İNMEDE BEYİN ÖDEMİ VE KAFA İÇİ BASINÇ ARTIŞI: TÜRK BEYİN DAMAR HASTALIKLARI DERNEĞİ UZMAN GÖRÜŞÜ

Yıl: 2021 Cilt: 27 Sayı: 2 Sayfa Aralığı: 65 - 132 Metin Dili: Türkçe DOI: 10.5505/tbdhd.2021.76376 İndeks Tarihi: 08-07-2022

İNMEDE BEYİN ÖDEMİ VE KAFA İÇİ BASINÇ ARTIŞI: TÜRK BEYİN DAMAR HASTALIKLARI DERNEĞİ UZMAN GÖRÜŞÜ

Öz:
Beyin ödemi inmeden sonra sık karşılaşılan bir sorundur. İntrakranial basınç artışı serebral perfüzyonu bozarak ve serebral herniasyona yol açarak mortalite ve morbiditeyi artırır. İnme hastası takip eden nörologların, hangi inmeden sonra beyin ödemi gelişeceğini kestirebilmesi, beyin ödemi gelişmemesi için önlemler alabilmesi, gelişirse intrakranial basınç artışı ve serebral herniasyonu klinik ve radyolojik olarak tanıyabilmesi, ve önlenemezse beyin ödemi ve intrakranial basınç artışını hızlı ve etkin şekilde tedavi edebilmesi gerekir. Bu uzman görüşü Türk Beyin Damar Hastalıkları Derneği bünyesinde aktif olarak çalışan 60 uzmanın ortak görüşü ile hazırlanmış bir klinik rehber niteliğindedir.
Anahtar Kelime:

BRAIN EDEMA AND INTRACRANIAL PRESSURE INCREASE IN STROKE: EXPERT OPINION FROM TURKISH CEREBROVASCULAR DISEASES SOCIETY

Öz:
Brain edema is a common problem after stroke. Elevation of intracranial pressure causes high mortality anad morbidity rates by impairing cerebral perfusion and causing cerebral herniation. The neurologist who take care of acute stroke patients should guess the possibility of brain edema, take precautions for the development of brain edema, diagnose intracranial pressure elevation and cerebral herniation both clinically and raidologically, and treat brain edema rapidly. This expert opinion is a consensus declaration of 60 Neurologists who work on cerebrovascular diseases and neurocritical care under Turkish Society of Cerebrovascular Diseases.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Hewitt A, Ellory CJS. Brain oedema, intracranial pressure and cerebral blood flow. Surgery (Oxford) 2012; 30(3): 102-106.
  • 2. Shardlow E, Jackson AJA, Medicine IC. Cerebral blood flow and intracranial pressure. Anaesthesia and Intensive Care Medicine 2008; 9(5): 222-225.
  • 3. Michinaga S, Koyama YJIjoms. Pathogenesis of brain edema and investigation into anti-edema drugs. Int J Mol Sci 2015; 16(5): 9949-9975.
  • 4. Thomalla G, Hartmann F, Juettler E, et al. Prediction of malignant middle cerebral artery infarction by magnetic resonance imaging within 6 hours of symptom onset: A prospective multicenter observational study. Ann Neurol 2010; 68(4): 435-445.
  • 5. Hacke W, Schwab S, Horn M, et al. 'Malignant'middle cerebral artery territory infarction: Clinical course and prognostic signs. Arch Neurol 1996; 53(4): 309-315.
  • 6. Kase C, Norrving B, Levine S, et al. Cerebellar infarction. Clinical and anatomic observations in 66 cases. Stroke 1993; 24(1): 76-83.
  • 7. Koh MG, Phan TG, Atkinson JL, et al. Neuroimaging in deteriorating patients with cerebellar infarcts and mass effect. Stroke 2000; 31(9): 2062-2067.
  • 8. Xi G, Hua Y, Bhasin RR, et al. Mechanisms of edema formation after intracerebral hemorrhage: Effects of extravasated red blood cells on blood flow and blood-brain barrier integrity. Stroke 2001; 32(12): 2932-2938.
  • 9. Xi G, Keep RF, Hoff JTJJon. Erythrocytes and delayed brain edema formation following intracerebral hemorrhage in rats. Journal of Neurosurgery 1998; 89(6): 991-996.
  • 10. Rosand J, Schwamm LHJJoICM. Management of brain edema complicating stroke. Journal of Intensive Care Medicine 2001; 16(3): 128-141.
  • 11. Wijdicks EF, Sheth KN, Carter BS, et al. Recommendations for the management of cerebral and cerebellar infarction with swelling: A statement for healthcare professionals from the american heart association/american stroke association. Stroke, 2014; 45(4): 1222-1238.
  • 12. Brogan ME, Manno EMJCtoin. Treatment of malignant brain edema and increased intracranial pressure after stroke. Curr Treat Options Neurol 2015; 17(1): 327.
  • 13. Wu S, Yuan R, Wang Y, et al. Early prediction of malignant brain edema after ischemic stroke: A systematic review and meta-analysis. Stroke 2018; 49(12): 2918-2927.
  • 14. Siegel J, Pizzi MA, Peel JB, et al. Update on neurocritical care of stroke. Curr Cardiol Rep 2017; 19(8): 1-11. Türk Beyin Damar Hastalıkları Dergisi 2021; 27(2): 65-132
  • 15. Neugebauer H, Witsch J, Zweckberger K, et al. Spaceoccupying cerebellar infarction: Complications, treatment, and outcome. Neurosurgical Focus 2013; 34(5): E8.
  • 16. Edlow JA, Newman-Toker DE, Savitz SI. Diagnosis and initial management of cerebellar infarction. The Lancet Neurology 2008; 7(10): 951-964.
  • 17. Poon MTC, Fonville AF, Salman RA-SJJoN, Neurosurgery, et al. Long-term prognosis after intracerebral haemorrhage: Systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2014; 85(6): 660-667.
  • 18. Butcher KS, Baird T, MacGregor L, et al. Perihematomal edema in primary intracerebral hemorrhage is plasma derived. Stroke 2004; 35(8): 1879-1885.
  • 19. Tsai Y-H, Hsu L-M, Weng H-H, et al. Voxel-based analysis of apparent diffusion coefficient in perihaematomal oedema: Associated factors and outcome predictive value for intracerebral haemorrhage. BMJ Open 2011; 1(1).
  • 20. Appelboom G, Bruce SS, Hickman ZL, et al. Volumedependent effect of perihaematomal oedema on outcome for spontaneous intracerebral haemorrhages. J Neurol Neurosurg Psychiatry 2013; 84(5): 488-493.
  • 21. Arima H, Wang J, Huang Y, et al. Significance of perihematomal edema in acute intracerebral hemorrhage: The interact trial. Neurology 2009; 73(23): 1963-1968.
  • 22. Anderson CS, Huang Y, Wang JG, et al. Intensive blood pressure reduction in acute cerebral haemorrhage trial (interact): A randomised pilot trial. The Lancet Neurology 2008; 7(5): 391-399.
  • 23. Anderson CS, Heeley E, Huang Y, et al. Rapid bloodpressure lowering in patients with acute intracerebral hemorrhage. N Engl J Med 2013; 368: 2355-2365.
  • 24. Yang J, Arima H, Wu G, et al. Prognostic significance of perihematomal edema in acute intracerebral hemorrhage: Pooled analysis from the intensive blood pressure reduction in acute cerebral hemorrhage trial studies. Stroke 2015; 46(4): 1009-1013.
  • 25. Yu Z, Ma L, Zheng J, et al. Prognostic role of perihematomal edema in intracerebral hemorrhage: A systematic review. Turk Neurosurg 2018; 28(4): 511-522.
  • 26. Murthy SB, Urday S, Beslow LA, et al. Rate of perihaematomal oedema expansion is associated with poor clinical outcomes in intracerebral haemorrhage. J Neurol Neurosurg Psychiatry 2016; 87(11): 1169-1173.
  • 27. Wu TY, Sharma G, Strbian D, et al. Natural history of perihematomal edema and impact on outcome after intracerebral hemorrhage. Stroke 2017; 48(4): 873-879.
  • 28. Selim M, Norton CJJonr. Perihematomal edema: Implications for intracerebral hemorrhage research and therapeutic advances. J Neuro Res 2020; 98(1): 212-218.
  • 29. Battey TW, Karki M, Singhal AB, et al. Brain edema predicts outcome after nonlacunar ischemic stroke. Stroke 2014; 45(12): 3643-3648.
  • 30. Yao Y, Zhang Y, Liao X, et al. Potential therapies for cerebral edema after ischemic stroke: A mini review. Front Aging Neurosci 2020; 12: 618819.
  • 31. Monro A. Observations on the structure and functions of the nervous system illustrated with tables. London; 1835.
  • 32. Kellie GJTM-CSoE. An account of the appearances observed in the dissection of two of three individuals presumed to have perished in the storm of the 3d, and whose bodies were discovered in the vicinity of leith on the morning of the 4th, november 1821; with some reflections on the pathology of the brain: Part i. Trans Med Chir Soc Edinb 1824; 1: 84–122.
  • 33. Fink MEJCLLiN. Osmotherapy for intracranial hypertension: Mannitol versus hypertonic saline. Critical Care Neurology 2012; 18(3): 640-654.
  • 34. Wilson MH. Monro-kellie 2.0: The dynamic vascular and venous pathophysiological components of intracranial pressure. Journal of Cerebral Blood Flow & Metabolism 2016; 36(8): 1338-1350.
  • 35. Bradley WG, Safar FG, Furtado C, et al. Increased intracranial volume: A clue to the etiology of idiopathic normal-pressure hydrocephalus? AJNR Am J Neuroradiol 2004; 25(9): 1479-1484.
  • 36. Ropper AH. Hyperosmolar therapy for raised intracranial pressure. N Engl J Med 2012; 367(8): 746-752.
  • 37. Iadecola C, Anrather J. The immunology of stroke: From mechanisms to translation. Nature Medicine 2011; 17(7): 796-808.
  • 38. Macrez R, Ali C, Toutirais O, et al. Stroke and the immune system: From pathophysiology to new therapeutic strategies. Lancet Neurol 2011; 10(5): 471-480.
  • 39. Bernardo-Castro S, Sousa JA, Brás A, et al. Pathophysiology of blood-brain barrier permeability throughout the different stages of ischemic stroke and its implication on hemorrhagic transformation and recovery. Front Neurol 2020; 11: 594672.
  • 40. Simard JM, Kent TA, Chen M, et al. Brain oedema in focal ischaemia: Molecular pathophysiology and theoretical implications. The Lancet Neurology 2007; 6(3): 258-268.
  • 41. Platten M, Wick W. Chapter 5 - blood–brain barrier and brain edema. In: Aminoff MJ, Boller F, Swaab DF, editors. Handbook of clinical neurology. 104. : Elsevier; 2012; 53- 62.
  • 42. Badaut J, Ashwal S, Obenaus A. Aquaporins in cerebrovascular disease: A target for treatment of brain edema. Cerebrovascular Diseases 2011; 31(6): 521-531.
  • 43. Chamorro Á, Meisel A, Planas AM, et al. The immunology of acute stroke. Nat Rev Neurol 2012; 8(7): 401-410.
  • 44. Stokum JA, Kwon MS, Woo SK, et al. Sur1-trpm4 and aqp4 form a heteromultimeric complex that amplifies ion/water osmotic coupling and drives astrocyte swelling. Glia 2018; 66(1): 108-125.
  • 45. Nag S, Manias JL, Stewart DJ. Pathology and new players in the pathogenesis of brain edema. Acta Neuropathol 2009; 118(2): 197-217.
  • 46. Watts ME, Pocock R, Claudianos C. Brain energy and oxygen metabolism: Emerging role in normal function and disease. Front. Mol. Neurosci 2018; 11(216).
  • 47. Prakash R, Carmichael ST. Blood-brain barrier breakdown and neovascularization processes after stroke and traumatic brain injury. Curr Opin Neurol 2015; 28(6): 556- 564.
  • 48. Sweeney MD, Zhao Z, Montagne A, et al. Blood-brain barrier: From physiology to disease and back. Physiol Rev 2019; 99(1): 21-78.
  • 49. Abbott NJ, Patabendige AA, Dolman DE, et al. Structure and function of the blood-brain barrier. Neurobiol Dis 2010; 37(1): 13-25.
  • 50. Attwell D, Buchan AM, Charpak S, et al. Glial and neuronal control of brain blood flow. Nature 2010; 468(7321): 232- 243.
  • 51. Alarcon-Martinez L, Yemisci M, Dalkara T. Pericyte morphology and function. Histology and Histopathology 2021; 36(6): 505-514.
  • 52. Zlokovic BV. Neurovascular pathways to neurodegeneration in alzheimer's disease and other disorders. Nat Rev Neurosci 2011; 12(12): 723-738. İnmede beyin ödemi
  • 53. Iadecola C. The neurovascular unit coming of age: A journey through neurovascular coupling in health and disease. Neuron 2017; 96(1): 17-42.
  • 54. Armulik A, Genové G, Mäe M, et al. Pericytes regulate the blood-brain barrier. Nature 2010; 468(7323): 557-561.
  • 55. Daneman R, Prat A. The blood-brain barrier. Cold Spring Harb Perspect Biol 2015; 7(1): a020412.
  • 56. Alarcon-Martinez L, Yilmaz-Ozcan S, Yemisci M, et al. Capillary pericytes express α-smooth muscle actin, which requires prevention of filamentous-actin depolymerization for detection. eLife 2018;7:e34861.
