Yıl: 2020 Cilt: 44 Sayı: 3 Sayfa Aralığı: 157 - 167 Metin Dili: İngilizce DOI: 10.3906/biy-2005-111 İndeks Tarihi: 06-07-2022

An updated analysis of variations in SARS-CoV-2 genome

Öz:
A novel pathogen, named SARS-CoV-2, has caused an unprecedented worldwide pandemic in the first half of 2020. As the SARS-CoV-2 genome sequences have become available, one of the important focus of scientists has become tracking variations in the viral genome. In this study, 30366 SARS-CoV-2 isolate genomes were aligned using the software developed by our group (ODOTool) and 11 variations in SARS-CoV-2 genome over 10% of whole isolates were discussed. Results indicated that, frequency rates of these 11 variations change between 3.56%–88.44 % and these rates differ greatly depending on the continents they have been reported. Despite some variations being in low frequency rate in some continents, C14408T and A23403G variations on Nsp12 and S protein, respectively, observed to be the most prominent variations all over the world, in general, and both cause missense mutations. It is also notable that most of isolates carry C14408T and A23403 variations simultaneously and also nearly all isolates carrying the G25563T variation on ORF3a, also carry C14408T and A23403 variations, although their location distributions are not similar. All these data should be considered towards development of vaccine and antiviral treatment strategies as well as tracing diversity of virus in all over the world.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Angelini MM, Akhlaghpour M, Neuman BW, Buchmeier MJ (2013). Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles. mBio 4 (4): e00524-13. doi:10.1128/mBio.00524-13
  • Azhar EI, El-Kafrawy SA, Farraj SA, Hassan AM, Al-Saeed MS et al. (2014). Evidence for camel-to-human transmission of MERS coronavirus. New England Journal of Medicine 370 (26): 2499- 2505.
  • Bardou P, Mariette J, Escudié F, Djemiel C, Klopp C (2014). jvenn: an interactive Venn diagram viewer. BMC Bioinformatics 15 (1): 293.
  • Belalov IS, Lukashev AN (2013). Causes and implications of codon usage bias in RNA viruses. PLoS One 8 (2): e56642. doi: 10.1371/journal.pone.0056642
  • Brian DA, Baric RS (2005). Coronavirus Genome Structure and Replication. In: Enjuanes L. (editor) Coronavirus Replication and Reverse Genetics. Current Topics in Microbiology and Immunology, vol 287. Berlin, Heidelberg; Springer.
  • Briguglio I, Piras S, Corona P, Carta A (2011). Inhibition of RNA Helicases of SsRNA + Virus Belonging to Flaviviridae, Coronaviridae and Picornaviridae Families. International Journal of Medicinal Chemistry 2011: 1–22. doi: 10.1155/2011/213135
  • Bulmer M (1987). Coevolution of codon usage and transfer RNA abundance. Nature 325 (6106): 728-730.
  • Chen Y, Liu Q, Guo D (2020). Emerging coronaviruses: genome structure, replication, and pathogenesis. Journal of Medical Virology 92 (4): 418-423. doi: 10.1002/jmv.25681
  • Cheng VC, Lau SK, Woo PC, Yuen KY (2007). Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clinical Microbiology Reviews 20 (4): 660-694.
  • Chew SK (2007). SARS: how a global epidemic was stopped. Bulletin of the World Health Organization 85 (4): 324. doi: 10.2471/ BLT.07.032763
  • Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ et al. (2009). Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25 (11): 1422-1423.
  • Cui J, Li F, Shi ZL (2019). Origin and evolution of pathogenic coronaviruses. Nature reviews Microbiology 17 (3): 181-192.
  • de Groot RJ, Baker SC, Baric RS, Brown CS, Drosten C et al. (2013). Commentary: Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group. Journal of Virology 87 (14): 7790-7792.
