Yıl: 2022 Cilt: 46 Sayı: 3 Sayfa Aralığı: 216 - 226 Metin Dili: İngilizce DOI: 10.55730/1300-0152.2609 İndeks Tarihi: 07-07-2022

Cytoplasmically localized tRNA-derived fragments inhibit translation in Drosophila S2 cells

Öz:
Transfer ribonucleic acids (tRNAs) serve not only as amino acid carriers during translation but also as a template for the biogenesis of short fragments that can regulate gene expression. Despite recent progress in the function of tRNA-derived fragments (tRFs), their intracellular localization, protein partners, and role in regulating translation are not well understood. We used synthetic tRFs to investigate their localization and function in Drosophila S2 cells. Under our experimental setting, all synthetic tRFs tested were localized at distinct sites within the cytoplasm in a similar manner in Drosophila S2 cells. Cytoplasmically-localized tRFs were positioned in close proximity to GW182 and XRN1 proteins. Functionally, tRFs, which slightly suppressed proliferation in S2 cells, inhibited translation without any major shift in the polysome profile. These results suggest that 5’-tRFs are cytoplasmically-localized and regulate gene expression through inhibition of translation in Drosophila.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Balagopal V, Parker R (2009). Polysomes, P bodies and stress granules: states and fates of eukaryotic mRNAs. Current Opinion in Cell Biology 21: 403-408. doi: 10.1016/j.ceb.2009.03.005
  • Bariarz JE, Ruby JG, Wang Y, Bartel DP, Blelloch R (2008). Mouse ES cells express endogenous shRNAs, siRNAs and other microprocessor-independent Dicer-dependent small RNAs. Genes and Development 22: 2773-2785. doi: 10.1101/ gad.1705308
  • Cole C, Sobala A, Lu C, Thatcher SY, Bowman A et al. (2009). Filtering of deep-sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs. RNA 15: 2147-2160. doi: 10.1261/rna.1738409
  • Cosacak MI, Yigit H, Kizil C, Akgül B (2018). Re-arrangements in the cytoplasmic distribution of small RNAs following the maternal-to-zygotic transition in Drosophila embryos. Genes 9: 82. doi: 10.3390/genes9020082
  • Couvillion MT, Bounova G, Purdom E, Speed TP, Collins K (2012). A Tetrahymena Piwi bound to mature tRNA 3’ fragments activates the exonuclease Xrn2 for RNA processing in the nucleus. Molecular Cell 48: 509-520. doi: 10.1016/j. molcel.2012.09.010
  • Emara MM, Ivanov P, Hickman T, Dawra N, Tisdale S et al. (2010). Angiogenin-induced tRNA-derived stress-induced RNAs promote stress-induced stress granule assembly. Journal of Biological Chemistry 285: 10959-10968. doi: 10.1074/jbc. M109.077560
  • Gebetsberger J, Polacek N (2013). Slicing tRNAs to boost functional ncRNA diversity. RNA Biology 10: 1798-1806. doi: 10.4161/ rna.27177
  • Gebestberger J, Zywicki M, Kunzi A, Polacek N (2012). tRNAderived fragments target the ribosome and function as regulatory non-coding RNA in Haloferax volcanii. Archaea 260909. doi: 10.1155/2012/260909
  • Goodarzi H, Liu X, Nguyen HCB, Zhang S, Fish L et al. (2015). Endogenous tRNA-derived fragments suppress breast cancer progression via YBX1 displacement. Cell 161: 790-802. doi: 10.1016/j.cell.2015.02.053
  • Göktaş C, Yigit H, Cosacak MI, Akgul B (2017). Differentially expressed tRNA-derived small RNAs co-sediment primarily with non-polysomal fractions in Drosophila. Genes 8: 333. doi: 10.3390/genes8110333
  • Eystathioy T, Jakmiw A, Chan EK, Seraphin B, Cougot N et al. (2003). The GW182 protein colocalizes with mRNA degradation associated proteins Dcp1 and hLSm4 in cytoplasmic GW bodies. RNA 9: 1171-1173. doi: 10.1261/rna.5810203