  • 57. Stokum JA, Gerzanich V, Simard JM. Molecular pathophysiology of cerebral edema. J Cereb Blood Flow Metab 2016; 36(3): 513-538.
  • 58. Steiner E, Enzmann GU, Lin S, et al. Loss of astrocyte polarization upon transient focal brain ischemia as a possible mechanism to counteract early edema formation. Glia 2012; 60(11): 1646-1659.
  • 59. Yemisci M, Gursoy Ozdemir Y, Vural A, et al. Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat Med 2009; 15(9): 1031-1037.
  • 60. Dalkara T, Alarcon-Martinez L, Yemisci M. Pericytes in ischemic stroke. Adv Exp Med Biol 2019; 1147: 189-213.
  • 61. Ehrlich PR. Das sauerstoff-bediirfniss des organismus. A Hirschwald, Berlin 1885.
  • 62. Oldendorf WH, Cornford ME, Brown WJ. The large apparent work capability of the blood-brain barrier: A study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol 1977; 1(5): 409- 417.
  • 63. Gürsoy Özdemir Y, Tas YC. Chapter 1 - anatomy and physiology of the blood–brain barrier. In: Gürsoy-Özdemir Y, Bozdağ-Pehlivan S, Sekerdag E, editors. Nanotechnology methods for neurological diseases and brain tumors: Academic Press; 2017; 3-13.
  • 64. Pappenheimer JR, Renkin EM, Borrero LM. Filtration, diffusion and molecular sieving through peripheral capillary membranes; a contribution to the pore theory of capillary permeability. Am J Physiol 1951; 167(1): 13-46.
  • 65. Siegenthaler JA, Sohet F, Daneman R. 'Sealing off the cns': Cellular and molecular regulation of blood-brain barriergenesis. Curr Opin Neurobiol 2013; 23(6): 1057- 1064.
  • 66. Liu WY, Wang ZB, Zhang LC, et al. Tight junction in bloodbrain barrier: An overview of structure, regulation, and regulator substances. CNS Neurosci Ther 2012; 18(8): 609- 615.
  • 67. Nitta T, Hata M, Gotoh S, et al. Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 2003; 161(3): 653-660.
  • 68. Gürsoy-Ozdemir Y, Bolay H, Saribaş O, et al. Role of endothelial nitric oxide generation and peroxynitrite formation in reperfusion injury after focal cerebral ischemia. Stroke 2000; 31(8): 1974-1980; discussion 1981.
  • 69. Krizbai IA, Deli MA. Signalling pathways regulating the tight junction permeability in the blood-brain barrier. Cell Mol Biol (Noisy-le-grand) 2003; 49(1): 23-31.
  • 70. Jiang X, Andjelkovic AV, Zhu L, et al. Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog Neurobiol 2018; 163-164: 144-171.
  • 71. Song L, Ge S, Pachter JS. Caveolin-1 regulates expression of junction-associated proteins in brain microvascular endothelial cells. Blood 2007; 109(4): 1515-1523.
  • 72. Gürsoy-Ozdemir Y, Can A, Dalkara T. Reperfusion-induced oxidative/nitrative injury to neurovascular unit after focal cerebral ischemia. Stroke 2004; 35(6): 1449-1453.
  • 73. Gibson CL, Srivastava K, Sprigg N, et al. Inhibition of rhokinase protects cerebral barrier from ischaemia-evoked injury through modulations of endothelial cell oxidative stress and tight junctions. J Neurochem 2014; 129(5): 816- 826.
  • 74. Haas M, Forbush B, 3rd. The na-k-cl cotransporter of secretory epithelia. Annu Rev Physiol 2000; 62: 515-534. 75. Russell JM. Sodium-potassium-chloride cotransport. Physiol Rev 2000; 80(1): 211-276.
  • 76. Xu JC, Lytle C, Zhu TT, et al. Molecular cloning and functional expression of the bumetanide-sensitive na-k-cl cotransporter. Proc Natl Acad Sci USA 1994; 91(6): 2201- 2205.
  • 77. Delpire E, Mount DB. Human and murine phenotypes associated with defects in cation-chloride cotransport. Annu Rev Physiol 2002; 64: 803-843.
  • 78. Sun D, Lytle C, O'Donnell ME. Astroglial cell-induced expression of na-k-cl cotransporter in brain microvascular endothelial cells. Am J Physiol 1995; 269(6 Pt 1): C1506- 1512.
  • 79. Wu Q, Delpire E, Hebert SC, et al. Functional demonstration of na+-k+-2cl- cotransporter activity in isolated, polarized choroid plexus cells. Am J Physiol 1998; 275(6): C1565- 1572.
  • 80. Yan Y, Dempsey RJ, Sun D. Na+-k+-cl- cotransporter in rat focal cerebral ischemia. J Cereb Blood Flow Metab 2001; 21(6): 711-721.
  • 81. Wang H, Yan Y, Kintner DB, et al. Gaba-mediated trophic effect on oligodendrocytes requires na-k-2cl cotransport activity. J Neurophysiol 2003; 90(2): 1257-1265.
  • 82. Chen H, Sun D. The role of na-k-cl co-transporter in cerebral ischemia. Neurol Res 2005; 27(3): 280-286.
  • 83. Beck J, Lenart B, Kintner DB, et al. Na-k-cl cotransporter contributes to glutamate-mediated excitotoxicity. J Neurosci 2003; 23(12): 5061-5068.
  • 84. Markadieu N, Delpire E. Physiology and pathophysiology of slc12a1/2 transporters. Pflugers Arch 2014; 466(1): 91- 105.
  • 85. Su G, Kintner DB, Flagella M, et al. Astrocytes from na(+)- k(+)-cl(-) cotransporter-null mice exhibit absence of swelling and decrease in eaa release. Am J Physiol Cell Physiol 2002; 282(5): C1147-1160.
  • 86. Su G, Kintner DB, Sun D. Contribution of na(+)-k(+)-cl(-) cotransporter to high-[k(+)](o)- induced swelling and eaa release in astrocytes. Am J Physiol Cell Physiol 2002; 282(5): C1136-1146.
  • 87. Schomberg SL, Su G, Haworth RA, et al. Stimulation of na-k- 2cl cotransporter in neurons by activation of non-nmda ionotropic receptor and group-i mglurs. J Neurophysiol 2001; 85(6): 2563-2575.
  • 88. Leppanen L, Stys PK. Ion transport and membrane potential in cns myelinated axons. Ii. Effects of metabolic inhibition. J Neurophysiol 1997; 78(4): 2095-2107.
  • 89. Stys PK, Waxman SG, Ransom BR. Ionic mechanisms of anoxic injury in mammalian cns white matter: Role of na+ channels and na(+)-ca2+ exchanger. J Neurosci 1992; 12(2): 430-439.
  • 90. O'Donnell ME, Tran L, Lam TI, et al. Bumetanide inhibition of the blood-brain barrier na-k-cl cotransporter reduces edema formation in the rat middle cerebral artery occlusion model of stroke. J Cereb Blood Flow Metab 2004; 24(9): 1046-1056.
  • 91. Huang H, Bhuiyan MIH, Jiang T, et al. A novel na(+)-k(+)- cl(-) cotransporter 1 inhibitor sts66* reduces brain damage in mice after ischemic stroke. Stroke 2019; 50(4): 1021- 1025.
  • 92. Kahle KT, Simard JM, Staley KJ, et al. Molecular mechanisms of ischemic cerebral edema: Role of electroneutral ion transport. Physiology (Bethesda) 2009; 24: 257-265.
  • 93. Rothman SM. The neurotoxicity of excitatory amino acids is produced by passive chloride influx. J Neurosci 1985; 5(6): 1483-1489.
  • 94. Choi DW, Maulucci-Gedde M, Kriegstein AR. Glutamate neurotoxicity in cortical cell culture. J Neurosci 1987; 7(2): 357-368.
  • 95. Aittoniemi J, Fotinou C, Craig TJ, et al. Review. Sur1: A unique atp-binding cassette protein that functions as an ion channel regulator. Philos Trans R Soc Lond B Biol Sci 2009; 364(1514): 257-267.
  • 96. Simard JM, Woo SK, Gerzanich V. Transient receptor potential melastatin 4 and cell death. Pflugers Arch 2012; 464(6): 573-582.
  • 97. Simard JM, Woo SK, Schwartzbauer GT, et al. Sulfonylurea receptor 1 in central nervous system injury: A focused review. J Cereb Blood Flow Metab 2012; 32(9): 1699-1717.
  • 98. Vennekens R, Nilius B. Insights into trpm4 function, regulation and physiological role. Handb Exp Pharmacol 2007; (179): 269-285.
  • 99. Mehta RI, Tosun C, Ivanova S, et al. Sur1-trpm4 cation channel expression in human cerebral infarcts. J Neuropathol Exp Neurol 2015; 74(8): 835-849.
  • 100. Chen M, Simard JM. Cell swelling and a nonselective cation channel regulated by internal ca2+ and atp in native reactive astrocytes from adult rat brain. J Neurosci 2001; 21(17): 6512-6521.
  • 101. Jha RM, Puccio AM, Chou SH, et al. Sulfonylurea receptor- 1: A novel biomarker for cerebral edema in severe traumatic brain injury. Crit Care Med 2017; 45(3): e255- e264.
  • 102. Nilius B, Owsianik G. The transient receptor potential family of ion channels. Genome Biol 2011; 12(3): 218.
  • 103. Woo SK, Kwon MS, Ivanov A, et al. The sulfonylurea receptor 1 (sur1)-transient receptor potential melastatin 4 (trpm4) channel. J Biol Chem 2013; 288(5): 3655-3667. 104. Mathar I, Jacobs G, Kecskes M, et al. Trpm4. Handb Exp Pharmacol 2014; 222: 461-487.
  • 105. Gerzanich V, Woo SK, Vennekens R, et al. De novo expression of trpm4 initiates secondary hemorrhage in spinal cord injury. Nat Med 2009; 15(2): 185-191.
  • 106. Tosun C, Kurland DB, Mehta R, et al. Inhibition of the sur1-trpm4 channel reduces neuroinflammation and cognitive impairment in subarachnoid hemorrhage. Stroke 2013; 44(12): 3522-3528.
  • 107. Woo SK, Tsymbalyuk N, Tsymbalyuk O, et al. Sur1-trpm4 channels, not k(atp), mediate brain swelling following cerebral ischemia. Neurosci Lett 2020; 718: 134729.
  • 108. Loh KP, Ng G, Yu CY, et al. Trpm4 inhibition promotes angiogenesis after ischemic stroke. Pflugers Arch 2014; 466(3): 563-576.
  • 109. Simard JM, Chen M, Tarasov KV, et al. Newly expressed sur1-regulated nc(ca-atp) channel mediates cerebral edema after ischemic stroke. Nat Med 2006; 12(4): 433- 440.
  • 110. Rajasekaran SA, Beyenbach KW, Rajasekaran AK. Interactions of tight junctions with membrane channels and transporters. Biochim Biophys Acta 2008; 1778(3): 757-769.
  • 111. Day RE, Kitchen P, Owen DS, et al. Human aquaporins: Regulators of transcellular water flow. Biochim Biophys Acta 2014; 1840(5): 1492-1506.
  • 112. Gonen T, Walz T. The structure of aquaporins. Q Rev Biophys 2006; 39(4): 361-396.
  • 113. Murata K, Mitsuoka K, Hirai T, et al. Structural determinants of water permeation through aquaporin-1. Nature 2000; 407(6804): 599-605.
  • 114. Jung JS, Preston GM, Smith BL, et al. Molecular structure of the water channel through aquaporin chip. The hourglass model. J Biol Chem 1994; 269(20): 14648- 14654.
  • 115. Chu H, Huang C, Ding H, et al. Aquaporin-4 and cerebrovascular diseases. Int J Mol Sci 2016; 17(8).
  • 116. Papadopoulos MC, Verkman AS. Aquaporin-4 and brain edema. Pediatr Nephrol 2007; 22(6): 778-784.
  • 117. Jullienne A, Fukuda AM, Ichkova A, et al. Modulating the water channel aqp4 alters mirna expression, astrocyte connectivity and water diffusion in the rodent brain. Sci Rep 2018; 8(1): 4186.
  • 118. Ribeiro Mde C, Hirt L, Bogousslavsky J, et al. Time course of aquaporin expression after transient focal cerebral ischemia in mice. J Neurosci Res 2006; 83(7): 1231-1240.
  • 119. Verkman AS, Anderson MO, Papadopoulos MC. Aquaporins: Important but elusive drug targets. Nat Rev Drug Discov 2014; 13(4): 259-277.
  • 120. Amiry-Moghaddam M, Williamson A, Palomba M, et al. Delayed k+ clearance associated with aquaporin-4 mislocalization: Phenotypic defects in brains of alphasyntrophin- null mice. Proc Natl Acad Sci U S A 2003; 100(23): 13615-13620.
  • 121. Zeng XN, Xie LL, Liang R, et al. Aqp4 knockout aggravates ischemia/reperfusion injury in mice. CNS Neurosci Ther 2012; 18(5): 388-394.
  • 122. Yang B, Verkman AS. Water and glycerol permeabilities of aquaporins 1-5 and mip determined quantitatively by expression of epitope-tagged constructs in xenopus oocytes. J Biol Chem 1997; 272(26): 16140-16146.