  • De Lorenzo G, Drikic M, Papa G, Eichwald C, Burrone OR et al. (2016). An inhibitory motif on the 5’UTR of several rotavirus genome segments affects protein expression and reverse genetics strategies. PLoSOne 11 (11): e0166719. doi:10.1371/ journal.pone.0166719
  • Duncan BK, Miller JH (1980). Mutagenic deamination of cytosine residues in DNA. Nature 287, 560–561.
  • Elbe S, Buckland-Merrett G (2017). Data, disease and diplomacy: GISAID’s innovative contribution to global health. Globobal Challenges 1 (1): 33–46. doi: 10.1002/gch2.1018
  • Fang S, Chen B, Tay FPL, Ng BS, Liu DX (2007). An arginine-toproline mutation in a domain with undefined functions within the helicase protein (nsp13) is lethal to the coronavirus infectious bronchitis virus in cultured cells. Virology 358 (1): 136–147. doi: 10.1016/j.virol.2006.08.020
  • Frick D, Lam A (2006). Understanding helicases as a means of virus control. Current Pharmaceutical Design 12 (11): 1315–1338. doi: 10.2174/138161206776361147
  • Gadlage MJ, Graham RL, Denison MR (2008). Murine coronaviruses encoding nsp2 at different genomic loci have altered replication, protein expression, and localization. Journal of Virology 82 (23): 11964-11969. doi: 10.1128/JVI.01126-07
  • Gallagher TM, Buchmeier MJ (2001). Coronavirus spike proteins in viral entry and pathogenesis. Virology 279 (2): 371–374. doi: 10.1006/viro.2000.0757
  • Ge XY, Li JL, Yang XL, Chmura AA, Zhu G et al. (2013). Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503 (7477): 535-538.
  • Gorbalenya AE, Baker SC, Baric RS (2020). The species Severe acute respiratory syndrome-related coronavirus: classifying 2019- nCoV and naming it SARS-CoV-2. Nature Microbiology 5: 536–544. doi: 10.1038/s41564-020-0695-z
  • Gorbalenya AE, Enjuanes L, Ziebuhr J, Snijder EJ. (2006). Nidovirales: evolving the largest RNA virus genome. Virus Research 117 (1): 17‐37. doi: 10.1016/j.virusres.2006.01.017
  • Graham RL, Sims AC, Brockway SM, Baric RS, Denison MR (2005). The nsp2 replicase proteins of murine hepatitis virus and severe acute respiratory syndrome coronavirus are dispensable for viral replication. Journal of Virology 79 (21): 13399-13411.
  • Guan Y, Zheng BJ, He YQ, Liu XL, Zhuang ZX et al. (2003). Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302 (5643): 276-278.
  • Hadfield J, Megill C, Bell MS, Huddleston J, Potter B et al. (2018). Nextstrain: real-time tracking of pathogen evolution. Bioinformatics 34 (23): 4121–4123. doi: 10.1093/ bioinformatics/bty407
  • Issa E, Merhi G, Panossian B, Salloum T, Tokajian S (2020). SARSCoV-2 and ORF3a: nonsynonymous mutations, functional domains, and viral pathogenesis. Msystems 5 (3). doi: 10.1128/ mSystems.00266-20
  • Jang KJ, Lee NR, Yeo WS, Jeong YJ et al. (2008). Isolation of Inhibitory RNA Aptamers against Severe Acute Respiratory Syndrome (SARS) Coronavirus NTPase/Helicase. Biochemical and Biophysical Research Communications 366 (3): 738–744. doi: 10.1016/j.bbrc.2007.12.020
  • Kang S, Yang M, Hong Z, Zhang L, Huang Z et al. (2020). Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharmaceutica Sinica B. doi: 10.1016/j.apsb.2020.04.009
  • Katoh K, Rozewicki J, Yamada KD (2017). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20 (4): 1160–1166. doi: 10.1093/bib/bbx108
  • Kimura M (1977). Preponderance of synonymous changes as evidence for the neutral theory of molecular evolution. Nature 267 (5608): 275‐276. doi:10.1038/267275a0
