
Quasi-idempotent ranks of the proper ideals in finite symmetric inverse semigroups
Yıl: 2021 Cilt: 45 Sayı: 1 Sayfa Aralığı: 281 - 287 Metin Dili: İngilizce DOI: 10.3906/mat-2001-3 İndeks Tarihi: 06-07-2022
Quasi-idempotent ranks of the proper ideals in finite symmetric inverse semigroups
Öz: Let In and Sn be the symmetric inverse semigroup and the symmetric group on a finite chain Xn =
{1, . . . , n}, respectively. Also, let In,r = {α ∈ In : |im(α)| ≤ r} for 1 ≤ r ≤ n − 1. For any α ∈ In , if α ̸= α
2 = α
4
then
α is called a quasi-idempotent. In this paper, we show that the quasi-idempotent rank of In,r (both as a semigroup and
as an inverse semigroup) is (n
2
)
if r = 2, and (n
r
)
+ 1 if r ≥ 3. The quasi-idempotent rank of In,1 is n (as a semigroup)
and n − 1 (as an inverse semigroup).
Anahtar Kelime: Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
- [1] Al-Kharousi F, Kehinde R, Umar A. Combinatorial results for certain semigroups of partial isometries of a finite chain. Australasian Journal of Combinatorics 2014; 58 (3): 365-375.
- [2] Ayık G, Ayık H, Howie JM, Ünlü Y. Rank properties of the semigroup of singular transformations on a finite set. Communications in Algebra 2008; 36: 2581-2587.
- [3] Bugay L, Yağcı M, Ayık H. The ranks of certain semigroups of partial isometries. Semigroup Forum 2018; 97: 214-222.
- [4] Ganyushkin O, Mazorchuk V. Classical Finite Transformation Semigroups. London, UK: Springer-Verlag, 2009.
- [5] Ganyushkin O, Mazorchuk V. Combinatorics of nilpotents in symmetric inverse semigroups. Annals of Combinatorics 2004; 8: 161-175.
- [6] Garba GU. Idempotents in partial transformation semigroups. Proceedings of the Royal Society of Edinburgh 1990; 116A: 359-366.
- [7] Garba GU. On the nilpotent ranks of certain semigroups of transformations. Glasgow Mathematical Journal 1994; 36 (1): 1-9.
- [8] Garba GU. On the idempotent ranks of certain semigroups of order-preserving transformations. Portugaliae Mathematica 1994; 51: 185-204.
- [9] Garba GU, Imam AT. Products of quasi-idempotents in finite symmetric inverse semigroups. Semigroup Forum 2016; 92: 645-658.
- [10] Gomes GMS, Howie JM. Nilpotents in finite symmetric inverse semigroups. Proceedings of the Edinburgh Mathematical Society 1987; 30: 383-395.
- [11] Gomes GMS, Howie JM. On the ranks of certain finite semigroups of transformations. Mathematical Proceedings of the Cambridge Philosophical Society 1987; 101: 395-403.
- [12] Howie JM. Fundamentals of Semigroup Theory. New York, NY, USA: Oxford University Press, 1995.
- [13] Howie JM, McFadden RB. Idempotent rank in finite full transformation semigroups. Proceedings of the Royal Society of Edinburgh 1990; 114A: 161-167.
- [14] Lipscomb S. Symmetric Inverse Semigroups. Mathematical Surveys, vol. 46. American Mathematical Society, Providence, 1996.
- [15] Umar A. On the semigroups of partial one-one order-decreasing finite transformations. Proceedings of the Royal Society of Edinburgh Section A 1993; 123: 355-363.
- [16] Umar A. On the ranks of certain finite semigroups of order-decreasing transformations. Portugaliae Mathematica 1996; 53 (1): 2-34.
- [17] Yiğit E, Ayık G, Ayık H. Minimal relative generating sets of some partial transformation semigroups. Communications in Algebra 2017; 45: 1239-1245.
- [18] Zhao P, Fernandes VH. The ranks of ideals in various transformation monoids. Communications in Algebra 2015; 43: 674-692.
APA | BUGAY L (2021). Quasi-idempotent ranks of the proper ideals in finite symmetric inverse semigroups. , 281 - 287. 10.3906/mat-2001-3 |
Chicago | BUGAY Leyla Quasi-idempotent ranks of the proper ideals in finite symmetric inverse semigroups. (2021): 281 - 287. 10.3906/mat-2001-3 |
MLA | BUGAY Leyla Quasi-idempotent ranks of the proper ideals in finite symmetric inverse semigroups. , 2021, ss.281 - 287. 10.3906/mat-2001-3 |
AMA | BUGAY L Quasi-idempotent ranks of the proper ideals in finite symmetric inverse semigroups. . 2021; 281 - 287. 10.3906/mat-2001-3 |
Vancouver | BUGAY L Quasi-idempotent ranks of the proper ideals in finite symmetric inverse semigroups. . 2021; 281 - 287. 10.3906/mat-2001-3 |
IEEE | BUGAY L "Quasi-idempotent ranks of the proper ideals in finite symmetric inverse semigroups." , ss.281 - 287, 2021. 10.3906/mat-2001-3 |
ISNAD | BUGAY, Leyla. "Quasi-idempotent ranks of the proper ideals in finite symmetric inverse semigroups". (2021), 281-287. https://doi.org/10.3906/mat-2001-3 |
APA | BUGAY L (2021). Quasi-idempotent ranks of the proper ideals in finite symmetric inverse semigroups. Turkish Journal of Mathematics, 45(1), 281 - 287. 10.3906/mat-2001-3 |
Chicago | BUGAY Leyla Quasi-idempotent ranks of the proper ideals in finite symmetric inverse semigroups. Turkish Journal of Mathematics 45, no.1 (2021): 281 - 287. 10.3906/mat-2001-3 |
MLA | BUGAY Leyla Quasi-idempotent ranks of the proper ideals in finite symmetric inverse semigroups. Turkish Journal of Mathematics, vol.45, no.1, 2021, ss.281 - 287. 10.3906/mat-2001-3 |
AMA | BUGAY L Quasi-idempotent ranks of the proper ideals in finite symmetric inverse semigroups. Turkish Journal of Mathematics. 2021; 45(1): 281 - 287. 10.3906/mat-2001-3 |
Vancouver | BUGAY L Quasi-idempotent ranks of the proper ideals in finite symmetric inverse semigroups. Turkish Journal of Mathematics. 2021; 45(1): 281 - 287. 10.3906/mat-2001-3 |
IEEE | BUGAY L "Quasi-idempotent ranks of the proper ideals in finite symmetric inverse semigroups." Turkish Journal of Mathematics, 45, ss.281 - 287, 2021. 10.3906/mat-2001-3 |
ISNAD | BUGAY, Leyla. "Quasi-idempotent ranks of the proper ideals in finite symmetric inverse semigroups". Turkish Journal of Mathematics 45/1 (2021), 281-287. https://doi.org/10.3906/mat-2001-3 |