  • 123. Akdemir G, Ratelade J, Asavapanumas N, et al. Neuroprotective effect of aquaporin-4 deficiency in a mouse model of severe global cerebral ischemia produced by transient 4-vessel occlusion. Neurosci Lett 2014; 574: 70-75.
  • 124. Hirt L, Fukuda AM, Ambadipudi K, et al. Improved longterm outcome after transient cerebral ischemia in aquaporin-4 knockout mice. J Cereb Blood Flow Metab 2017; 37(1): 277-290.
  • 125. Stokum JA, Mehta RI, Ivanova S, et al. Heterogeneity of aquaporin-4 localization and expression after focal cerebral ischemia underlies differences in white versus grey matter swelling. Acta Neuropathol Commun 2015; 3: 61.
  • 126. Nakahama K, Nagano M, Fujioka A, et al. Effect of tpa on aquaporin 4 mrna expression in cultured rat astrocytes. Glia 1999; 25(3): 240-246.
  • 127. Hirt L, Ternon B, Price M, et al. Protective role of early aquaporin 4 induction against postischemic edema formation. J Cereb Blood Flow Metab 2009; 29(2): 423- 433.
  • 128. Cheripelli BK, Huang X, MacIsaac R, et al. Interaction of recanalization, intracerebral hemorrhage, and cerebral edema after intravenous thrombolysis. Stroke 2016; 47(7): 1761-1767.
  • 129. Simard JM, Kent TA, Chen M, et al. Brain oedema in focal ischaemia: Molecular pathophysiology and theoretical İnmede beyin ödemi implications. Lancet Neurol 2007; 6(3): 258-268.
  • 130. Bai J, Lyden PD. Revisiting cerebral postischemic reperfusion injury: New insights in understanding reperfusion failure, hemorrhage, and edema. International Journal of Stroke 2015; 10(2): 143-152.
  • 131. Pun PB, Lu J, Moochhala S. Involvement of ros in bbb dysfunction. Free radical research 2009; 43(4): 348-364.
  • 132. Jin G, Arai K, Murata Y, et al. Protecting against cerebrovascular injury: Contributions of 12/15- lipoxygenase to edema formation after transient focal ischemia. Stroke 2008; 39(9): 2538-2543.
  • 133. Heo JH, Han SW, Lee SK. Free radicals as triggers of brain edema formation after stroke. Free Radical Biology and Medicine 2005; 39(1): 51-70.
  • 134. Schaller B, Graf R. Cerebral ischemia and reperfusion: The pathophysiologic concept as a basis for clinical therapy. Journal of Cerebral Blood Flow & Metabolism 2004; 24(4): 351-371.
  • 135. Kimberly WT, Dutra BG, Boers AM, et al. Association of reperfusion with brain edema in patients with acute ischemic stroke: A secondary analysis of the mr clean trial. JAMA neurology 2018; 75(4): 453-461.
  • 136. Goyal M, Demchuk AM, Menon BK, et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. New England Journal of Medicine 2015; 372(11): 1019-1030.
  • 137. Cheripelli BK, Huang X, MacIsaac R, et al. Interaction of recanalization, intracerebral hemorrhage, and cerebral edema after intravenous thrombolysis. Stroke 2016; 47(7): 1761-1767.
  • 138. Goyal N, Tsivgoulis G, Pandhi A, et al. Blood pressure levels post mechanical thrombectomy and outcomes in large vessel occlusion strokes. Neurology 2017; 89(6): 540-547.
  • 139. Ziai WC, Carhuapoma JR. Intracerebral hemorrhage. Continuum (Minneap Minn) 2018; 24(6): 1603-1622.
  • 140. Ironside N, Chen CJ, Ding D, et al. Perihematomal edema after spontaneous intracerebral hemorrhage. Stroke 2019; 50(6): 1626-1633.
  • 141. Xie S, Qin Z, Yin X. Classification mechanism and clinical analysis of perihematomal edema in intracerebral hemorrhage. Brain Hemorrhages 2020; 1(3): 141-145.
  • 142. Selim M, Norton C. Perihematomal edema: Implications for intracerebral hemorrhage research and therapeutic advances. J Neurosci Res 2020; 98(1): 212-218.
  • 143. Murthy SB, Moradiya Y, Dawson J, et al. Perihematomal edema and functional outcomes in intracerebral hemorrhage: Influence of hematoma volume and location. Stroke 2015; 46(11): 3088-3092.
  • 144. Levine JM, Snider R, Finkelstein D, et al. Early edema in warfarin-related intracerebral hemorrhage. Neurocrit Care 2007; 7(1): 58-63.
  • 145. Balci K, Asil T, Tunçbilek N, Çelik Y, Utku U. Volume of perihematomal edema in diabetic patients. Journal of Turkish Cerebrovascular Diseases 2006; 12(3): 73-76.
  • 146. Arima H, Wang JG, Huang Y, et al. Significance of perihematomal edema in acute intracerebral hemorrhage: The interact trial. Neurology 2009; 73(23): 1963-1968.
  • 147. Qureshi AI, Palesch YY, Martin R, et al. Effect of systolic blood pressure reduction on hematoma expansion, perihematomal edema, and 3-month outcome among patients with intracerebral hemorrhage: Results from the antihypertensive treatment of acute cerebral hemorrhage study. Arch Neurol 2010; 67(5): 570-576.
  • 148. Naval NS, Abdelhak TA, Urrunaga N, et al. An association of prior statin use with decreased perihematomal edema. Neurocrit Care 2008; 8(1): 13-18.
  • 149. Yu Z, Ma L, Zheng J, et al. Prognostic role of perihematomal edema in intracerebral hemorrhage: A systematic review. Turk Neurosurg 2017; 28(4): 511- 522.
  • 150. Johnson PL, Eckard DA, Chason DP, et al. Imaging of acquired cerebral herniations. Neuroimaging Clin N Am 2002; 12(2): 217-228.
  • 151. Mokri B. The monro-kellie hypothesis: Applications in csf volume depletion. Neurology 2001; 56(12): 1746-1748.
  • 152. Ryoo JW, Na DG, Kim SS, et al. Malignant middle cerebral artery infarction in hyperacute ischemic stroke: Evaluation with multiphasic perfusion computed tomography maps. J Comput Assist Tomogr 2004; 28(1): 55-62.
  • 153. Coburn MW, Rodriguez FJ. Cerebral herniations. . Appl Radiol 1998; 27(5): 10-16.
  • 154. Riveros Gilardi B, Muñoz López JI, Hernández Villegas AC, et al. Types of cerebral herniation and their imaging features. Radiographics 2019; 39(6): 1598-1610.
  • 155. Ross DA, Olsen WL, Ross AM, et al. Brain shift, level of consciousness, and restoration of consciousness in patients with acute intracranial hematoma. J Neurosurg 1989; 71(4): 498-502.
  • 156. Ropper AH. Lateral displacement of the brain and level of consciousness in patients with an acute hemispheral mass. N Engl J Med 1986; 314(15): 953-958.
  • 157. Zhang CH, DeSouza RM, Kho JS, et al. Kernohan-woltman notch phenomenon: A review article. Br J Neurosurg 2017; 31(2): 159-166.
  • 158. Cuneo RA, Caronna JJ, Pitts L, et al. Upward transtentorial herniation: Seven cases and a literature review. Arch Neurol 1979; 36(10): 618-623.
  • 159. Laine FJ, Shedden AI, Dunn MM, et al. Acquired intracranial herniations: Mr imaging findings. AJR Am J Roentgenol 1995; 165(4): 967-973.
  • 160. Mikulis DJ, Diaz O, Egglin TK, et al. Variance of the position of the cerebellar tonsils with age: Preliminary report. Radiology 1992; 183(3): 725-728.
  • 161. Ishikawa M, Kikuchi H, Fujisawa I, et al. Tonsillar herniation on magnetic resonance imaging. Neurosurgery 1988; 22(1 Pt 1): 77-81.
  • 162. Wu S, Yuan R, Wang Y, et al. Early prediction of malignant brain edema after ischemic stroke: A systematic review and meta-analysis. Stroke 2018; 49(12): 2918-2927.
  • 163. Albert AF, Kirkman MA. Clinical and radiological predictors of malignant middle cerebral artery infarction development and outcomes. Journal of Stroke and Cerebrovascular Diseases 2017; 26(11): 2671-2679.
  • 164. Krieger DW, Demchuk AM, Kasner SE, et al. Early clinical and radiological predictors of fatal brain swelling in ischemic stroke. Stroke 1999; 30(2): 287-292.
  • 165. Kasner SE, Demchuk AM, Berrouschot Jr, et al. Predictors of fatal brain edema in massive hemispheric ischemic stroke. Stroke 2001; 32(9): 2117-2123.
  • 166. Barber PA, Demchuk AM, Zhang J, et al. Computed tomographic parameters predicting fatal outcome in large middle cerebral artery infarction. Cerebrovascular Diseases 2003; 16(3): 230-235.
  • 167. Jo K, Bajgur SS, Kim H, et al. A simple prediction score system for malignant brain edema progression in large hemispheric infarction. PLoS One 2017; 12(2): e0171425.
  • 168. Ong CJ, Gluckstein J, Laurido-Soto O, et al. Enhanced detection of edema in malignant anterior circulation stroke (edema) score: A risk prediction tool. Stroke 2017; 48(7): 1969-1972.
  • 169. Shimoyama T, Kimura K, Uemura J, et al. The dash score: A simple score to assess risk for development of malignant middle cerebral artery infarction. Journal of the neurological sciences 2014; 338(1-2): 102-106. 170. Madhok DY, Vitt JR, Nguyen AT. Overview of neurovascular physiology. Curr Neurol Neurosci Rep 2018; 18(12): 99.
  • 171. Heinsius T, Bogousslavsky J, Van Melle G. Large infarcts in the middle cerebral artery territory. Etiology and outcome patterns. Neurology 1998; 50(2): 341-350.
  • 172. Minnerup J, Wersching H, Ringelstein EB, et al. Prediction of malignant middle cerebral artery infarction using computed tomography-based intracranial volume reserve measurements. Stroke 2011; 42(12): 3403-3409.
  • 173. Tei H, Uchiyama S, Ohara K, et al. Deteriorating ischemic stroke in 4 clinical categories classified by the oxfordshire community stroke project. Stroke 2000; 31(9): 2049-2054.
  • 174. Liebeskind DS, Jüttler E, Shapovalov Y, et al. Cerebral edema associated with large hemispheric infarction. Stroke 2019; 50(9): 2619-2625.
  • 175. Kılıç Çoban E, Selçuk HH, Kaykı Y, ve ark. Tanıda yanılgıya yol açan yaygın serebral ödem bulgusu; psödosubaraknoid kanama. Türk Beyin Damar Hastalıkları Dergisi 2015; 21(3): 213-216.
  • 176. Topcuoglu MA, Unal A, Arsava EM. Advances in transcranial doppler clinical applications. Expert Opin Med Diagn 2010; 4(4): 343-358.
  • 177. Evensen KB, Eide PK. Measuring intracranial pressure by invasive, less invasive or non-invasive means: Limitations and avenues for improvement. Fluids Barriers CNS 2020; 17(1): 34.
  • 178. Tavakoli S, Peitz G, Ares W, et al. Complications of invasive intracranial pressure monitoring devices in neurocritical care. Neurosurg Focus 2017; 43(5): E6.
  • 179. Cardim D, Robba C, Bohdanowicz M, et al. Non-invasive monitoring of intracranial pressure using transcranial doppler ultrasonography: Is it possible? Neurocrit Care 2016; 25(3): 473-491.
  • 180. Klingelhöfer J, Conrad B, Benecke R, et al. Evaluation of intracranial pressure from transcranial doppler studies in cerebral disease. J Neurol 1988; 235(3): 159-162.
  • 181. Wang Y, Duan YY, Zhou HY, et al. Middle cerebral arterial flow changes on transcranial color and spectral doppler sonography in patients with increased intracranial pressure. J Ultrasound Med 2014; 33(12): 2131-2136.
  • 182. O'Brien NF, Maa T, Reuter-Rice K. Noninvasive screening for intracranial hypertension in children with acute, severe traumatic brain injury. J Neurosurg Pediatr 2015; 16(4): 420-425.
  • 183. Ünal A. Dora B. Beyin ölümü tanısında destekleyici bir test olarak transkranial doppler ultrasonografisi. Türk Beyin Damar Hastalıkları Dergisi 2012; 18(3): 49-58.
  • 184. Gosling R, King D. The role of measurement in peripheral vascular surgery: Arterial assessment by doppler-shift ultrasound. Proc R Soc Med 1974;67(6):447-449.
  • 185. Bellner J, Romner B, Reinstrup P, et al. Transcranial Doppler sonography pulsatility index (PI)reflects intracranial pressure (ICP). Surg Neurol 2004; 62(1): 45– 51.
  • 186. Figaji AA, Zwane E, Fieggen AG, et al. Transcranial Doppler pulsatility index is not a reliable indicator of intracranial pressure in children with severe traumatic brain injury. 2009; 72(4): 389-394.
  • 187. de Riva N, Budohoski KP, Smielewski P, et al. Transcranial doppler pulsatility index: What it is and what it isn't. Neurocrit Care 2012; 17(1): 58-66.
  • 188. Behrens A, Lenfeldt N, Ambarki K, et al. Transcranial doppler pulsatility index: Not an accurate method to assess intracranial pressure. Neurosurgery 2010; 66(6): 1050-1057.