  • Kiyotani K, Toyoshima Y, Nemoto K, Nakamura Y (2020). Bioinformatic prediction of potential T cell epitopes for SARSCov-2. Journal of Human Genetics 65: 569-575. doi: 10.1038/ s10038-020-0771-5
  • Kocherhans R, Bridgen A, Ackermann M, Tobler K. (2001). Completion of the porcine epidemic diarrhoea coronavirus (PEDV) genome sequence. Virus Genes 23 (2): 137‐144. doi: 10.1023/a:1011831902219
  • Kuraku S, Zmasek CM, Nishimura O, Katoh K (2013). Facilitates ondemand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. Nucleic Acids Research 41 (W1): W22–W28. doi: 10.1093/nar/gkt389
  • Kwong AD, Rao BG, Jeang KT (2005). Viral and cellular RNA helicases as antiviral targets Nature Reviews Drug Discovery 4 (10): 845–853. doi: 10.1038/nrd1853
  • Lei J, Kusov Y, Hilgenfeld R. (2018). Nsp3 of coronaviruses: Structures and functions of a large multi-domain protein. Antiviral Research 149: 58‐74. doi:10.1016/j.antiviral.2017.11.001
  • Li F (2016). Structure, function, and evolution of coronavirus spike proteins. Annual Review of Virology 3: 237-261.
  • Li W, Moore MJ, Vasilieva N, Sui J, Wong SK et al. (2003). Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426 (6965): 450-454.
  • Li W, Zhang C, Sui J, Kuhn JH, Moore MJ et al. (2005). Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. The EMBO Journal 24 (8): 1634–1643. doi: 10.1038/ sj.emboj.7600640
  • Liu P, Chen W, Chen J-P (2019). Viral metagenomics revealed sendai virus and coronavirus infection of Malayan pangolins (Manis javanica). Viruses 11: 979.
  • Lu W, Xu K, Sun B. (2010) SARS Accessory Proteins ORF3a and 9b and Their Functional Analysis. In: Lal S (editor) Molecular Biology of the SARS-Coronavirus. Berlin, Heidelberg; Springer.
  • Madhugiri R, Fricke M, Marz M, Ziebuhr J. (2016). Coronavirus cis-Acting RNA elements. Advances in Virus Research 96: 127‐163. doi:10.1016/bs.aivir.2016.08.007
  • Ng WC, Soto-Acosta R, Bradrick SS, Garcia-Blanco MA, Ooi EE (2017). The 5’ and 3’ untranslated regions of the Flaviviral Genome. Viruses, 9 (6): 137. doi: 10.3390/v9060137
  • Ou X, Liu Y, Lei X, Li P, Mi D et al. (2020). Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nature Communications 11 (1): 1-12.
  • Pachetti M, Marini B, Benedetti F, Giudici F, Mauro E et al. (2020). Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. Journal of Translational Medicine 18 (1): 179. doi: 10.1186/s12967-020- 02344-6
  • Peabody DS (1989). Translation initiation at non-AUG triplets in mammalian cells. Journal of Biological Chemistry 264 (9): 5031-5035.
  • Peiris JSM, Lai ST, Poon LLM, Guan Y, Yam LYC et al. (2003). Coronavirus as a possible cause of severe acute respiratory syndrome. The Lancet 361 (9366): 1319-1325. doi: 10.1016/ S0140-6736(03)13077-2
  • Perlman S, Netland J (2009). Coronaviruses post-SARS: update on replication and pathogenesis. Nature Reviews Microbiology 7 (6): 439-450.
  • Phan T (2020). Genetic diversity and evolution of SARS-CoV-2. Infection, Genetics and Evolution 81: 104260. doi: 10.1016/j. meegid.2020.104260
  • Pyrc K, Jebbink MF, Berkhout B, van der Hoek L (2004). Genome structure and transcriptional regulation of human coronavirus NL63. Virology Journal 17: 1–7. doi: 10.1186/1743-422X-1-7
  • Raj VS, Mou H, Smits SL, Dekkers DH, Müller MA et al. (2013). Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 495 (7440): 251-254.
