Yıl: 2022 Cilt: 8 Sayı: 2 Sayfa Aralığı: 223 - 231 Metin Dili: İngilizce DOI: 10.17515/resm2022.357na1027 İndeks Tarihi: 07-07-2022

Synthesis and air permeability of electrospun PAN/PVDF nanofibrous membranes

Öz:
Electrospun nanofibers present well-design membranes for filtration applications. In this study, the synthesis of polyacrylonitrile (PAN)/polyvinylidene fluoride (PVDF) bicomponent nanofibers was reported for air filtration application. Polymer concentration effect on the morphology of PAN/PVDF nanofibers was investigated and 10, 20, 30, and 40 wt% PVDF were examined. PVDF amount influences the morphology, diameter, and thermal stability of the fibers. Morphological results revealed that beadless PAN/PVDF nanofiber was obtained and the diameter of the PAN/PVDF nanofibers decreased with the increasing amount of PVDF. However, at 30 wt% beads formation on the fibers was begun to observe. Optimum conditions to obtain uniform and beadless PAN/PVDF nanofibers were determined as 20 wt% PVDF concentration. The air permeability tests of PAN/PVDF nanofibers containing 20 wt% PVDF indicated that these nanofibrous membranes are appropriate materials for air filtration applications.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Teo WE, Ramakrishna S. A review on electrospinning design and nanofibre assemblies. Nanotechnology, 2006; 17:14 R89. https://doi.org/10.1088/0957-4484/17/14/R01
  • [2] Bortolassi ACC, Nagarajan S, de Araújo Lima B, Guerra VG, Aguiar ML, Huon V, Soussan L, Cornu D, Miele P, Bechelany M. Efficient nanoparticles removal and bactericidal action of electrospun nanofibers membranes for air filtration. Materials Science and Engineering: C, 2019; 102: 718-729. https://doi.org/10.1016/j.msec.2019.04.094
  • [3] Patanaik, A, Jacobs V, Anandjiwala RD. Performance evaluation of electrospun nanofibrous membrane. Journal of Membrane Science, 2010; 352:1 136-142. https://doi.org/10.1016/j.memsci.2010.02.009
  • [4] Yu DG, Zhu LM, White K, Branford-White C. Electrospun nanofiber-based drug delivery systems. Health, 2009, 1:2 67. https://doi.org/10.4236/health.2009.12012
  • [5] Ince Yardimci A, Baskan O, Yilmaz S, Mese G, Ozcivici E, Selamet Y. Osteogenic differentiation of mesenchymal stem cells on random and aligned PAN/PPy nanofibrous scaffolds. Journal of biomaterials applications, 2019; 34:5 640-650. https://doi.org/10.1177/0885328219865068
  • [6] Ince Yardimci A, Aypek H, Ozturk O, Yilmaz S, Ozcivici E, Mese G, Selamet Y. CNT incorporated polyacrilonitrile/polypyrrole nanofibers as keratinocytes scaffold. in Journal of Biomimetics, Biomaterials and Biomedical Engineering. 2019. Trans Tech Publ. https://doi.org/10.4028/www.scientific.net/JBBBE.41.69
  • [7] Unnithan AR, Barakat NA, Nirmala R, Al-Deyab SS, Kim HY. Novel electrospun nanofiber mats as effective catalysts for water photosplitting. Ceramics International, 2012; 38:6 5175-5180. https://doi.org/10.1016/j.ceramint.2012.03.023
  • [8] Huang L, Xie X, Huang H, Zhu J, Yu J, Wang Y, Hu Z. Electrospun polyamide-6 nanofiber for hierarchically structured and multi-responsive actuator. Sensors and Actuators A: Physical, 2020; 302: 111793. https://doi.org/10.1016/j.sna.2019.111793
  • [9] Yardimci AI, Tarhan Ö. Electrospun Protein Nanofibers And Their Food Applications. Mugla Journal of Science and Technology. 6:2 52-62.