  • 189. Wakerley BR, Kusuma Y, Yeo LL, et al. Usefulness of transcranial doppler-derived cerebral hemodynamic parameters in the noninvasive assessment of intracranial pressure. J Neuroimaging 2015; 25(1): 111-116.
  • 190. Asil T, Uzunca I, Utku U, et al. Monitoring of increased intracranial pressure resulting from cerebral edema with transcranial doppler sonography in patients with middle cerebral artery infarction. J Ultrasound Med 2003; 22(10): 1049-1053.
  • 191. Barrozo HG, De Guzman MA, Navarro J, et al. Asymmetric TCD findings in malignant mca infarction, resolution after decompressive hemicraniectomy: A case report. Case Rep Neurol 2020; 12(Suppl 1): 127-136.
  • 192. Topçuoğlu M, Arsava E. Kafa içi basınç artışı nörosonolojisi. Türk Beyin Damar Hastalıkları Dergisi 2011; 17(3): 77-87.
  • 193. Topçuoğlu MA, Arsava EM. Transkranial renkli doppler ultrasonografide “polis çakar lambası (flaşör) işareti”: Beyin ölümü doğrulaması için az tanınan bir bulgu. Türk Beyin Damar Hastalıkları Dergisi 2014; 20(1): 36-37.
  • 194. Gerriets T, Stolz E, Modrau B, et al. Sonographic monitoring of midline shift in hemispheric infarctions. Neurology 1999; 52(1): 45-45.
  • 195. Wang L, Feng L, Yao Y, et al. Optimal optic nerve sheath diameter threshold for the identification of elevated opening pressure on lumbar puncture in a chinese population. PLoS One 2015; 10(2): e0117939.
  • 196. Robba C, Bacigaluppi S, Cardim D, et al. Non-invasive assessment of intracranial pressure. Acta Neurol Scand 2016; 134(1): 4-21.
  • 197. Gökcen E, Caltekin İ, Savrun A, et al. Alterations in optic nerve sheath diameter according to cerebrovascular disease sub-groups. Am J Emerg Med 2017; 35(11): 1607-1611.
  • 198. Dubourg J, Javouhey E, Geeraerts T, et al. Ultrasonography of optic nerve sheath diameter for detection of raised intracranial pressure: A systematic review and meta-analysis. Intensive Care Med 2011; 37(7): 1059-1068.
  • 199. Lochner P, Czosnyka M, Naldi A, et al. Optic nerve sheath diameter: Present and future perspectives for neurologists and critical care physicians. Neurol Sci 2019; 40(12): 2447-2457.
  • 200. Fowlkes JB, Holland CK. Mechanical bioeffects from diagnostic ultrasound: Aium consensus statements. American institute of ultrasound in medicine. J Ultrasound Med 2000; 19(2): 69-72.
  • 201. Helmke K, Hansen HC. Fundamentals of transorbital sonographic evaluation of optic nerve sheath expansion under intracranial hypertension. I. Experimental study. Pediatr Radiol 1996; 26(10): 701-705.
  • 202. Yüzbaşıoğlu Y, Yüzbaşıoğlu S, Coşkun S, et al. Bedside measurement of the optic nerve sheath diameter with ultrasound in cerebrovascular disorders. Turk J Med Sci 2018; 48(1): 93-99.
  • İnmede beyin ödemi 203. Güzeldağ S, Yılmaz G, Tuna M, et al. Measuring the optic nerve sheath diameter with ultrasound in acute middle cerebral artery stroke patients. J Stroke Cerebrovasc Dis 2021; 30(2): 105523.
  • 204. Naldi A, Pivetta E, Coppo L, et al. Ultrasonography monitoring of optic nerve sheath diameter and retinal vessels in patients with cerebral hemorrhage. J Neuroimaging 2019; 29(3): 394-399.
  • 205. Skoloudík D, Herzig R, Fadrná T, et al. Distal enlargement of the optic nerve sheath in the hyperacute stage of intracerebral haemorrhage. Br J Ophthalmol 2011; 95(2): 217-221.
  • 206. Canac N, Jalaleddini K, Thorpe SG, et al. Review: Pathophysiology of intracranial hypertension and noninvasive intracranial pressure monitoring. Fluids Barriers CNS 2020; 17(1): 40.
  • 207. Packiasabapathy S, Rangasamy V, Sadhasivam S. Pupillometry in perioperative medicine: A narrative review. Can J Anaesth 2021; 68(4): 566-578.
  • 208. Taylor WR, Chen JW, Meltzer H, et al. Quantitative pupillometry, a new technology: Normative data and preliminary observations in patients with acute head injury. Technical note. J Neurosurg 2003; 98(1): 205-213.
  • 209. Chen JW, Gombart ZJ, Rogers S, et al. Pupillary reactivity as an early indicator of increased intracranial pressure: The introduction of the neurological pupil index. Surg Neurol Int 2011; 2: 82.
  • 210. Samraj RS, Nicolas L. Near infrared spectroscopy (NIRS) derived tissue oxygenation in critical illness. Clin Invest Med 2015; 38(5): E285-295.
  • 211. Lorusso R, Taccone FS, Belliato M, et al. Brain monitoring in adult and pediatric ecmo patients: The importance of early and late assessments. Minerva Anestesiol 2017; 83(10): 1061-1074.
  • 212. Weerakkody RA, Czosnyka M, Zweifel C, et al. Near infrared spectroscopy as possible non-invasive monitor of slow vasogenic icp waves. Acta Neurochir Suppl 2012; 114: 181-185.
  • 213. Samuel M, Burge DM, Marchbanks RJ. Quantitative assessment of intracranial pressure by the tympanic membrane displacement audiometric technique in children with shunted hydrocephalus. Eur J Pediatr Surg 1998; 8(4): 200-207.
  • 214. Shimbles S, Dodd C, Banister K, et al. Clinical comparison of tympanic membrane displacement with invasive intracranial pressure measurements. Physiol Meas 2005; 26(6): 1085-1092.
  • 215. Kupersmith MJ, Sibony P, Mandel G, et al. Optical coherence tomography of the swollen optic nerve head: Deformation of the peripapillary retinal pigment epithelium layer in papilledema. Invest Ophthalmol Vis Sci 2011; 52(9): 6558-6564.
  • 216. Popovich MJ, Hoffman WD. Noninvasive cardiac output monitoring. Crit Care Med 1997; 25(11): 1783-1784. 217. Selhorst JB, Gudeman SK, Butterworth JFt, et al. Papilledema after acute head injury. Neurosurgery 1985; 16(3): 357-363.
  • 218. Vieira MA, Cavalcanti Mdo A, Costa DL, et al. Visual evoked potentials show strong positive association with intracranial pressure in patients with cryptococcal meningitis. Arq Neuropsiquiatr 2015; 73(4): 309-313.
  • 219. Changa AR, Czeisler BM, Lord AS. Management of elevated intracranial pressure: A review. Curr Neurol Neurosci Rep 2019; 19(12): 99.
  • 220. Rangel-Castilla L, Gopinath S, Robertson CS. Management of intracranial hypertension. Neurol Clin 2008; 26(2): 521-541.
  • 221. Carney N, Totten AM, O'Reilly C, et al. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery 2017; 80(1): 6-15.
  • 222. Shevlin C. Optic nerve sheath ultrasound for the bedside diagnosis of intracranial hypertension: Pitfalls and potential. Critical Care Horizons 2015; 1(1): 22-30.
  • 223. Hirzallah MI, Choi HAJJoNC. The monitoring of brain edema and intracranial hypertension. Journal of Neurocritical Care 2016; 9(2): 92-104.
  • 224. Harary M, Dolmans RG, Gormley WBJS. Intracranial pressure monitoring—review and avenues for development. Sensors 2018; 18(2): 465.
  • 225. Alali AS, Fowler RA, Mainprize TG, et al. Intracranial pressure monitoring in severe traumatic brain injury: Results from the american college of surgeons trauma quality improvement program. Journal of Neurotrauma 2013; 30(20): 1737-1746.
  • 226. Farahvar A, Gerber LM, Chiu Y-L, et al. Increased mortality in patients with severe traumatic brain injury treated without intracranial pressure monitoring. Journal of Neurosurgery 2012; 117(4): 729-734.
  • 227. Gerber LM, Chiu YL, Carney N, et al. Marked reduction in mortality in patients with severe traumatic brain injury. J Neurosurg 2013; 119(6): 1583-1590.
  • 228. Talving P, Karamanos E, Teixeira PG, et al. Intracranial pressure monitoring in severe head injury: Compliance with brain trauma foundation guidelines and effect on outcomes: A prospective study. J Neurosurg 2013; 119(5): 1248-1254.
  • 229. Chesnut RM, Temkin N, Carney N, et al. A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med 2012; 367(26): 2471-2481.
  • 230. Cremer OL, van Dijk GW, van Wensen E, et al. Effect of intracranial pressure monitoring and targeted intensive care on functional outcome after severe head injury. Crit Care Med 2005; 33(10): 2207-2213.
  • 231. Shafi S, Diaz-Arrastia R, Madden C, et al. Intracranial pressure monitoring in brain-injured patients is associated with worsening of survival. J Trauma 2008; 64(2): 335-340.
  • 232. Powers WJ, Rabinstein AA, Ackerson T, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: A guideline for healthcare professionals from the american heart association/american stroke association. Stroke 2019; 50(12): e344-e418.
  • 233. ESO Guidelines for management of ischaemic stroke and transient ischaemic attack 2008. Cerebrovasc Dis 2008; 25(5): 457-507.
  • 234. Hernández-Durán S, Meinen L, Rohde V, et al. Invasive monitoring of intracranial pressure after decompressive craniectomy in malignant stroke. Stroke 2021; 52(2): 707-711.
  • 235. Ferro JM, Crassard I, Coutinho JM, et al. Decompressive surgery in cerebrovenous thrombosis: A multicenter registry and a systematic review of individual patient data. Stroke 2011; 42(10): 2825-2831.
  • 236. Roethlisberger M, Gut L, Zumofen DW, et al. Cerebral venous thrombosis requiring invasive treatment for elevated intracranial pressure in women with combined hormonal contraceptive intake: Risk factors, anatomical Türk Beyin Damar Hastalıkları Dergisi 2021; 27(2): 65-132 distribution, and clinical presentation. Neurosurg Focus 2018; 45(1): E12.
  • 237. Godoy DA, Núñez-Patiño RA, Zorrilla-Vaca A, et al. Intracranial hypertension after spontaneous intracerebral hemorrhage: A systematic review and meta-analysis of prevalence and mortality rate. Neurocrit Care 2019; 31(1): 176-187.
  • 238. Bratton SL, Chestnut RM, Ghajar J, et al. Guidelines for the management of severe traumatic brain injury. Viii. Intracranial pressure thresholds. J Neurotrauma 2007; 24 Suppl 1: S55-58.
  • 239. Menacho ST, Grandhi R, Delic A, et al. Impact of intracranial pressure monitor-guided therapy on neurologic outcome after spontaneous nontraumatic intracranial hemorrhage. J Stroke Cerebrovasc Dis 2021; 30(3): 105540.
  • 240. Jeon SB, Koh Y, Choi HA, et al. Critical care for patients with massive ischemic stroke. J Stroke 2014; 16(3): 146- 160.
  • 241. Shah S, Kimberly WT. Today's approach to treating brain swelling in the neuro intensive care unit. Semin Neurol 2016; 36(6): 502-507.
  • 242. Diringer MN. New trends in hyperosmolar therapy? Curr Opin Crit Care 2013; 19(2): 77-82.
  • 243. Güngör L. Beyin ödemi ve tedavisi. Turkiye Klinikleri J Neurol-Special Topics 2015; 8(3): 26-30.
  • 244. Mohney N, Alkhatib O, Koch S, et al. What is the role of hyperosmolar therapy in hemispheric stroke patients? Neurocrit Care 2020; 32(2): 609-619.
  • 245. Cook AM, Morgan Jones G, Hawryluk GWJ, et al. Guidelines for the acute treatment of cerebral edema in neurocritical care patients. Neurocrit Care 2020; 32(3): 647-666.
  • 246. Nilius B, Droogmans G. Ion channels and their functional role in vascular endothelium. Physiol Rev 2001; 81(4): 1415-1459.
  • 247. Dolman D, Drndarski S, Abbott NJ, et al. Induction of aquaporin 1 but not aquaporin 4 messenger rna in rat primary brain microvessel endothelial cells in culture. J Neurochem 2005; 93(4): 825-833.
  • 248. Lam TI, Wise PM, O'Donnell ME. Cerebral microvascular endothelial cell na/h exchange: Evidence for the presence of nhe1 and nhe2 isoforms and regulation by arginine vasopressin. Am J Physiol Cell Physiol 2009; 297(2): C278-289.
  • 249. Previch LE, Ma L, Wright JC, et al. Progress in aqp research and new developments in therapeutic approaches to ischemic and hemorrhagic stroke. Int J Mol Sci 2016; 17(7).
  • 250. Yao Y, Zhang Y, Liao X, et al. Potential therapies for cerebral edema after ischemic stroke: A mini review. Front Aging Neurosci 2020; 12: 618819.
  • 251. Mittal MK, LacKamp A. Intracerebral hemorrhage: Perihemorrhagic edema and secondary hematoma expansion: From bench work to ongoing controversies. Front Neurol 2016; 7: 210.
  • 252. Zheng H, Chen C, Zhang J, et al. Mechanism and therapy of brain edema after intracerebral hemorrhage. Cerebrovasc Dis 2016; 42(3-4): 155-169.
