechner D, Hsu SP, Tsai YC. Investigation of anti-tumor effects of an MLK1 inhibitor in prostate and pancreatic cancers. Biology 2021;10:742.
  • 28. Kramer B, Rarey M, Lengauer T. Evaluation of the FLEXX incremental construction algorithm for protein-ligand docking. Proteins: Structure, Function, and Bioinformatics 1999;37:228– 41. [CrossRef]
  • 29. Zhang N, Wang J, Sheng A, Huang S, Tang Y, Ma S, et al. Emodin Inhibits the proliferation of MCF-7 human breast cancer cells through activation of aryl hydrocarbon receptor (AhR). Front Pharmacol 2021;11:622046. [CrossRef]
  • 30. Akkol EK, Tatlı II, Karatoprak GŞ, Ağar OT, Yücel Ç, SobarzoSánchez E, et al. Is emodin with anticancer effects completely innocent? Two sides of the coin. Cancers 2021;13:2733.
  • 31. Ku CW, Ho TJ, Huang CY, Chu PM, Ou HC, Hsieh PL. Cordycepin attenuates palmitic acid-induced inflammation and apoptosis of vascular endothelial cells through mediating PI3K/Akt/ eNOS signaling pathway. Am J Chin Med 2021;49:1703–22.
  • 32. Radhi M, Ashraf S, Lawrence S, Tranholm AA, Wellham PAD, Hafeez A, et al. A systematic review of the biological effects of cordycepin. Molecules 2021;26:5886. [CrossRef]
  • 33. Soltani M, Malek RA, Elmarzugi NA, Mahomoodally MF, Uy D, Leng OM, et al. Cordycepin: A biotherapeutic molecule from medicinal mushroom. In Biology of macrofungi 2018;319–49.
  • 34. Wu X, Huang H, Childs H, Wu Y, Yu L, Pehrsson PR. Glucosinolates in Brassica vegetables: Characterization and factors that influence distribution, content, and intake. Annu Rev Food Sci Technol 2021;12:485–511. [CrossRef]
  • 35. Wagner AE, Rimbach G. Ascorbigen: chemistry, occurrence, and biologic properties. Clin Dermatol 2009;27:217–24.
  • 36. Liao AM, Cai B, Huang JH, Hui M, Lee KK, Lee KY, et al. Synthesis, anticancer activity and potential application of diosgenin modified cancer chemotherapeutic agent cytarabine. Food Chem Toxicol 2021;148:111920. [CrossRef]
APA LENIN M, Sankar M, Ramakrishnan E (2022). Structure-Based Molecular Docking Studies toward Exploring Phytoestrogen against Breast Cancer. , 142 - 149. 10.14744/ejmo.2022.43656
Chicago LENIN MARUTHANILA V.L,Sankar Mirunalini,Ramakrishnan Elancheran Structure-Based Molecular Docking Studies toward Exploring Phytoestrogen against Breast Cancer. (2022): 142 - 149. 10.14744/ejmo.2022.43656
MLA LENIN MARUTHANILA V.L,Sankar Mirunalini,Ramakrishnan Elancheran Structure-Based Molecular Docking Studies toward Exploring Phytoestrogen against Breast Cancer. , 2022, ss.142 - 149. 10.14744/ejmo.2022.43656
AMA LENIN M,Sankar M,Ramakrishnan E Structure-Based Molecular Docking Studies toward Exploring Phytoestrogen against Breast Cancer. . 2022; 142 - 149. 10.14744/ejmo.2022.43656
Vancouver LENIN M,Sankar M,Ramakrishnan E Structure-Based Molecular Docking Studies toward Exploring Phytoestrogen against Breast Cancer. . 2022; 142 - 149. 10.14744/ejmo.2022.43656
IEEE LENIN M,Sankar M,Ramakrishnan E "Structure-Based Molecular Docking Studies toward Exploring Phytoestrogen against Breast Cancer." , ss.142 - 149, 2022. 10.14744/ejmo.2022.43656
ISNAD LENIN, MARUTHANILA V.L vd. "Structure-Based Molecular Docking Studies toward Exploring Phytoestrogen against Breast Cancer". (2022), 142-149. https://doi.org/10.14744/ejmo.2022.43656
APA LENIN M, Sankar M, Ramakrishnan E (2022). Structure-Based Molecular Docking Studies toward Exploring Phytoestrogen against Breast Cancer. Eurasian Journal of Medicine and Oncology, 6(2), 142 - 149. 10.14744/ejmo.2022.43656
Chicago LENIN MARUTHANILA V.L,Sankar Mirunalini,Ramakrishnan Elancheran Structure-Based Molecular Docking Studies toward Exploring Phytoestrogen against Breast Cancer. Eurasian Journal of Medicine and Oncology 6, no.2 (2022): 142 - 149. 10.14744/ejmo.2022.43656
MLA LENIN MARUTHANILA V.L,Sankar Mirunalini,Ramakrishnan Elancheran Structure-Based Molecular Docking Studies toward Exploring Phytoestrogen against Breast Cancer. Eurasian Journal of Medicine and Oncology, vol.6, no.2, 2022, ss.142 - 149. 10.14744/ejmo.2022.43656
AMA LENIN M,Sankar M,Ramakrishnan E Structure-Based Molecular Docking Studies toward Exploring Phytoestrogen against Breast Cancer. Eurasian Journal of Medicine and Oncology. 2022; 6(2): 142 - 149. 10.14744/ejmo.2022.43656
Vancouver LENIN M,Sankar M,Ramakrishnan E Structure-Based Molecular Docking Studies toward Exploring Phytoestrogen against Breast Cancer. Eurasian Journal of Medicine and Oncology. 2022; 6(2): 142 - 149. 10.14744/ejmo.2022.43656
IEEE LENIN M,Sankar M,Ramakrishnan E "Structure-Based Molecular Docking Studies toward Exploring Phytoestrogen against Breast Cancer." Eurasian Journal of Medicine and Oncology, 6, ss.142 - 149, 2022. 10.14744/ejmo.2022.43656
ISNAD LENIN, MARUTHANILA V.L vd. "Structure-Based Molecular Docking Studies toward Exploring Phytoestrogen against Breast Cancer". Eurasian Journal of Medicine and Oncology 6/2 (2022), 142-149. https://doi.org/10.14744/ejmo.2022.43656