  • [10] Duan G, Fang H, Huang C, Jiang S, Hou H. Microstructures and mechanical properties of aligned electrospun carbon nanofibers from binary composites of polyacrylonitrile and polyamic acid. Journal of materials science, 2018; 53:21 15096-15106. https://doi.org/10.1007/s10853-018-2700-y
  • [11] Jiang S, Han D, Huang C, Duan G, Hou H. Temperature-induced molecular orientation and mechanical properties of single electrospun polyimide nanofiber. Materials Letters, 2018; 216: 81-83. https://doi.org/10.1016/j.matlet.2017.12.146
  • [12] Al-Attabi R, Dumée LF, Schütz JA, Morsi Y. Pore engineering towards highly efficient electrospun nanofibrous membranes for aerosol particle removal. Science of the total environment, 2018; 625: 706-715. https://doi.org/10.1016/j.scitotenv.2017.12.342
  • [13] Zhu M, Han J, Wang F, Shao W, Xiong R, Zhang Q, Pan H, Yang Y, Samal SK, Zhang F. Electrospun nanofibers membranes for effective air filtration. Macromolecular Materials and Engineering, 2017; 302:1 1600353. https://doi.org/10.1002/mame.201600353
  • [14] Matulevicius J, Kliucininkas L, Martuzevicius D, Krugly E, Tichonovas M, Baltrusaitis J. Design and characterization of electrospun polyamide nanofiber media for air filtration applications. Journal of nanomaterials, 2014. https://doi.org/10.1155/2014/859656
  • [15] Canalli Bortolassi AC, Guerra VG, Aguiar ML, Soussan L, Cornu D, Miele P, Bechelany M. Composites based on nanoparticle and pan electrospun nanofiber membranes for air filtration and bacterial removal. Nanomaterials, 2019; 9:12 1740. https://doi.org/10.3390/nano9121740
  • [16] Khandaker M, Progri H, Arasu DT, Nikfarjam S, Shamim N. Use of Polycaprolactone Electrospun Nanofiber Mesh in a Face Mask. Materials, 2021; 14:15 4272. https://doi.org/10.3390/ma14154272
  • [17] Zhang Z, Ji D, He H, Ramakrishna S. Electrospun ultrafine fibers for advanced face masks. Materials Science and Engineering: R: Reports, 2021; 143: 100594. https://doi.org/10.1016/j.mser.2020.100594
  • [18] Varshney K, Tayal N, Gupta U. Acrylonitrile based cerium (IV) phosphate as a new mercury selective fibrous ion-exchanger: synthesis, characterization and analytical applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998; 145:1 71-81. https://doi.org/10.1016/S0927-7757(98)00657-8
  • [19] Hashmi M, Ullah S, Kim IS. Copper oxide (CuO) loaded polyacrylonitrile (PAN) nanofiber membranes for antimicrobial breath mask applications. Current Research in Biotechnology, 2019; 1: 1-10. https://doi.org/10.1016/j.crbiot.2019.07.001
  • [20] Al‐Attabi R, Dumée LF, Kong L, Schütz JA, Morsi Y. High efficiency poly (acrylonitrile) electrospun nanofiber membranes for airborne nanomaterials filtration. Advanced Engineering Materials, 2018, 20:1 1700572. https://doi.org/10.1002/adem.201700572
  • [21] Hong CK, Yang KS, Oh SH, Ahn JH, Cho BH, Nah C. Effect of blend composition on the morphology development of electrospun fibres based on PAN/PMMA blends. Polymer International, 2008; 57: 1357 - 1362. https://doi.org/10.1002/pi.2481
  • [22] Lv S, Zhao X, Shi L, Zhang G, Wang S, Kang W, Zhuang X. Preparation and Properties of sc-PLA/PMMA Transparent Nanofiber Air Filter. Polymers, 2018; 10:9 996. https://doi.org/10.3390/polym10090996
  • [23] Cao X, Ma J, Shi X, Ren Z. Effect of TiO2 nanoparticle size on the performance of PVDF membrane. Applied Surface Science, 2006; 253:4 2003-2010. https://doi.org/10.1016/j.apsusc.2006.03.090