  • 253. Wan YH, Nie C, Wang HL, et al. Therapeutic hypothermia (different depths, durations, and rewarming speeds) for acute ischemic stroke: A meta-analysis. J Stroke Cerebrovasc Dis 2014; 23(10): 2736-2747.
  • 254. Powers WJ, Rabinstein AA, Ackerson T, et al. 2018 guidelines for the early management of patients with acute ischemic stroke: A guideline for healthcare professionals from the american heart association/american stroke association. Stroke 2018; 49(3): e46-e110.
  • 255. Nawabi J, Flottmann F, Hanning U, et al. Futile recanalization with poor clinical outcome is associated with increased edema volume after ischemic stroke. Invest Radiol 2019; 54(5): 282-287.
  • 256. Patel T, Zhou J, Piepmeier JM, et al. Polymeric nanoparticles for drug delivery to the central nervous system. Adv Drug Deliv Rev 2012; 64(7): 701-705.
  • 257. Zhu S, Gao X, Huang K, et al. Glibenclamide enhances the therapeutic benefits of early hypothermia after severe stroke in rats. Aging Dis 2018; 9(4): 685-695.
  • 258. Kunte H, Schmidt S, Eliasziw M, et al. Sulfonylureas improve outcome in patients with type 2 diabetes and acute ischemic stroke. Stroke 2007; 38(9): 2526-2530.
  • 259. Silver FL, Fang J, Robertson AC, et al. Possible neuroprotective effects of sulforrylureas in diabetic patients with acute ischemic stroke. Stroke 2009; 40(4): E156.
  • 260. Sheth KN, Kimberly WT, Elm JJ, et al. Exploratory analysis of glyburide as a novel therapy for preventing brain swelling. Neurocrit Care 2014; 21(1): 43-51.
  • 261. Wang X, Chang Y, He Y, et al. Glimepiride and glibenclamide have comparable efficacy in treating acute ischemic stroke in mice. 2020; 162: 107845.
  • 262. Pineda-Ramírez N, Alquisiras-Burgos I, Ortiz-Plata A, et al. Resveratrol activates neuronal autophagy through ampk in the ischemic brain. Molecular Neurobiology 2020; 57(2): 1055-1069.
  • 263. Alquisiras-Burgos I, Ortiz-Plata A, Franco-Pérez J, et al. Resveratrol reduces cerebral edema through inhibition of de novo sur1 expression induced after focal ischemia. Exp Neurol 2020; 330: 113353.
  • 264. Harrigan MR, Ennis SR, Sullivan SE, et al. Effects of intraventricular infusion of vascular endothelial growth factor on cerebral blood flow, edema, and infarct volume. Acta Neurochir (Wien) 2003; 145(1): 49-53.
  • 265. Chi OZ, Hunter C, Liu X, et al. Effects of vegf and nitric oxide synthase inhibition on blood-brain barrier disruption in the ischemic and non-ischemic cerebral cortex. Neurol Res 2005; 27(8): 864-868.
  • 266. Verkman AS, Smith AJ, Phuan PW, et al. The aquaporin-4 water channel as a potential drug target in neurological disorders. Expert Opin Ther Targets 2017; 21(12): 1161- 1170.
  • 267. Tang G, Yang GY. Aquaporin-4: A potential therapeutic target for cerebral edema. Int J Mol Sci 2016; 17(10).
  • 268. Darabi S, Mohammadi MT. Fullerenol nanoparticles decrease ischaemia-induced brain injury and oedema through inhibition of oxidative damage and aquaporin-1 expression in ischaemic stroke. Brain Inj 2017; 31(8): 1142-1150.
  • 269. Yan Y, Dempsey RJ, Flemmer A, et al. Inhibition of na(+)- k(+)-cl(-) cotransporter during focal cerebral ischemia decreases edema and neuronal damage. Brain Res 2003; 961(1): 22-31.
  • 270. Wang G, Huang H, He Y, et al. Bumetanide protects focal cerebral ischemia-reperfusion injury in rat. Int J Clin Exp Pathol 2014; 7(4): 1487-1494.
  • 271. Xu W, Mu X, Wang H, et al. Chloride co-transporter nkcc1 inhibitor bumetanide enhances neurogenesis and behavioral recovery in rats after experimental stroke. İnmede beyin ödemi Mol Neurobiol 2017; 54(4): 2406-2414.
  • 272. Spasov AA, Murav'eva VU, Gurova NA, et al. Neuroprotective properties of a new inhibitor of na+/h+ exchanger (compound ru-1355) on the model of focal ischemia in rats. Eksp Klin Farmakol 2016; 79(4): 3-7.
  • 273. Koyama Y, Matsui S, Itoh S, et al. The selective na+-ca2+ exchange inhibitor attenuates brain edema after radiofrequency lesion in rats. Eur J Pharmacol 2004; 489(3): 193-196.
  • 274. Vakili A, Kataoka H, Plesnila N. Role of arginine vasopressin v1 and v2 receptors for brain damage after transient focal cerebral ischemia. J Cereb Blood Flow Metab 2005; 25(8): 1012-1019.
  • 275. Ansari S, Krishnan R, Shahripour RB, et al. Combined antagonism of vasopressin receptor subtypes with conivaptan attenuates cerebral edema following ischemic stroke (p5. 202). : AAN Enterprises; 2018.
  • 276. Zeynalov E, Jones SM, Elliott JP. Therapeutic time window for conivaptan treatment against stroke-evoked brain edema and blood-brain barrier disruption in mice. PLoS One 2017; 12(8): e0183985.
  • 277. Cohen JA, Khatri B, Barkhof F, et al. Long-term (up to 4.5 years) treatment with fingolimod in multiple sclerosis: Results from the extension of the randomised transforms study. J Neurol Neurosurg Psychiatry 2016; 87(5): 468- 475.
  • 278. Rolland WB, Lekic T, Krafft PR, et al. Fingolimod reduces cerebral lymphocyte infiltration in experimental models of rodent intracerebral hemorrhage. Exp Neurol 2013; 241: 45-55.
  • 279. Wei Y, Yemisci M, Kim HH, et al. Fingolimod provides long-term protection in rodent models of cerebral ischemia. Ann Neurol 2011; 69(1): 119-129.
  • 280. Talebi A, Rahnema M, Bigdeli MR. Effect of intravenous injection of antagomir-1 on brain ischemia. Mol Biol Rep 2019; 46(1): 1149-1155.
  • 281. Zhang L, Xu S, Wu X, et al. Protective effects of the soluble epoxide hydrolase inhibitor 1-trifluoromethoxyphenyl-3- (1-propionylpiperidin-4-yl) urea in a rat model of permanent middle cerebral artery occlusion. Front Pharmacol 2020; 11: 182.
  • 282. Van der Worp H, Hofmeijer J, Jüttler E, et al. European stroke organisation (ESO) guidelines on the management of space-occupying brain infarction. European Stroke Journal 2021; 6(2): XC-CX.
  • 283. Bevers MB, Kimberly WT. Critical care management of acute ischemic stroke. Curr Treat Options Cardiovasc Med 2017; 19(6): 41.
  • 284. Farrokh S, Cho SM, Suarez JI. Fluids and hyperosmolar agents in neurocritical care: An update. Curr Opin Crit Care 2019; 25(2): 105-109.
  • 285. Surani S, Lockwood G, Macias MY, et al. Hypertonic saline in elevated intracranial pressure: Past, present, and future. J Intensive Care Med 2015; 30(1): 8-12.
  • 286. Hinson HE, Stein D, Sheth KN. Hypertonic saline and mannitol therapy in critical care neurology. J Intensive Care Med 2013; 28(1): 3-11.
  • 287. Fink ME. Osmotherapy for intracranial hypertension: Mannitol versus hypertonic saline. Continuum (Minneap Minn) 2012; 18(3): 640-654.
  • 288. García-Morales EJ, Cariappa R, Parvin CA, et al. Osmole gap in neurologic-neurosurgical intensive care unit: Its normal value, calculation, and relationship with mannitol serum concentrations. Crit Care Med 2004; 32(4): 986- 991.
  • 289. Norris JW. Steroids may have a role in stroke therapy. Stroke 2004; 35(1): 228-229.
  • 290. Sandercock PA, Soane T. Corticosteroids for acute ischaemic stroke. Cochrane Database Syst Rev 2011; 2011(9): Cd000064.
  • 291. Steiner T, Juvela S, Unterberg A, et al. European stroke organization guidelines for the management of intracranial aneurysms and subarachnoid haemorrhage. Cerebrovasc Dis 2013; 35(2): 93-112.
  • 292. Zaganas I, Halpin AP, Oleinik A, et al. A comparison of acute hemorrhagic stroke outcomes in 2 populations: The crete-boston study. Stroke 2011; 42(12): 3640-3642.
  • 293. Feigin VL, Anderson N, Rinkel GJ, et al. Corticosteroids for aneurysmal subarachnoid haemorrhage and primary intracerebral haemorrhage. Cochrane Database Syst Rev 2005; (3): Cd004583.
  • 294. Katayama Y, Haraoka J, Hirabayashi H, et al. A randomized controlled trial of hydrocortisone against hyponatremia in patients with aneurysmal subarachnoid hemorrhage. Stroke 2007; 38(8): 2373-2375.
  • 295. Brouwer MC, McIntyre P, Prasad K, et al. Corticosteroids for acute bacterial meningitis. Cochrane Database Syst Rev 2015; 2015(9): Cd004405.
  • 296. Prasad K, Singh MB, Ryan H. Corticosteroids for managing tuberculous meningitis. Cochrane Database Syst Rev 2016; 4(4): Cd002244.
  • 297. Aguiar de Sousa D, Mestre T, Ferro JM. Cerebral venous thrombosis in behçet's disease: A systematic review. J Neurol 2011; 258(5): 719-727.
  • 298. Chang SM, Messersmith H, Ahluwalia M, et al. Anticonvulsant prophylaxis and steroid use in adults with metastatic brain tumors: Summary of sno and asco endorsement of the congress of neurological surgeons guidelines. Neuro Oncol 2019; 21(4): 424-427.
  • 299. Czosnyka M, Brady K, Reinhard M, et al. Monitoring of cerebrovascular autoregulation: Facts, myths, and missing links. Neurocrit Care 2009; 10(3): 373-386.
  • 300. Godoy DA, Seifi A, Garza D, et al. Hyperventilation therapy for control of posttraumatic intracranial hypertension. Front Neurol 2017; 8: 250.
  • 301. Cold GE. Cerebral blood flow in acute head injury. The regulation of cerebral blood flow and metabolism during the acute phase of head injury, and its significance for therapy. Acta Neurochir Suppl (Wien) 1990; 49: 1-64.
  • 302. Stocchetti N, Maas AI, Chieregato A, et al. Hyperventilation in head injury: A review. Chest 2005; 127(5): 1812-1827.
  • 303. Curley G, Kavanagh BP, Laffey JG. Hypocapnia and the injured brain: More harm than benefit. Crit Care Med 2010; 38(5): 1348-1359.
  • 304. Mayer SA, Chong JY. Critical care management of increased intracranial pressure. Journal of Intensive Care Medicine 2002; 17(2): 55-67.
  • 305. Zhang Z, Guo Q, Wang E. Hyperventilation in neurological patients: From physiology to outcome evidence. Curr Opin Anaesthesiol 2019; 32(5): 568-573.
  • 306. Coles JP, Minhas PS, Fryer TD, et al. Effect of hyperventilation on cerebral blood flow in traumatic head injury: Clinical relevance and monitoring correlates. Crit Care Med 2002; 30(9): 1950-1959.
  • 307. Soustiel JF, Mahamid E, Chistyakov A, et al. Comparison of moderate hyperventilation and mannitol for control of intracranial pressure control in patients with severe traumatic brain injury - a study of cerebral blood flow Türk Beyin Damar Hastalıkları Dergisi 2021; 27(2): 65-132 and metabolism. Acta Neurochir (Wien) 2006; 148(8): 845-851.
  • 308. Brandi G, Stocchetti N, Pagnamenta A, et al. Cerebral metabolism is not affected by moderate hyperventilation in patients with traumatic brain injury. Crit Care 2019; 23(1): 45.
  • 309. Schizodimos T, Soulountsi V, Iasonidou C, et al. An overview of management of intracranial hypertension in the intensive care unit. J Anesth 2020; 34(5): 741-757.
  • 310. Gelb AW, Craen RA, Rao GS, et al. Does hyperventilation improve operating condition during supratentorial craniotomy? A multicenter randomized crossover trial. Anesth Analg 2008; 106(2): 585-594, table of contents.
  • 311. Bindu B, Bindra A, Rath G. Temperature management under general anesthesia: Compulsion or option. J Anaesthesiol Clin Pharmacol 2017; 33(3): 306-316.
  • 312. Morrison SF, Nakamura K. Central mechanisms for thermoregulation. Annu Rev Physiol 2019; 81: 285-308.
  • 313. González-Ibarra FP, Varon J, López-Meza EG. Therapeutic hypothermia: Critical review of the molecular mechanisms of action. Front Neurol 2011; 2: 4.
  • 314. Polderman KH. Mechanisms of action, physiological effects, and complications of hypothermia. Crit Care Med 2009; 37(7 Suppl): S186-202.
  • 315. Otto KA. Therapeutic hypothermia applicable to cardiac surgery. Vet Anaesth Analg 2015; 42(6): 559-569.
