Yıl: 2020 Cilt: 44 Sayı: 3 Sayfa Aralığı: 178 - 184 Metin Dili: İngilizce DOI: 10.3906/biy-2005-69 İndeks Tarihi: 06-07-2022

Identification of the nucleotide substitutions in 62 SARS-CoV-2 sequences from Turkey

Öz:
A previously unknown coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been shown to cause coronavirus disease 2019 (COVID-19) pandemic. The first case of COVID-19 in Turkey has been declared in March 11th, 2020 and from there on, more than 150,000 people in the country have been diagnosed with the disease. In this study, 62 viral sequences from Turkey, which have been uploaded to GISAID database, were analyzed by means of their nucleotide substitutions in comparison to the reference SARS-CoV-2 genome from Wuhan. Our results indicate that the viral isolates from Turkey harbor some common mutations with the viral strains from Europe, Oceania, North America and Asia. When the mutations were evaluated, C3037T, C14408T and A23403G were found to be the most common nucleotide substitutions among the viral isolates in Turkey, which are mostly seen as linked mutations and are part of a haplotype observed high in Europe.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Bai Y, Jiang D, Lon JR, Chen X, Hu M et al. (2020). Evolution and molecular characteristics of SARS-CoV-2 genome. BioRxiv (preprint). doi: 10.1101/2020.04.24.058933
  • Benvenuto D, Angeletti S, Giovanetti M, Bianchi M, Pascarella S et al. (2020). Evolutionary analysis of SARS-CoV-2: how mutation of non-structural protein 6 (NSP6) could affect viral autophagy. Journal of Infection (in press). doi: 10.1016/j.jinf.2020.03.058
  • Dorp LV, Richard, Shaw LP (2020). No evidence for increased transmissibility from recurrent mutations in SARS-CoV-2. BioRxiv (preprint). doi: 10.1101/2020.05.21.108506
  • Eden JS, Rockett R, Carter I, Rahman H, De Ligt J et al. (2020). An emergent clade of SARS-CoV-2 linked to returned travellers from Iran. Virus Evolution 6 (1): 1-4. doi: 10.1093/ve/veaa027
  • Elbe S, Buckland-Merrett G (2017). Data, disease and diplomacy: GISAID’s innovative contribution to global health. Global Challenges 1 (1): 33-46. doi: 10.1002/gch2.1018
  • Eskier D, Karakullah G, Suner A, Oktay Y (2020). RdRp mutations areassociated with SARS-CoV-2 genome evolution. BioRxiv (preprint). doi: 10.1101/2020.05.20.104885
  • Forster P, Forster L, Renfrew C, Forster M (2020). Phylogenetic network analysis of SARS- CoV-2 genomes. Proceedings of the National Academy of Sciences 117 (17): 9241-9243. doi: 10.1073/pnas.2004999117
  • Goh GKM, Keith Dunker A, Foster JA, Uversky VN (2020). Rigidity of the outer shell predicted by a protein intrinsic disorder model sheds light on the COVID-19 (Wuhan-2019-nCoV) infectivity. Biomolecules 10 (2): 2019-2021. doi: 10.3390/biom10020331
  • Gorbalenya AE, Baker SC, Baric RS, De Groot RJ, Drosten C et al. (2020). The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARSCoV-2. Nature Microbiology 5 (4): 536-544. doi: 10.1038/ s41564-020-0695-z
  • Hillen HS, Kokic G, Farnung L, DienemannC, Tegunov D et al. (2020). Structure of replicating SARS-CoV-2 polymerase. BioRxiv (preprint). doi: 10.1038/s41586-020-2368-8
  • Korber B, Fischer W, Gnanakaran SG, Yoon H, Theiler J et al. (2020). Spike mutation pipeline reveals the emergence of a more transmissible form of SARS-CoV-2. BioRxiv (preprint). doi: 10.1101/2020.04.29.069054
  • Li J, Li Z, Cui X, Wu C (2020). Bayesian phylodynamic inference on the temporal evolution and global transmission of SARSCoV-2. Journal of Infection: 1-12 [Epub ahead of print]. doi: 10.1016/j.jinf.2020.04.016
  • Lu J, Plessis L du, Liu Z, Hill V, Kang M et al. (2020). Genomic epidemiology of SARS-CoV-2 in Guangdong Province, China. Cell 181 (5): 997-1003.e9. doi: 10.1016/j.cell.2020.04.023
  • Ou X, Liu Y, Lei X, Li P, Mi D et al. (2020). Characterization of spike glycoprotein of SARS- CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nature Communications 11 (1): 1620. doi: 10.1038/s41467-020-15562-9