  • Haussecker D, Huang Y, Lau A, Paramaswatan P, Fire AZ et al. (2010). tRNA-derived small RNAs in the global regulation of RNA silencing. RNA 16: 673-695. doi: 10.1261/rna.2000810
  • Ivanov P, Emara MM, Villen J, Gygi SP, Anderson P (2011). Angiogenin-induced tRNA fragments inhibit translation initiation. Molecular Cell 43: 613-623. doi: 10.1016/j. molcel.2011.06.022
  • Karaiskos S, Naqvi AS, Swanson KE, Grigoriev A (2015). Age-driven modulation of tRNA-derived fragments in Drosophila and their potential targets. Biology Direct 10: 51. doi: 10.1186/ s13062-015-0081-6
  • Keam SP, Hutvagner G (2015). tRNA-derived fragments (tRFs): Emerging new roles for an ancient RNA in the regulation of gene expression. Life 5: 1638-1651. doi: 10.3390/life5041638
  • Kim HK, Fuchs G, Wang S, Wei W, Zhang Y et al. (2017). A transferRNA-derived small RNA regulates ribosome biogenesis. Nature 552: 57-62. doi: 10.1038/nature25005
  • Kumar P, Anaya J, Mudunuri SB, Dutta A (2014). Meta analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets. BMC Biology 12: 78. doi: 10.1186/s12915-014-0078-0
  • Kumar P, Mudunuri SB, Anaya J, Dutta A (2015). tRFdb: a database for transfer RNA fragments. Nucleic Acids Research 43: D141-D145. doi: 10.1093/nar/gku1138
  • Lee YS, Shibara Y, Malhotra A, Dutta, A (2009). A novel class of small RNAs: tRNA-derived fragments (tRFs). Genes and Development 23: 2639-2649. doi: 10.1101/gad.1837609
  • Li Z, Ender C, Meister G, Moore PS, Chang Y et al. (2012). Extensive terminal and asymmetric processing of small RNAs from rRNAs, snoRNAs, snRNAs and tRNAs. Nucleic Acids Research 40: 6787-6799. doi: 10.1093/nar/gks307
  • Liao JY, Ma LM, Guo YH, Zhang YC, Zhou H et al. (2010). Deep sequencing of human nuclear and cytoplasmic small RNAs reveals an unexpectedly complex subcellular distribution of miRNAs and tRNA 3’ trailers. PLOS ONE 2010: (5) e10563. doi: 10.1371/journal.pone.0010563
  • Loss-Morais G, Waterhouse PM, Margis R (2013). Description of plant tRNA-derived RNA fragments (tRFs) associated with argonaute and identification of their putative targets. Biology Direct 8: 6. doi: 10.1186/1745-6150-8-6
  • Luo S, He F, Luo J, Dou S, Wang Y et al. (2018). Drosophila tsRNAs preferentially suppress general translation machinery via antisense pairing and participate in cellular starvation. Nucleic Acids Research 46: 5250-5268. doi: 10.1093/nar/gky189
  • Maute RL, Schneider C, Sumazin P, Holmes A, Califano A et al. (2013). tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma. Proceedings of the National Academy of Sciences of the United States of America 110: 1404-1409. doi: 10.1073/ pnas.1206761110
  • Nie Z, Zhou F, Li D, Lv Z, Chen J et al. (2013). RIP-seq of BmAgo2- associated small RNAs reveal various types of small noncoding RNAs in the silkworm, Bombyx mori. BMC Genomics 14: 661. doi: 10.1186/1471-2164-14-661
  • Olvedy M, Scaravilli M, Hoogstrate Y, Visakorpi T, Jenster G et al. (2016). A comprehensive repertoire of tRNA-derived fragments in prostate cancer. Oncotarget 7: 24766-24777. doi: 10.18632/oncotarget.8293
  • Pederson, T (2010). Regulatory RNAs derived from transfer RNA? RNA 16: 1865-1869. doi: 10.1261/rna.2266510
  • Schimmel, P (2017). The emerging complexity of the tRNA world: mammalian tRNAs beyond protein synthesis. Nature Reviews in Molecular Cell Biology 19: 45-48. doi: 10.1038/nrm.2017.77
  • Scheneider MD, Najand N, Chaker S, Pare JM, Haskins J et al. (2006). Gawky is a component of cytoplasmic mRNA processing bodies required for early Drosophila development. Journal of Cell Biology 174: 349-358. doi: 10.1083/jcb.200512103