  • 316. Wu TC, Grotta JC. Hypothermia for acute ischaemic stroke. Lancet Neurol 2013; 12(3): 275-284.
  • 317. Kurisu K, Abumiya T, Nakamura H, et al. Transarterial regional brain hypothermia inhibits acute aquaporin-4 surge and sequential microvascular events in ischemia/reperfusion injury. Neurosurgery 2016; 79(1): 125-134.
  • 318. Liu K, Khan H, Geng X, et al. Pharmacological hypothermia: A potential for future stroke therapy? Neurol Res 2016; 38(6): 478-490.
  • 319. Rasmussen TP, Bullis TC, Girotra S. Targeted temperature management for treatment of cardiac arrest. Curr Treat Options Cardiovasc Med 2020; 22(11): 39.
  • 320. Rittenberger JC, Doshi AA, Reynolds JC. Postcardiac arrest management. Emerg Med Clin North Am 2015; 33(3): 691-712.
  • 321. Panchal AR, Bartos JA, Cabañas JG, et al. Part 3: Adult basic and advanced life support: 2020 american heart association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 2020; 142(16_suppl_2): S366-s468.
  • 322. Clark DL, Penner M, Wowk S, et al. Treatments (12 and 48 h) with systemic and brain-selective hypothermia techniques after permanent focal cerebral ischemia in rat. Exp Neurol 2009; 220(2): 391-399.
  • 323. Kuczynski AM, Marzoughi S, Al Sultan AS, et al. Therapeutic hypothermia in acute ischemic stroke-a systematic review and meta-analysis. Curr Neurol Neurosci Rep 2020; 20(5): 13.
  • 324. Yao Z, You C, He M. Effect and feasibility of therapeutic hypothermia in patients with hemorrhagic stroke: A systematic review and meta-analysis. World Neurosurg 2018; 111: 404-412.e402.
  • 325. Polderman KH, editor Is therapeutic hypothermia immunosuppressive? Critical Care; 2012; BioMed Central.
  • 326. Zydlewski AW, Hasbargen JA. Hypothermia-induced hypokalemia. Mil Med 1998; 163(10): 719-721.
  • 327. Luscombe M, Andrzejowski JC. Clinical applications of induced hypothermia. Continuing Education in Anaesthesia Critical Care & Pain 2006; 6(1): 23-27.
  • 328. Khan JN, Prasad N, Glancy JM. Qtc prolongation during therapeutic hypothermia: Are we giving it the attention it deserves? Europace 2010; 12(2): 266-270.
  • 329. Timofeev I, Dahyot-Fizelier C, Keong N, et al. Ventriculostomy for control of raised icp in acute traumatic brain injury. Acta Neurochir Suppl 2008; 102: 99-104.
  • 330. Tuncer M. Beyin ve sinir cerrahisinde kanıta dayalı rehberler. Ankara: Buluş Tasarım ve Matbaacılık Hizmetleri; 2020; 286-291.
  • 331. Dossani RH, Patra DP, Terrell DL, et al. Placement of an external ventricular drain. N Engl J Med 2021; 384(2): e3.
  • 332. Bennett TD, Riva-Cambrin J, Keenan HT, et al. Variation in intracranial pressure monitoring and outcomes in pediatric traumatic brain injury. Arch Pediatr Adolesc Med 2012; 166(7): 641-647.
  • 333. Bales JW, Bonow RH, Buckley RT, et al. Primary external ventricular drainage catheter versus intraparenchymal icp monitoring: Outcome analysis. Neurocrit Care 2019; 31(1): 11-21.
  • 334. Hepburn-Smith M, Dynkevich I, Spektor M, et al. Establishment of an external ventricular drain best practice guideline: The quest for a comprehensive, universal standard for external ventricular drain care. J Neurosci Nurs 2016; 48(1): 54-65.
  • 335. Dey M, Stadnik A, Riad F, et al. Bleeding and infection with external ventricular drainage: A systematic review in comparison with adjudicated adverse events in the ongoing clot lysis evaluating accelerated resolution of intraventricular hemorrhage phase III trial. Neurosurgery 2015; 76(3): 291-300.
  • 336. Bauer DF, McGwin G, Jr., Melton SM, et al. The relationship between inr and development of hemorrhage with placement of ventriculostomy. J Trauma 2011; 70(5): 1112-1117.
  • 337. Binz DD, Toussaint LG, 3rd, Friedman JA. Hemorrhagic complications of ventriculostomy placement: A metaanalysis. Neurocrit Care 2009; 10(2): 253-256.
  • 338. Fried HI, Nathan BR, Rowe AS, et al. The insertion and management of external ventricular drains: An evidencebased consensus statement : A statement for healthcare professionals from the neurocritical care society. Neurocrit Care 2016; 24(1): 61-81.
  • 339. Zabramski JM, Whiting D, Darouiche RO, et al. Efficacy of antimicrobial-impregnated external ventricular drain catheters: A prospective, randomized, controlled trial. J Neurosurg 2003; 98(4): 725-730.
  • 340. Slazinski T, Anderson T, Cattell E, et al. Care of the patient undergoing intracranial pressure monitoring/external ventricular drainage or lumbar drainage. Glenview I, editor: American Association of Neuroscience Nurses; 2011; 1-38.
  • 341. Dellit TH, Chan JD, Fulton C, et al. Reduction in clostridium difficile infections among neurosurgical patients associated with discontinuation of antimicrobial prophylaxis for the duration of external ventricular drain placement. Infect Control Hosp Epidemiol 2014; 35(5): 589-590.
  • 342. Gu JC, Wu H, Chen XZ, et al. Intracranial pressure during external ventricular drainage weaning is an outcome predictor of traumatic brain injury. Biomed Res Int 2020; 2020: 8379134. İnmede beyin ödemi
  • 343. Jungheinrich C, Scharpf R, Wargenau M, et al. The pharmacokinetics and tolerability of an intravenous infusion of the new hydroxyethyl starch 130/0.4 (6%, 500 ml) in mild-to-severe renal impairment. Anesth Analg 2002; 95(3): 544-551, table of contents.
  • 344. Walder B, Tramèr MR, Seeck M. Seizure-like phenomena and propofol: A systematic review. Neurology 2002; 58(9): 1327-1332.
  • 345. Bryson HM, Fulton BR, Faulds D. Propofol. An update of its use in anaesthesia and conscious sedation. Drugs 1995; 50(3): 513-559.
  • 346. Severe Medicine Branch of Chinese Medical Association. Chinese guidelines for analgesia and sedation in icu for adults. Chinese Crit Emerge Med 2018; 30(6): 49.
  • 347. Dapeng R, Wenjuan C, Wenqiang L, et al. Effects of propofol combined with dexmedetomidine on circulatory system and sedation in patients with mechanical ventilation in intensive care unit. Trauma Crit Ilness Med 2018; 11(6): 372-374.
  • 348. Oddo M, Steiner LA. Sedation and analgesia in the neurocritical care unit. Oxford textbook of neurocritical care: Oxford University Press; 2016.
  • 349. Ziai W, Sajjad R. Analgesia, sedation and paralysis. In: Torbey M, editor. Neurocrit care: Cambridge Univesity Press; 2009.
  • 350. Mirrakhimov AE, Voore P, Halytskyy O, et al. Propofol infusion syndrome in adults: A clinical update. Crit Care Res Pract 2015; 2015: 260385.
  • 351. Robba C, Citerio G. How i manage intracranial hypertension: BioMed Central; 2019.
  • 352. Flower O, Hellings S. Sedation in traumatic brain injury. Emergency medicine international 2012; 2012.
  • 353. Mishra LD. Cerebral blood flow and anaesthesia: A review. Indian J Anaesth 2002; 46(2): 87-95.
  • 354. Öge E, Baykan B. Nöroloji. 2. Baskı. İstanbul: Nobel Tıp Kitabevi; 2011; 218.
  • 355. Pratt O, Bowles B, Protheroe R. Brain stem death testing after thiopental use: A survey of uk neuro critical care practice. Anaesthesia 2006; 61(11): 1075-1078.
  • 356. Wijdicks EF, Sheth KN, Carter BS, et al. Recommendations for the management of cerebral and cerebellar infarction with swelling: A statement for healthcare professionals from the american heart association/american stroke association. Stroke 2014; 45(4): 1222-1238.
  • 357. Kocher T. Hirnerschütterung, hirndruck und chirurgische eingriffe bei hirnkrankheiten: A. Hölder; 1901.
  • 358. Cushing H. The establishment of cerebral hernia as a decompressive measure for inaccessible brain tumors: With the description of intermuscular methods of making the bone defect in temporal and occipital regions. Surg Gynecol Obstet 1905; 1: 297-314.
  • 359. Ivamoto HS, Numoto M, Donaghy RM. Surgical decompression for cerebral and cerebellar infarcts. Stroke 1974; 5(3): 365-370.
  • 360. Kjellberg RN, Prieto A, Jr. Bifrontal decompressive craniotomy for massive cerebral edema. J Neurosurg 1971; 34(4): 488-493.
  • 361. Timofeev I, Santarius T, Kolias A, et al. Decompressive craniectomy—operative technique and perioperative care. Advances and technical standards in neurosurgery: Springer; 2012; 115-136.
  • 362. Kunt R, Yaka E, Öztürk V, ve ark. İnmed dekompresif cerrahi. Türk Beyin Damar Hastalıkları Dergisi 2014; 20(1): 13-17.
  • 363. Carney N, Totten AM, O'Reilly C, et al. Guidelines for the management of severe traumatic brain injury. Neurosurgery 2017; 80(1): 6-15.
  • 364. Wagner S, Schnippering H, Aschoff A, et al. Suboptimum hemicraniectomy as a cause of additional cerebral lesions in patients with malignant infarction of the middle cerebral artery. Journal of neurosurgery 2001; 94(5): 693-696.
  • 365. Corliss B, Gooldy T, Vaziri S, et al. Complications after in vivo and ex vivo autologous bone flap storage for cranioplasty: A comparative analysis of the literature. World neurosurgery 2016; 96: 510-515.
  • 366. Schuss P, Vatter H, Marquardt G, et al. Cranioplasty after decompressive craniectomy: The effect of timing on postoperative complications. Journal of neurotrauma 2012; 29(6): 1090-1095.
  • 367. İlgezdi İ, Öcek L, Binyay LA, et al. Decompressive hemicraniectomy in acute ischemic stroke Turkish Journal of Cerebrovascular Diseases 2019; 25(1): 31-36.
  • 368. Gopalakrishnan M, Shanbhag NC, Shukla DP, et al. Complications of decompressive craniectomy. Frontiers in neurology 2018; 9: 977.
  • 369. Schirmer CM, Ackil AA, Malek AM. Decompressive craniectomy. Neurocritical care 2008; 8(3): 456-470.
  • 370. Creutzfeldt C, Tirschwell D, Kim L, et al. Seizures after decompressive hemicraniectomy for ischaemic stroke. Journal of Neurology, Neurosurgery & Psychiatry 2014; 85(7): 721-725.
  • 371. Kurland DB, Khaladj-Ghom A, Stokum JA, et al. Complications associated with decompressive craniectomy: A systematic review. Neurocritical care 2015; 23(2): 292-304.
  • 372. Aarabi B, Hesdorffer DC, Simard JM, et al. Comparative study of decompressive craniectomy after mass lesion evacuation in severe head injury. Neurosurgery 2009; 64(5): 927-940.
  • 373. Vahedi K, Vicaut E, Mateo J, et al. Sequential-design, multicenter, randomized, controlled trial of early decompressive craniectomy in malignant middle cerebral artery infarction (decimal trial). Stroke 2007; 38(9): 2506-2517.
  • 374. Jüttler E, Schwab S, Schmiedek P, et al. Decompressive surgery for the treatment of malignant infarction of the middle cerebral artery (destiny) a randomized, controlled trial. Stroke 2007; 38(9): 2518-2525.
  • 375. Hofmeijer J, Kappelle LJ, Algra A, et al. Surgical decompression for space-occupying cerebral infarction (the hemicraniectomy after middle cerebral artery infarction with life-threatening edema trial [hamlet]): A multicentre, open, randomised trial. The Lancet Neurology 2009; 8(4): 326-333.
  • 376. Slezins J, Keris V, Bricis R, et al. Preliminary results of randomized controlled study on decompressive craniectomy in treatment of malignant middle cerebral artery stroke. Medicina 2012; 48(10): 76.
  • 377. Zhao J, Su YY, Zhang Y, et al. Decompressive hemicraniectomy in malignant middle cerebral artery infarct: A randomized controlled trial enrolling patients up to 80 years old. Neurocritical care 2012; 17(2): 161- 171.
  • 378. Frank JI, Schumm LP, Wroblewski K, et al. Hemicraniectomy and durotomy upon deterioration from infarction-related swelling trial: Randomized pilot clinical trial. Stroke 2014; 45(3): 781-787.
  • 379. Jüttler E, Unterberg A, Woitzik J, et al. Hemicraniectomy in older patients with extensive middle-cerebral-artery Türk Beyin Damar Hastalıkları Dergisi 2021; 27(2): 65-132 stroke. New England Journal of Medicine 2014; 370(12): 1091-1100.
  • 380. Chua AE, Buckley BS, Lapitan M, et al. Hemicraniectomy for malignant middle cerebral artery infarction (hemmi): A randomized controlled clinical trial of decompressive surgery with standardized medical care versus standardized medical care alone. Acta Med Philipp 2015; 49(1): 28-33.