  • Pachetti M, Marini B, Benedetti F, Giudici F, Mauro E et al. (2020). Emerging SARS-CoV 2 mutation hot spots include a novel RNA - dependent - RNA polymerase variant. Journal of Translational Medicine 18 (179): 1-9. doi: 10.1186/s12967- 020-02344-6
  • Raj VS, Mou H, Smits SL, Dekkers DHW, Müller MA et al. (2013). Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 495 (7440): 251-254. doi: 10.1038/nature12005
  • Rehman SU, Shafique L, Ihsan A, Liu Q (2020). Evolutionary trajectory for the emergence of novel coronavirus SARSCoV-2. Pathogens 9 (3): 1-12. doi: 10.3390/pathogens9030240
  • Shu Y, McCauley J (2017). GISAID: Global initiative on sharing all influenza data – from vision to reality. Eurosurveillance 22 (13): 2-4. doi: 10.2807/1560-7917.ES.2017.22.13.30494
  • Wang C, Liu Z, Chen Z, Huang X, Xu M et al. (2020). The establishment of reference sequence for SARS-CoV-2 and variation analysis. Journal of Medical Virology 92 (6): 667- 674. doi: 10.1002/jmv.25762
APA Demir A, Benvenuto D, Abacioglu H, Angeletti S, ciccozzi m (2020). Identification of the nucleotide substitutions in 62 SARS-CoV-2 sequences from Turkey. , 178 - 184. 10.3906/biy-2005-69
Chicago Demir Ayse Banu,Benvenuto Domenico,Abacioglu Hakan,Angeletti Silvia,ciccozzi massimo Identification of the nucleotide substitutions in 62 SARS-CoV-2 sequences from Turkey. (2020): 178 - 184. 10.3906/biy-2005-69
MLA Demir Ayse Banu,Benvenuto Domenico,Abacioglu Hakan,Angeletti Silvia,ciccozzi massimo Identification of the nucleotide substitutions in 62 SARS-CoV-2 sequences from Turkey. , 2020, ss.178 - 184. 10.3906/biy-2005-69
AMA Demir A,Benvenuto D,Abacioglu H,Angeletti S,ciccozzi m Identification of the nucleotide substitutions in 62 SARS-CoV-2 sequences from Turkey. . 2020; 178 - 184. 10.3906/biy-2005-69
Vancouver Demir A,Benvenuto D,Abacioglu H,Angeletti S,ciccozzi m Identification of the nucleotide substitutions in 62 SARS-CoV-2 sequences from Turkey. . 2020; 178 - 184. 10.3906/biy-2005-69
IEEE Demir A,Benvenuto D,Abacioglu H,Angeletti S,ciccozzi m "Identification of the nucleotide substitutions in 62 SARS-CoV-2 sequences from Turkey." , ss.178 - 184, 2020. 10.3906/biy-2005-69
ISNAD Demir, Ayse Banu vd. "Identification of the nucleotide substitutions in 62 SARS-CoV-2 sequences from Turkey". (2020), 178-184. https://doi.org/10.3906/biy-2005-69
APA Demir A, Benvenuto D, Abacioglu H, Angeletti S, ciccozzi m (2020). Identification of the nucleotide substitutions in 62 SARS-CoV-2 sequences from Turkey. Turkish Journal of Biology, 44(3), 178 - 184. 10.3906/biy-2005-69
Chicago Demir Ayse Banu,Benvenuto Domenico,Abacioglu Hakan,Angeletti Silvia,ciccozzi massimo Identification of the nucleotide substitutions in 62 SARS-CoV-2 sequences from Turkey. Turkish Journal of Biology 44, no.3 (2020): 178 - 184. 10.3906/biy-2005-69
MLA Demir Ayse Banu,Benvenuto Domenico,Abacioglu Hakan,Angeletti Silvia,ciccozzi massimo Identification of the nucleotide substitutions in 62 SARS-CoV-2 sequences from Turkey. Turkish Journal of Biology, vol.44, no.3, 2020, ss.178 - 184. 10.3906/biy-2005-69
AMA Demir A,Benvenuto D,Abacioglu H,Angeletti S,ciccozzi m Identification of the nucleotide substitutions in 62 SARS-CoV-2 sequences from Turkey. Turkish Journal of Biology. 2020; 44(3): 178 - 184. 10.3906/biy-2005-69
Vancouver Demir A,Benvenuto D,Abacioglu H,Angeletti S,ciccozzi m Identification of the nucleotide substitutions in 62 SARS-CoV-2 sequences from Turkey. Turkish Journal of Biology. 2020; 44(3): 178 - 184. 10.3906/biy-2005-69
IEEE Demir A,Benvenuto D,Abacioglu H,Angeletti S,ciccozzi m "Identification of the nucleotide substitutions in 62 SARS-CoV-2 sequences from Turkey." Turkish Journal of Biology, 44, ss.178 - 184, 2020. 10.3906/biy-2005-69
ISNAD Demir, Ayse Banu vd. "Identification of the nucleotide substitutions in 62 SARS-CoV-2 sequences from Turkey". Turkish Journal of Biology 44/3 (2020), 178-184. https://doi.org/10.3906/biy-2005-69