  • Sánchez CM, Izeta A, Sánchez-Morgado JM, Alonso S, Sola I et al. (1999). Targeted recombination demonstrates that the spike gene of transmissible gastroenteritis coronavirus is a determinant of its enteric tropism and virulence. Journal of Virology 73 (9): 7607–7618.
  • Sharp PM, Stenico M, Peden JF, Lloyd AT (1993) Codon usage: mutational bias, translational selection, or both? Biochemical Society Transactions 21: 835–841.
  • Shu Y, McCauley J (2017) GISAID: Global initiative on sharing all influenza data – from vision to reality. EuroSurveillance, 22 (13). doi: 10.2807/1560-7917.ES.2017.22.13.30494
  • Silveira Carneiro J, Equestre M, Pagnotti P, Gradi A, Sonenberg N et al. (1995). 5’ UTR of hepatitis A virus RNA: mutations in the 5’- most pyrimidine-rich tract reduce its ability to direct internal initiation of translation. The Journal of General Virology 76 (Pt 5): 1189–1196. doi: 10.1099/0022-1317-76-5-1189
  • Snijder EJ, Decroly E, Ziebuhr J (2016). The Nonstructural Proteins Directing Coronavirus RNA Synthesis and Processing, 1st ed.; Elsevier Inc., 2016; Vol. 96. doi: 10.1016/bs.aivir.2016.08.008.
  • Su S, Wong G, Shi W, Liu J, Lai A et al. (2016). Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends in Microbiology 24 (6): 490–502. doi: 10.1016/j.tim.2016.03.003
  • Tai W, He L, Zhang X, Pu J, Voronin D et al. (2020). Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cellular & Molecular Immunology 17 (6): 613-620. doi: 10.1038/s41423-020-0400-4
  • van Dorp L, Acman M, Richard D, Shaw LP, Ford CE et al. (2020). Emergence of genomic diversity and recurrent mutations in SARS-CoV-2. Infection, Genetics and Evolution 83: 104351. doi: 10.1016/j.meegid.2020.104351
  • Wang C, Liu Z, Chen Z, Huang X, Xu M et al. (2020). The establishment of reference sequence for SARS‐CoV‐2 and variation analysis. Journal of Medical Virology 92 (6): 667-674.
  • Wang Z, Huang JD, Wong KL, Wang PG, Zhang HJ et al. (2011). On the mechanisms of Bananin activity against severe acute respiratory syndrome coronavirus. FEBS 278 (2): 383–389. doi: 10.1111/j.1742-4658.2010.07961.x
  • Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ (2009). Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25 (9): 1189– 1191.
  • Wong SK, Li W, Moore MJ, Choe H, Farzan M (2004). A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. Journal of Biological Chemistry 279 (5): 3197‐3201. doi:10.1074/jbc.C300520200
  • Woo PC, Wong BH, Huang Y, Lau SK, Yuen KY (2007). Cytosine deamination and selection of CpG suppressed clones are the two major independent biological forces that shape codon usage bias in coronaviruses. Virology 369 (2): 431–442. doi: 10.1016/j.virol.2007.08.010
  • Wu A, Peng Y, Huang B, Ding X, Wang X et al. (2020). Genome composition and divergence of the novel coronavirus (2019- nCoV) originating in China. Cell Host & Microbe 27: 325–328. doi: 10.1016/j.chom.2020.02.001
  • Wu C, Liu Y, Yang Y, Zhang P, Zhong W et al. (2020). Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica B. doi: 10.1016/j.apsb.2020.02.008
  • Yang D, Leibowitz JL (2015). The structure and functions of coronavirus genomic 3’ and 5’ ends. Virus Research 206: 120- 133. doi: 10.1016/j.virusres.2015.02.025
  • Yin Y, Wunderink RG (2017). MERS, SARS and other coronaviruses as causes of pneumonia. Respirology 23 (2): 130–137. https:// doi.org/10.1111/resp.13196
  • Zaki AM, Van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA (2012). Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. New England Journal of Medicine 367 (19): 1814-1820.