  • 381. Vahedi K, Hofmeijer J, Juettler E, et al. Early decompressive surgery in malignant infarction of the middle cerebral artery: A pooled analysis of three randomised controlled trials. The Lancet Neurology 2007; 6(3): 215-222.
  • 382. Cruz‐Flores S, Berge E, Whittle IR. Surgical decompression for cerebral oedema in acute ischaemic stroke. Cochrane Database of Systematic Reviews 2012; (1).
  • 383. Back L, Nagaraja V, Kapur A, et al. Role of decompressive hemicraniectomy in extensive middle cerebral artery strokes: A meta‐analysis of randomised trials. Internal medicine journal 2015; 45(7): 711-717.
  • 384. Alexander P, Heels-Ansdell D, Siemieniuk R, et al. Hemicraniectomy versus medical treatment with large mca infarct: A review and meta-analysis. BMJ open 2016; 6(11): e014390.
  • 385. Das S, Mitchell P, Ross N, et al. Decompressive hemicraniectomy in the treatment of malignant middle cerebral artery infarction: A meta-analysis. World neurosurgery 2019; 123: 8-16.
  • 386. Reinink H, Jüttler E, Hacke W, et al. Surgical decompression for space-occupying hemispheric infarction: A systematic review and individual patient meta-analysis of randomized clinical trials. JAMA Neurol. 2021;78(2):208-216.
  • 387. Ongun N, Marangoz D, Değirmenci E, ve ark. Geniş orta serebral arter enfarktında dekompresif cerrahi ve yalnızca medikal tedavi sonuçlarının karşılaştırılması. Pamukkale Tıp Dergisi ; 10(2): 136-142.
  • 388. Gupta R, Connolly ES, Mayer S, et al. Hemicraniectomy for massive middle cerebral artery territory infarction: A systematic review. Stroke 2004; 35(2): 539-543.
  • 389. Dasenbrock HH, Robertson FC, Vaitkevicius H, et al. Timing of decompressive hemicraniectomy for stroke: A nationwide inpatient sample analysis. Stroke 2017; 48(3): 704-711.
  • 390. Caplan LR. Cerebellar infarcts: Key features. Rev Neurol Dis 2005; 2(2): 51-60.
  • 391. Taylor DR, Basma J, Jones GM, et al. Predicting surgical intervention in cerebellar stroke: A quantitative retrospective analysis. World Neurosurgery 2020; 142: e160-e172.
  • 392. Tchopev Z, Hiller M, Zhuo J, et al. Prediction of poor outcome in cerebellar infarction by diffusion mri. Neurocritical care 2013; 19(3): 276-282.
  • 393. Powers WJ, Rabinstein AA, Ackerson T, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: A guideline for healthcare professionals from the american heart association/american stroke association. Stroke 2019; 50(12): e344-e418.
  • 394. Jauss M, Krieger D, Hornig C, et al. Surgical and medical management of patients with massive cerebellar infarctions: Results of the German-Austrian cerebellar infarction study. Journal of neurology 1999; 246(4): 257- 264.
  • 395. Pallesen L-P, Barlinn K, Puetz V. Role of decompressive craniectomy in ischemic stroke. Frontiers in neurology 2019; 9: 1119.
  • 396. Pfefferkorn T, Eppinger U, Linn J, et al. Long-term outcome after suboccipital decompressive craniectomy for malignant cerebellar infarction. Stroke 2009; 40(9): 3045-3050.
  • 397. Kim MJ, Park SK, Song J, et al. Preventive suboccipital decompressive craniectomy for cerebellar infarction: A retrospective-matched case–control study. Stroke 2016; 47(10): 2565-2573.
  • 398. Beez T, Munoz-Bendix C, Steiger H-J, et al. Decompressive craniectomy for acute ischemic stroke. Critical Care 2019; 23(1): 1-16.
  • 399. Murthy J, Chowdary G, Murthy T, et al. Decompressive craniectomy with clot evacuation in large hemispheric hypertensive intracerebral hemorrhage. Neurocritical care 2005; 2(3): 258-262.
  • 400. Heuts SG, Bruce SS, Zacharia BE, et al. Decompressive hemicraniectomy without clot evacuation in dominantsided intracerebral hemorrhage with icp crisis. Neurosurgical focus 2013; 34(5): E4.
  • 401. Esquenazi Y, Savitz SI, El Khoury R, et al. Decompressive hemicraniectomy with or without clot evacuation for large spontaneous supratentorial intracerebral hemorrhages. Clinical neurology and neurosurgery 2015; 128: 117-122.
  • 402. Lo YT, See AAQ, King NKK. Decompressive craniectomy in spontaneous intracerebral hemorrhage: A case-control study. World Neurosurgery 2017; 103: 815-820. e812.
  • 403. de Oliveira Manoel AL. Surgery for spontaneous intracerebral hemorrhage. Critical Care 2020; 24(1): 45.
  • 404. Gildersleeve KL, Hirzallah MI, Esquenazi Y, et al. Hemicraniectomy for supratentorial primary intracerebral hemorrhage: A retrospective, propensity score matched study. Journal of Stroke and Cerebrovascular Diseases 2019; 28(11): 104361.
  • 405. Mendelow AD, Gregson BA, Fernandes HM, et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial intracerebral haematomas in the international surgical trial in intracerebral haemorrhage (stich): A randomised trial. The Lancet 2005; 365(9457): 387-397.
  • 406. Mendelow AD, Gregson BA, Rowan EN, et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (stich ii): A randomised trial. The Lancet 2013; 382(9890): 397-408.
  • 407. Steiner T, Salman RA-S, Beer R, et al. European stroke organisation (ESO) guidelines for the management of spontaneous intracerebral hemorrhage. International journal of stroke 2014; 9(7): 840-855.
  • 408. Takeuchi S, Wada K, Nagatani K, et al. Decompressive hemicraniectomy for spontaneous intracerebral hemorrhage. Neurosurgical focus 2013; 34(5): E5.
  • 409. Luney M, English S, Longworth A, et al. Acute posterior cranial fossa hemorrhage—is surgical decompression better than expectant medical management? Neurocritical care 2016; 25(3): 365-370. İnmede beyin ödemi
  • 410. Hemphill III JC, Greenberg SM, Anderson CS, et al. Guidelines for the management of spontaneous intracerebral hemorrhage: A guideline for healthcare professionals from the american heart association/american stroke association. Stroke 2015; 46(7): 2032-2060.
  • 411. Çiftçi Ş, Güler A, Şirin H, ve ark. Malin sinüs ven trombozu ve dekompresif kraniektomi. Türk Beyin Damar Hastalıkları Dergisi 2016; 22(3): 107-109.
APA GUNGOR I, SIRIN H, Mengi T, Kozak H, Sorgun M, Nazliel B, Acar Çinleti B, Ozturk S, pektezel m, Necioglu Orken D, Çevik M, Uysal kocabaş z, sezer eryıldız e, Öztürk V, TOGAY ISIKAY C, TOPCUOGLU M, Acar T, Yaka E, Milanlıoğlu A, tatlısuluoğlu d, Yaman N, Bingöl A, Yemisci M, Gurler G, Yesilot N, Ince B, Döşlü L, dinç y, Bakar M, Arsava E, Polat M, TURGUT N, Midi I, aykaç ö, Can U, demir t, Bicakci S, Gökçe M, Afsar N, Yurekli V, Kutluk K, Unal A, YALAZ TEKAN U, arlier z, KAYA D, GULER A, Batur Caglayan H, Kayim Yildiz O, Baydemir R, gültekin h, Dora B, Tanburoğlu A, Ozkul A, Gürsoy-Ozdemir Y, Yılmaz A, Kocer B, Dogan B, Gürkaş E, Özdemir A, Bas D, GİRAY S (2021). İNMEDE BEYİN ÖDEMİ VE KAFA İÇİ BASINÇ ARTIŞI: TÜRK BEYİN DAMAR HASTALIKLARI DERNEĞİ UZMAN GÖRÜŞÜ. , 65 - 132. 10.5505/tbdhd.2021.76376
Chicago GUNGOR IBRAHIM LEVENT,SIRIN HADIYE,Mengi Tuğçe,Kozak Hasan Hüseyin,Sorgun Mine Hayriye,Nazliel Bijen,Acar Çinleti Burcu,Ozturk Serefnur,pektezel mehmet yasir,Necioglu Orken Dilek,Çevik Mehmet uğur,Uysal kocabaş zehra,sezer eryıldız ezgi,Öztürk Vesile,TOGAY ISIKAY CANAN,TOPCUOGLU MEHMET,Acar Türkan,Yaka Erdem,Milanlıoğlu Aysel,tatlısuluoğlu derya,Yaman Nazan,Bingöl Ayşe Petek,Yemisci Muge,Gurler Gokce,Yesilot Nilufer,Ince Birsen,Döşlü Leyla,dinç yasemin,Bakar Mustafa,Arsava Ethem Murat,Polat Murat,TURGUT Nilda,Midi Ipek,aykaç özlem,Can Ufuk,demir turgay,Bicakci Sebnem,Gökçe Mustafa,Afsar Nazire,Yurekli Vedat Ali,Kutluk Kursad,Unal Ali,YALAZ TEKAN ULGEN,arlier zulfikar,KAYA DİLAVER,GULER AYSE,Batur Caglayan Hale,Kayim Yildiz Ozlem,Baydemir Recep,gültekin hamza,Dora Babür,Tanburoğlu Anıl,Ozkul Ayca,Gürsoy-Ozdemir Yasemin,Yılmaz Arda,Kocer Belgin,Dogan Baki,Gürkaş Erdem,Özdemir Atilla Özcan,Bas Demet Funda,GİRAY Semih İNMEDE BEYİN ÖDEMİ VE KAFA İÇİ BASINÇ ARTIŞI: TÜRK BEYİN DAMAR HASTALIKLARI DERNEĞİ UZMAN GÖRÜŞÜ. (2021): 65 - 132. 10.5505/tbdhd.2021.76376
MLA GUNGOR IBRAHIM LEVENT,SIRIN HADIYE,Mengi Tuğçe,Kozak Hasan Hüseyin,Sorgun Mine Hayriye,Nazliel Bijen,Acar Çinleti Burcu,Ozturk Serefnur,pektezel mehmet yasir,Necioglu Orken Dilek,Çevik Mehmet uğur,Uysal kocabaş zehra,sezer eryıldız ezgi,Öztürk Vesile,TOGAY ISIKAY CANAN,TOPCUOGLU MEHMET,Acar Türkan,Yaka Erdem,Milanlıoğlu Aysel,tatlısuluoğlu derya,Yaman Nazan,Bingöl Ayşe Petek,Yemisci Muge,Gurler Gokce,Yesilot Nilufer,Ince Birsen,Döşlü Leyla,dinç yasemin,Bakar Mustafa,Arsava Ethem Murat,Polat Murat,TURGUT Nilda,Midi Ipek,aykaç özlem,Can Ufuk,demir turgay,Bicakci Sebnem,Gökçe Mustafa,Afsar Nazire,Yurekli Vedat Ali,Kutluk Kursad,Unal Ali,YALAZ TEKAN ULGEN,arlier zulfikar,KAYA DİLAVER,GULER AYSE,Batur Caglayan Hale,Kayim Yildiz Ozlem,Baydemir Recep,gültekin hamza,Dora Babür,Tanburoğlu Anıl,Ozkul Ayca,Gürsoy-Ozdemir Yasemin,Yılmaz Arda,Kocer Belgin,Dogan Baki,Gürkaş Erdem,Özdemir Atilla Özcan,Bas Demet Funda,GİRAY Semih İNMEDE BEYİN ÖDEMİ VE KAFA İÇİ BASINÇ ARTIŞI: TÜRK BEYİN DAMAR HASTALIKLARI DERNEĞİ UZMAN GÖRÜŞÜ. , 2021, ss.65 - 132. 10.5505/tbdhd.2021.76376