  • Sheth U, Parker R (2003). Decapping and decay of messenger RNA occur in cytoplasmic bodies. Science 300: 805-808. doi: 10.1126/science.1082320
  • Sobala A, Hutvagner G (2013). Small RNAs derived from the 5’ end of tRNAs can inhibit protein translation in human cells. RNA Biology 10: 553-563. doi: 10.4161/rna.24285
  • Telonis AG, Loher P, Honda S, Jing Y, Palazzo J et al. (2015). Dissecting tRNA-derived fragment complexities using personalized transcriptomes reveals novel fragment classes and unexpected dependencies. Oncotarget 22: 24797-24822. doi: 10.18632/oncotarget.4695
  • Thompson DM, Parker R (2009). Stressing out over tRNA cleavage. Cell 138: 215-219. doi: 10.1016/j.cell.2009.07.001
  • Xie Y, Yao L, Yu X, Ruan Y, Li Z et al. (2020). Action mechanisms and research methods of tRNA-derived small RNAs. Signal Transduction and Targeted Therapy 5: 109. doi: 10.1038/ s41392-020-00217-4
  • Vojteck L, Woo S, Hushes S, Levy C, Ballweber L et al. (2014). Exosomes in human semen carry a distinctive repertoire of small non-coding RNAs with potential regulatory functions. Nucleic Acids Research 42: 7290-7304. doi: 10.1093/nar/ gku347
APA Hamid S, Akgül B (2022). Cytoplasmically localized tRNA-derived fragments inhibit translation in Drosophila S2 cells. , 216 - 226. 10.55730/1300-0152.2609
Chicago Hamid Syed,Akgül Bünyamin Cytoplasmically localized tRNA-derived fragments inhibit translation in Drosophila S2 cells. (2022): 216 - 226. 10.55730/1300-0152.2609
MLA Hamid Syed,Akgül Bünyamin Cytoplasmically localized tRNA-derived fragments inhibit translation in Drosophila S2 cells. , 2022, ss.216 - 226. 10.55730/1300-0152.2609
AMA Hamid S,Akgül B Cytoplasmically localized tRNA-derived fragments inhibit translation in Drosophila S2 cells. . 2022; 216 - 226. 10.55730/1300-0152.2609
Vancouver Hamid S,Akgül B Cytoplasmically localized tRNA-derived fragments inhibit translation in Drosophila S2 cells. . 2022; 216 - 226. 10.55730/1300-0152.2609
IEEE Hamid S,Akgül B "Cytoplasmically localized tRNA-derived fragments inhibit translation in Drosophila S2 cells." , ss.216 - 226, 2022. 10.55730/1300-0152.2609
ISNAD Hamid, Syed - Akgül, Bünyamin. "Cytoplasmically localized tRNA-derived fragments inhibit translation in Drosophila S2 cells". (2022), 216-226. https://doi.org/10.55730/1300-0152.2609
APA Hamid S, Akgül B (2022). Cytoplasmically localized tRNA-derived fragments inhibit translation in Drosophila S2 cells. Turkish Journal of Biology, 46(3), 216 - 226. 10.55730/1300-0152.2609
Chicago Hamid Syed,Akgül Bünyamin Cytoplasmically localized tRNA-derived fragments inhibit translation in Drosophila S2 cells. Turkish Journal of Biology 46, no.3 (2022): 216 - 226. 10.55730/1300-0152.2609
MLA Hamid Syed,Akgül Bünyamin Cytoplasmically localized tRNA-derived fragments inhibit translation in Drosophila S2 cells. Turkish Journal of Biology, vol.46, no.3, 2022, ss.216 - 226. 10.55730/1300-0152.2609
AMA Hamid S,Akgül B Cytoplasmically localized tRNA-derived fragments inhibit translation in Drosophila S2 cells. Turkish Journal of Biology. 2022; 46(3): 216 - 226. 10.55730/1300-0152.2609
Vancouver Hamid S,Akgül B Cytoplasmically localized tRNA-derived fragments inhibit translation in Drosophila S2 cells. Turkish Journal of Biology. 2022; 46(3): 216 - 226. 10.55730/1300-0152.2609
IEEE Hamid S,Akgül B "Cytoplasmically localized tRNA-derived fragments inhibit translation in Drosophila S2 cells." Turkish Journal of Biology, 46, ss.216 - 226, 2022. 10.55730/1300-0152.2609
ISNAD Hamid, Syed - Akgül, Bünyamin. "Cytoplasmically localized tRNA-derived fragments inhibit translation in Drosophila S2 cells". Turkish Journal of Biology 46/3 (2022), 216-226. https://doi.org/10.55730/1300-0152.2609