  • Zhong NS, Zheng BJ, Li YM, Poon LLM, Xie ZH et al. (2003). Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February. The Lancet 362 (9393): 1353 – 1358. doi: 10.1016/S0140- 6736(03)14630-2
  • Zhou Y, Hou Y, Shen J, Huang Y, Martin W et al. (2020). Networkbased drug repurposing for novel coronavirus 2019-nCoV/ SARS-CoV-2. Cell Discovery 6 (1): 1-18.
APA Uğurel O, Ata O, Turgut Balık D (2020). An updated analysis of variations in SARS-CoV-2 genome. , 157 - 167. 10.3906/biy-2005-111
Chicago Uğurel Osman Mutluhan,Ata Oguz,Turgut Balık Dilek An updated analysis of variations in SARS-CoV-2 genome. (2020): 157 - 167. 10.3906/biy-2005-111
MLA Uğurel Osman Mutluhan,Ata Oguz,Turgut Balık Dilek An updated analysis of variations in SARS-CoV-2 genome. , 2020, ss.157 - 167. 10.3906/biy-2005-111
AMA Uğurel O,Ata O,Turgut Balık D An updated analysis of variations in SARS-CoV-2 genome. . 2020; 157 - 167. 10.3906/biy-2005-111
Vancouver Uğurel O,Ata O,Turgut Balık D An updated analysis of variations in SARS-CoV-2 genome. . 2020; 157 - 167. 10.3906/biy-2005-111
IEEE Uğurel O,Ata O,Turgut Balık D "An updated analysis of variations in SARS-CoV-2 genome." , ss.157 - 167, 2020. 10.3906/biy-2005-111
ISNAD Uğurel, Osman Mutluhan vd. "An updated analysis of variations in SARS-CoV-2 genome". (2020), 157-167. https://doi.org/10.3906/biy-2005-111
APA Uğurel O, Ata O, Turgut Balık D (2020). An updated analysis of variations in SARS-CoV-2 genome. Turkish Journal of Biology, 44(3), 157 - 167. 10.3906/biy-2005-111
Chicago Uğurel Osman Mutluhan,Ata Oguz,Turgut Balık Dilek An updated analysis of variations in SARS-CoV-2 genome. Turkish Journal of Biology 44, no.3 (2020): 157 - 167. 10.3906/biy-2005-111
MLA Uğurel Osman Mutluhan,Ata Oguz,Turgut Balık Dilek An updated analysis of variations in SARS-CoV-2 genome. Turkish Journal of Biology, vol.44, no.3, 2020, ss.157 - 167. 10.3906/biy-2005-111
AMA Uğurel O,Ata O,Turgut Balık D An updated analysis of variations in SARS-CoV-2 genome. Turkish Journal of Biology. 2020; 44(3): 157 - 167. 10.3906/biy-2005-111
Vancouver Uğurel O,Ata O,Turgut Balık D An updated analysis of variations in SARS-CoV-2 genome. Turkish Journal of Biology. 2020; 44(3): 157 - 167. 10.3906/biy-2005-111
IEEE Uğurel O,Ata O,Turgut Balık D "An updated analysis of variations in SARS-CoV-2 genome." Turkish Journal of Biology, 44, ss.157 - 167, 2020. 10.3906/biy-2005-111
ISNAD Uğurel, Osman Mutluhan vd. "An updated analysis of variations in SARS-CoV-2 genome". Turkish Journal of Biology 44/3 (2020), 157-167. https://doi.org/10.3906/biy-2005-111