AMA GUNGOR I,SIRIN H,Mengi T,Kozak H,Sorgun M,Nazliel B,Acar Çinleti B,Ozturk S,pektezel m,Necioglu Orken D,Çevik M,Uysal kocabaş z,sezer eryıldız e,Öztürk V,TOGAY ISIKAY C,TOPCUOGLU M,Acar T,Yaka E,Milanlıoğlu A,tatlısuluoğlu d,Yaman N,Bingöl A,Yemisci M,Gurler G,Yesilot N,Ince B,Döşlü L,dinç y,Bakar M,Arsava E,Polat M,TURGUT N,Midi I,aykaç ö,Can U,demir t,Bicakci S,Gökçe M,Afsar N,Yurekli V,Kutluk K,Unal A,YALAZ TEKAN U,arlier z,KAYA D,GULER A,Batur Caglayan H,Kayim Yildiz O,Baydemir R,gültekin h,Dora B,Tanburoğlu A,Ozkul A,Gürsoy-Ozdemir Y,Yılmaz A,Kocer B,Dogan B,Gürkaş E,Özdemir A,Bas D,GİRAY S İNMEDE BEYİN ÖDEMİ VE KAFA İÇİ BASINÇ ARTIŞI: TÜRK BEYİN DAMAR HASTALIKLARI DERNEĞİ UZMAN GÖRÜŞÜ. . 2021; 65 - 132. 10.5505/tbdhd.2021.76376
Vancouver GUNGOR I,SIRIN H,Mengi T,Kozak H,Sorgun M,Nazliel B,Acar Çinleti B,Ozturk S,pektezel m,Necioglu Orken D,Çevik M,Uysal kocabaş z,sezer eryıldız e,Öztürk V,TOGAY ISIKAY C,TOPCUOGLU M,Acar T,Yaka E,Milanlıoğlu A,tatlısuluoğlu d,Yaman N,Bingöl A,Yemisci M,Gurler G,Yesilot N,Ince B,Döşlü L,dinç y,Bakar M,Arsava E,Polat M,TURGUT N,Midi I,aykaç ö,Can U,demir t,Bicakci S,Gökçe M,Afsar N,Yurekli V,Kutluk K,Unal A,YALAZ TEKAN U,arlier z,KAYA D,GULER A,Batur Caglayan H,Kayim Yildiz O,Baydemir R,gültekin h,Dora B,Tanburoğlu A,Ozkul A,Gürsoy-Ozdemir Y,Yılmaz A,Kocer B,Dogan B,Gürkaş E,Özdemir A,Bas D,GİRAY S İNMEDE BEYİN ÖDEMİ VE KAFA İÇİ BASINÇ ARTIŞI: TÜRK BEYİN DAMAR HASTALIKLARI DERNEĞİ UZMAN GÖRÜŞÜ. . 2021; 65 - 132. 10.5505/tbdhd.2021.76376
IEEE GUNGOR I,SIRIN H,Mengi T,Kozak H,Sorgun M,Nazliel B,Acar Çinleti B,Ozturk S,pektezel m,Necioglu Orken D,Çevik M,Uysal kocabaş z,sezer eryıldız e,Öztürk V,TOGAY ISIKAY C,TOPCUOGLU M,Acar T,Yaka E,Milanlıoğlu A,tatlısuluoğlu d,Yaman N,Bingöl A,Yemisci M,Gurler G,Yesilot N,Ince B,Döşlü L,dinç y,Bakar M,Arsava E,Polat M,TURGUT N,Midi I,aykaç ö,Can U,demir t,Bicakci S,Gökçe M,Afsar N,Yurekli V,Kutluk K,Unal A,YALAZ TEKAN U,arlier z,KAYA D,GULER A,Batur Caglayan H,Kayim Yildiz O,Baydemir R,gültekin h,Dora B,Tanburoğlu A,Ozkul A,Gürsoy-Ozdemir Y,Yılmaz A,Kocer B,Dogan B,Gürkaş E,Özdemir A,Bas D,GİRAY S "İNMEDE BEYİN ÖDEMİ VE KAFA İÇİ BASINÇ ARTIŞI: TÜRK BEYİN DAMAR HASTALIKLARI DERNEĞİ UZMAN GÖRÜŞÜ." , ss.65 - 132, 2021. 10.5505/tbdhd.2021.76376
ISNAD GUNGOR, IBRAHIM LEVENT vd. "İNMEDE BEYİN ÖDEMİ VE KAFA İÇİ BASINÇ ARTIŞI: TÜRK BEYİN DAMAR HASTALIKLARI DERNEĞİ UZMAN GÖRÜŞÜ". (2021), 65-132. https://doi.org/10.5505/tbdhd.2021.76376
APA GUNGOR I, SIRIN H, Mengi T, Kozak H, Sorgun M, Nazliel B, Acar Çinleti B, Ozturk S, pektezel m, Necioglu Orken D, Çevik M, Uysal kocabaş z, sezer eryıldız e, Öztürk V, TOGAY ISIKAY C, TOPCUOGLU M, Acar T, Yaka E, Milanlıoğlu A, tatlısuluoğlu d, Yaman N, Bingöl A, Yemisci M, Gurler G, Yesilot N, Ince B, Döşlü L, dinç y, Bakar M, Arsava E, Polat M, TURGUT N, Midi I, aykaç ö, Can U, demir t, Bicakci S, Gökçe M, Afsar N, Yurekli V, Kutluk K, Unal A, YALAZ TEKAN U, arlier z, KAYA D, GULER A, Batur Caglayan H, Kayim Yildiz O, Baydemir R, gültekin h, Dora B, Tanburoğlu A, Ozkul A, Gürsoy-Ozdemir Y, Yılmaz A, Kocer B, Dogan B, Gürkaş E, Özdemir A, Bas D, GİRAY S (2021). İNMEDE BEYİN ÖDEMİ VE KAFA İÇİ BASINÇ ARTIŞI: TÜRK BEYİN DAMAR HASTALIKLARI DERNEĞİ UZMAN GÖRÜŞÜ. Türk Beyin Damar Hastalıkları Dergisi, 27(2), 65 - 132. 10.5505/tbdhd.2021.76376
Chicago GUNGOR IBRAHIM LEVENT,SIRIN HADIYE,Mengi Tuğçe,Kozak Hasan Hüseyin,Sorgun Mine Hayriye,Nazliel Bijen,Acar Çinleti Burcu,Ozturk Serefnur,pektezel mehmet yasir,Necioglu Orken Dilek,Çevik Mehmet uğur,Uysal kocabaş zehra,sezer eryıldız ezgi,Öztürk Vesile,TOGAY ISIKAY CANAN,TOPCUOGLU MEHMET,Acar Türkan,Yaka Erdem,Milanlıoğlu Aysel,tatlısuluoğlu derya,Yaman Nazan,Bingöl Ayşe Petek,Yemisci Muge,Gurler Gokce,Yesilot Nilufer,Ince Birsen,Döşlü Leyla,dinç yasemin,Bakar Mustafa,Arsava Ethem Murat,Polat Murat,TURGUT Nilda,Midi Ipek,aykaç özlem,Can Ufuk,demir turgay,Bicakci Sebnem,Gökçe Mustafa,Afsar Nazire,Yurekli Vedat Ali,Kutluk Kursad,Unal Ali,YALAZ TEKAN ULGEN,arlier zulfikar,KAYA DİLAVER,GULER AYSE,Batur Caglayan Hale,Kayim Yildiz Ozlem,Baydemir Recep,gültekin hamza,Dora Babür,Tanburoğlu Anıl,Ozkul Ayca,Gürsoy-Ozdemir Yasemin,Yılmaz Arda,Kocer Belgin,Dogan Baki,Gürkaş Erdem,Özdemir Atilla Özcan,Bas Demet Funda,GİRAY Semih İNMEDE BEYİN ÖDEMİ VE KAFA İÇİ BASINÇ ARTIŞI: TÜRK BEYİN DAMAR HASTALIKLARI DERNEĞİ UZMAN GÖRÜŞÜ. Türk Beyin Damar Hastalıkları Dergisi 27, no.2 (2021): 65 - 132. 10.5505/tbdhd.2021.76376
MLA GUNGOR IBRAHIM LEVENT,SIRIN HADIYE,Mengi Tuğçe,Kozak Hasan Hüseyin,Sorgun Mine Hayriye,Nazliel Bijen,Acar Çinleti Burcu,Ozturk Serefnur,pektezel mehmet yasir,Necioglu Orken Dilek,Çevik Mehmet uğur,Uysal kocabaş zehra,sezer eryıldız ezgi,Öztürk Vesile,TOGAY ISIKAY CANAN,TOPCUOGLU MEHMET,Acar Türkan,Yaka Erdem,Milanlıoğlu Aysel,tatlısuluoğlu derya,Yaman Nazan,Bingöl Ayşe Petek,Yemisci Muge,Gurler Gokce,Yesilot Nilufer,Ince Birsen,Döşlü Leyla,dinç yasemin,Bakar Mustafa,Arsava Ethem Murat,Polat Murat,TURGUT Nilda,Midi Ipek,aykaç özlem,Can Ufuk,demir turgay,Bicakci Sebnem,Gökçe Mustafa,Afsar Nazire,Yurekli Vedat Ali,Kutluk Kursad,Unal Ali,YALAZ TEKAN ULGEN,arlier zulfikar,KAYA DİLAVER,GULER AYSE,Batur Caglayan Hale,Kayim Yildiz Ozlem,Baydemir Recep,gültekin hamza,Dora Babür,Tanburoğlu Anıl,Ozkul Ayca,Gürsoy-Ozdemir Yasemin,Yılmaz Arda,Kocer Belgin,Dogan Baki,Gürkaş Erdem,Özdemir Atilla Özcan,Bas Demet Funda,GİRAY Semih İNMEDE BEYİN ÖDEMİ VE KAFA İÇİ BASINÇ ARTIŞI: TÜRK BEYİN DAMAR HASTALIKLARI DERNEĞİ UZMAN GÖRÜŞÜ. Türk Beyin Damar Hastalıkları Dergisi, vol.27, no.2, 2021, ss.65 - 132. 10.5505/tbdhd.2021.76376
AMA GUNGOR I,SIRIN H,Mengi T,Kozak H,Sorgun M,Nazliel B,Acar Çinleti B,Ozturk S,pektezel m,Necioglu Orken D,Çevik M,Uysal kocabaş z,sezer eryıldız e,Öztürk V,TOGAY ISIKAY C,TOPCUOGLU M,Acar T,Yaka E,Milanlıoğlu A,tatlısuluoğlu d,Yaman N,Bingöl A,Yemisci M,Gurler G,Yesilot N,Ince B,Döşlü L,dinç y,Bakar M,Arsava E,Polat M,TURGUT N,Midi I,aykaç ö,Can U,demir t,Bicakci S,Gökçe M,Afsar N,Yurekli V,Kutluk K,Unal A,YALAZ TEKAN U,arlier z,KAYA D,GULER A,Batur Caglayan H,Kayim Yildiz O,Baydemir R,gültekin h,Dora B,Tanburoğlu A,Ozkul A,Gürsoy-Ozdemir Y,Yılmaz A,Kocer B,Dogan B,Gürkaş E,Özdemir A,Bas D,GİRAY S İNMEDE BEYİN ÖDEMİ VE KAFA İÇİ BASINÇ ARTIŞI: TÜRK BEYİN DAMAR HASTALIKLARI DERNEĞİ UZMAN GÖRÜŞÜ. Türk Beyin Damar Hastalıkları Dergisi. 2021; 27(2): 65 - 132. 10.5505/tbdhd.2021.76376
Vancouver GUNGOR I,SIRIN H,Mengi T,Kozak H,Sorgun M,Nazliel B,Acar Çinleti B,Ozturk S,pektezel m,Necioglu Orken D,Çevik M,Uysal kocabaş z,sezer eryıldız e,Öztürk V,TOGAY ISIKAY C,TOPCUOGLU M,Acar T,Yaka E,Milanlıoğlu A,tatlısuluoğlu d,Yaman N,Bingöl A,Yemisci M,Gurler G,Yesilot N,Ince B,Döşlü L,dinç y,Bakar M,Arsava E,Polat M,TURGUT N,Midi I,aykaç ö,Can U,demir t,Bicakci S,Gökçe M,Afsar N,Yurekli V,Kutluk K,Unal A,YALAZ TEKAN U,arlier z,KAYA D,GULER A,Batur Caglayan H,Kayim Yildiz O,Baydemir R,gültekin h,Dora B,Tanburoğlu A,Ozkul A,Gürsoy-Ozdemir Y,Yılmaz A,Kocer B,Dogan B,Gürkaş E,Özdemir A,Bas D,GİRAY S İNMEDE BEYİN ÖDEMİ VE KAFA İÇİ BASINÇ ARTIŞI: TÜRK BEYİN DAMAR HASTALIKLARI DERNEĞİ UZMAN GÖRÜŞÜ. Türk Beyin Damar Hastalıkları Dergisi. 2021; 27(2): 65 - 132. 10.5505/tbdhd.2021.76376
IEEE GUNGOR I,SIRIN H,Mengi T,Kozak H,Sorgun M,Nazliel B,Acar Çinleti B,Ozturk S,pektezel m,Necioglu Orken D,Çevik M,Uysal kocabaş z,sezer eryıldız e,Öztürk V,TOGAY ISIKAY C,TOPCUOGLU M,Acar T,Yaka E,Milanlıoğlu A,tatlısuluoğlu d,Yaman N,Bingöl A,Yemisci M,Gurler G,Yesilot N,Ince B,Döşlü L,dinç y,Bakar M,Arsava E,Polat M,TURGUT N,Midi I,aykaç ö,Can U,demir t,Bicakci S,Gökçe M,Afsar N,Yurekli V,Kutluk K,Unal A,YALAZ TEKAN U,arlier z,KAYA D,GULER A,Batur Caglayan H,Kayim Yildiz O,Baydemir R,gültekin h,Dora B,Tanburoğlu A,Ozkul A,Gürsoy-Ozdemir Y,Yılmaz A,Kocer B,Dogan B,Gürkaş E,Özdemir A,Bas D,GİRAY S "İNMEDE BEYİN ÖDEMİ VE KAFA İÇİ BASINÇ ARTIŞI: TÜRK BEYİN DAMAR HASTALIKLARI DERNEĞİ UZMAN GÖRÜŞÜ." Türk Beyin Damar Hastalıkları Dergisi, 27, ss.65 - 132, 2021. 10.5505/tbdhd.2021.76376
ISNAD GUNGOR, IBRAHIM LEVENT vd. "İNMEDE BEYİN ÖDEMİ VE KAFA İÇİ BASINÇ ARTIŞI: TÜRK BEYİN DAMAR HASTALIKLARI DERNEĞİ UZMAN GÖRÜŞÜ". Türk Beyin Damar Hastalıkları Dergisi 27/2 (2021), 65-132. https://doi.org/10.5505/tbdhd.2021.76376