  • [24] Li N, Xiao C, An S, Hu X. Preparation and properties of PVDF/PVA hollow fiber membranes. Desalination, 2010; 250:2 530-537. https://doi.org/10.1016/j.desal.2008.10.027
  • [25] Heo YJ, Zhang Y, Rhee KY, Park SJ. Synthesis of PAN/PVDF nanofiber compositesbased carbon adsorbents for CO2 capture. Composites Part B: Engineering, 2019; 156: 95-99. https://doi.org/10.1016/j.compositesb.2018.08.057
  • [26] Wang Z, Sahadevan R, Crandall C, Menkhaus TJ, Fong H. Hot-pressed PAN/PVDF hybrid electrospun nanofiber membranes for ultrafiltration. Journal of Membrane Science, 2020; 611: 118327. https://doi.org/10.1016/j.memsci.2020.118327
  • [27] Mokhtari-Shourijeh Z, Langari S, Montazerghaem L, Mahmoodi NM. Synthesis of porous aminated PAN/PVDF composite nanofibers by electrospinning: Characterization and Direct Red 23 removal. Journal of Environmental Chemical Engineering, 2020. 8(4): 103876. https://doi.org/10.1016/j.jece.2020.103876
  • [28] Lee SY, Park SJ. Effects of CO2 activation on electrochemical performance of microporous carbons derived from poly (vinylidene fluoride). Journal of Solid State Chemistry, 2013; 207: 158-162. https://doi.org/10.1016/j.jssc.2013.09.013
  • [29] Hakkak F, Rafizadeh M, Sarabi AA, Yousefi M. Optimization of ionic conductivity of electrospun polyacrylonitrile/poly (vinylidene fluoride)(PAN/PVdF) electrolyte using the response surface method (RSM). Ionics, 2015; 21: 1945-1957. https://doi.org/10.1007/s11581-014-1363-1
  • [30] Wannatong L, Sirivat A, Supaphol P. Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene. Polymer International, 2004; 53:11 1851- 1859. https://doi.org/10.1002/pi.1599
  • [31] Mokhtari-Shourijeh, Z, Langari S, Montazerghaem L, Mahmoodi NM. Synthesis of porous aminated PAN/PVDF composite nanofibers by electrospinning: Characterization and Direct Red 23 removal. Journal of Environmental Chemical Engineering, 2020; 8:4 103876. https://doi.org/10.1016/j.jece.2020.103876
  • [32] Heo YJ, Zhang Y, Rhee KY, Park SJ. Synthesis of PAN/PVDF nanofiber compositesbased carbon adsorbents for CO2 capture. Composites Part B: Engineering, 2019; 156: 95-99. https://doi.org/10.1016/j.compositesb.2018.08.057
  • [33] Yalcinkaya F, Yalcinkaya B, Pazourek A, Mullerova J, Stuchlik M, Maryska J. Surface modification of electrospun PVDF/PAN nanofibrous layers by low vacuum plasma treatment. International Journal of Polymer Science, 2016. https://doi.org/10.1155/2016/4671658
  • [34] Chen L, Bromberg L, Schreuder-Gibson H, Walker J, Hatton TA, Rutledge GC. Chemical protection fabrics via surface oximation of electrospun polyacrylonitrile fiber mats.Journal of Materials Chemistry, 2009; 19:16 2432-2438. https://doi.org/10.1039/b818639a
  • [35] Yalcinkaya F, Yalcinkaya B, Pazourek A, Mullerova J, Stuchlik M, Maryska J. Surface modification of electrospun PVDF/PAN nanofibrous layers by low vacuum plasma treatment. International Journal of Polymer Science, 2016. https://doi.org/10.1155/2016/4671658
  • [36] Merlini C, de Oliveira Barra GM, da Silva Ramôa SDA, Contri G, dos Santos Almeida R, d'Ávila MA, Soares BG. Electrically conductive polyaniline-coated electrospun poly (vinylidene fluoride) mats. Frontiers in Materials, 2015; 2: 14. https://doi.org/10.3389/fmats.2015.00014
  • [37] Duan Q, Wang B, Wang H. Effects of stabilization temperature on structures and properties of polyacrylonitrile (PAN)-based stabilized electrospun nanofiber mats. Journal of Macromolecular Science, Part B, 2012; 51:12 2428-2437. https://doi.org/10.1080/00222348.2012.676415
  • [38] Yan-Qing L, Jia-Wen F, Cheng-Cheng Z, Yue T, Zhi L, JiHuan H. Air Permeability of Nanofiber Membrane with Hierarchical Structure. Thermal Science, 2018; 22:4 1637- 1643. https://doi.org/10.2298/TSCI1804637L
APA ince yardimci a, Kayhan M, Durmuş A, Tarhan Ö, MEHMET A (2022). Synthesis and air permeability of electrospun PAN/PVDF nanofibrous membranes. , 223 - 231. 10.17515/resm2022.357na1027
Chicago ince yardimci atike,Kayhan Mehmet,Durmuş Aslı,Tarhan Özgür,MEHMET AKSOY Synthesis and air permeability of electrospun PAN/PVDF nanofibrous membranes. (2022): 223 - 231. 10.17515/resm2022.357na1027
MLA ince yardimci atike,Kayhan Mehmet,Durmuş Aslı,Tarhan Özgür,MEHMET AKSOY Synthesis and air permeability of electrospun PAN/PVDF nanofibrous membranes. , 2022, ss.223 - 231. 10.17515/resm2022.357na1027
AMA ince yardimci a,Kayhan M,Durmuş A,Tarhan Ö,MEHMET A Synthesis and air permeability of electrospun PAN/PVDF nanofibrous membranes. . 2022; 223 - 231. 10.17515/resm2022.357na1027
Vancouver ince yardimci a,Kayhan M,Durmuş A,Tarhan Ö,MEHMET A Synthesis and air permeability of electrospun PAN/PVDF nanofibrous membranes. . 2022; 223 - 231. 10.17515/resm2022.357na1027
IEEE ince yardimci a,Kayhan M,Durmuş A,Tarhan Ö,MEHMET A "Synthesis and air permeability of electrospun PAN/PVDF nanofibrous membranes." , ss.223 - 231, 2022. 10.17515/resm2022.357na1027
ISNAD ince yardimci, atike vd. "Synthesis and air permeability of electrospun PAN/PVDF nanofibrous membranes". (2022), 223-231. https://doi.org/10.17515/resm2022.357na1027
APA ince yardimci a, Kayhan M, Durmuş A, Tarhan Ö, MEHMET A (2022). Synthesis and air permeability of electrospun PAN/PVDF nanofibrous membranes. Research on Engineering Structures and Materials, 8(2), 223 - 231. 10.17515/resm2022.357na1027
Chicago ince yardimci atike,Kayhan Mehmet,Durmuş Aslı,Tarhan Özgür,MEHMET AKSOY Synthesis and air permeability of electrospun PAN/PVDF nanofibrous membranes. Research on Engineering Structures and Materials 8, no.2 (2022): 223 - 231. 10.17515/resm2022.357na1027
MLA ince yardimci atike,Kayhan Mehmet,Durmuş Aslı,Tarhan Özgür,MEHMET AKSOY Synthesis and air permeability of electrospun PAN/PVDF nanofibrous membranes. Research on Engineering Structures and Materials, vol.8, no.2, 2022, ss.223 - 231. 10.17515/resm2022.357na1027
AMA ince yardimci a,Kayhan M,Durmuş A,Tarhan Ö,MEHMET A Synthesis and air permeability of electrospun PAN/PVDF nanofibrous membranes. Research on Engineering Structures and Materials. 2022; 8(2): 223 - 231. 10.17515/resm2022.357na1027
Vancouver ince yardimci a,Kayhan M,Durmuş A,Tarhan Ö,MEHMET A Synthesis and air permeability of electrospun PAN/PVDF nanofibrous membranes. Research on Engineering Structures and Materials. 2022; 8(2): 223 - 231. 10.17515/resm2022.357na1027
IEEE ince yardimci a,Kayhan M,Durmuş A,Tarhan Ö,MEHMET A "Synthesis and air permeability of electrospun PAN/PVDF nanofibrous membranes." Research on Engineering Structures and Materials, 8, ss.223 - 231, 2022. 10.17515/resm2022.357na1027
ISNAD ince yardimci, atike vd. "Synthesis and air permeability of electrospun PAN/PVDF nanofibrous membranes". Research on Engineering Structures and Materials 8/2 (2022), 223-231. https://doi.org/10.17515/resm2022.357na1027