Yıl: 2022 Cilt: 7 Sayı: 2 Sayfa Aralığı: 53 - 61 Metin Dili: İngilizce DOI: 10.47481/jscmt.1117139 İndeks Tarihi: 29-07-2022

Synthesis of Pincer type carbene andtheir Ag(I)-NHC complexes, and their Antimicrobial activities

Öz:
In this study, theophylline (1) compounds were synthesized with addition of 2-bromoetha-nol, 2-bromoacetamide and methyl-2-bromoacetate to attain symmetric connections to NHCs (2a–c). New complexes containing the symmetric N-heterocyclic carbene (NHC) ligands were synthesized using azolium salts in dimethyl formamide (DMF). After the NHC predecessor compounds reacted with Ag2O, Ag(I)-NHC complexes were synthesized in the following: 7,9-di-(2-hydroxyethyl)-8,9-dihydro-1,3-dimethyl-1H-purine-2,6(3H,7H)-dionedium silver(I)bromide (3a), 7,9-di(acetamide)-8,9-dihydro-1,3-dimethyl-1H-purine-2,6(3H,7H)-di-ondium silver(I)bromide (3b) and 7,9-di(methylacetate)-8,9-dihydro-1,3-dimethyl-1H-pu-rine-2,6(3H,7H)-diondiumsilver(I)bromide (3c). Both synthesized NHC predecessors (2a-c) and Ag(I)-NHC complexes (3a-c) were described by FTIR, 1H-NMR, 13C-NMR, liquid and solid-state conductivity values, TGA analysis, melting point analysis and XRD spectroscopy. In-vitro antibacterial activities of NHC-predecessors and Ag(I)-NHC complexes were tested against gram-positive bacteria (Staphylococcus Aureus and Bacillus Cereus), gram-negative bacteria (Escherichia Coli and Listeria Monocytogenes), and fungus (Candida Albicans) in Tryptic Soy Broth method. Ag(I)-NHC complexes showed higher antibacterial activity than pure NHC predecessors. The lowest microbial inhibition concentration (MIC) value of compound 3a was obtained as 11.56 μg/ml for Escherichia Coli and 11.52 μg/ml for Staphylococcus Aureus. All tested complexes displayed antimicrobial activity with different results.
Anahtar Kelime: Antimicrobial activity Candida Albicans SEM analysis. theophylline

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Hahn, F. E. & Jahnke, M. C. (2008). Heterocyclic carbenes: Synthesis and coordination chemistry. Angewandte Chemie International Edition, 47(17), 3122–3172. [CrossRef]
  • [2] Nam, D., Tinoco, A., Shen Z., Adukure R. D., Sreenilayam G., Khare S. D., & Fasan, R. (2022). Enantioselective Synthesis of α-Trifluoromethyl Amines via Biocatalytic N–H Bond Insertion with Acceptor-Acceptor Carbene Donors. Journal of American Chemichal Society, 144(6), 2590–2602. [CrossRef]
  • [3] Bakhonsky, V. V., Becker, J., Mlostoń, G., & Schreiner, P. R., (2022) N-Alkoxyimidazolylidines (NOHCs): nucleophilic carbenes based on an oxidized imidazolium core, Chemical Communications, 58(10), 1538–1541. [CrossRef]
  • [4] Adagu, I. S., Nolder, D., Warhurst, D. C., & Rossignol J. F. (2002). In vitro activity of nitazoxanide and related compounds against isolates of Giardia intestinalis, Entamoeba histolytica and Trichomonas vaginalis. Journal of Antimicrobial Chemotherapy, 49(1), 103–111. [CrossRef]
  • [5] Turkyilmaz, M., Ulucam, G., Aktas, S., & Okan, S E. (2017). Synthesis and characterization of new N-heterocyclic carbene ligands: 1, 3-Bis (acetamide) imidazol-3-ium bromide and 3-(acetamide)-1-(3-aminopropyl)-1H-imidazol-3-ium bromide. Journal of Molecular Structure, 5(15), 1136, 263–270. [CrossRef]
  • [6] Aktas, A., Taslimi, P., Gulcin, I. & Gok, Y. (2017). Novel NHC precursors: Synthesis, characterization, and carbonic anhydrase and acetylcholinesterase ınhibitory properties. Archiv der Pharmazie Chemistry in Life Sciences, 350(6), Article e201700045. [CrossRef]
  • [7] Anand, U., Carpena, M., Kowalska-Góralska M., Garcia-Perez, P., Sunita, K., Bontempi, E., Dey, A., Prieto, M. A., Proćków, J., Simal-Gandara. J. (2022). Safer plant-based nanoparticles for combating antibiotic resistance in bacteria: A comprehensive review on its potential applications, recent advances, and future perspective, Science of The Total Environment, 821, 153472. [CrossRef]
  • [8] Dong, M., Duan, X.-Y., Li, Y., Liu, B., & Qi, J., (2022). Highly enantioselective δ-protonation and formal [3+3] annulation promoted by N-heterocyclic carbene. Organic Chemistry Frontiers, 11(9), 3039– 3044. [CrossRef]
  • [9] Klussmann, M., Breugst, M., Schlörer, N. E., & Berkessel, A. (2022). Formation of breslow intermediates from n-heterocyclic carbenes and aldehydes involves autocatalysis by the breslow intermediate, and a hemiacetal, 61(23), Article e202117682. [CrossRef]
  • [10] Kaloglu, M., Sémeril, D., Brenner, E., Matt, D., Ozdemir, I., & Toupet, L., (2016). The ınfluence of ımidazolylidene ligands with bulky resorcinarenyl substituents on catalysts for suzuki–miyaura coupling, European Journal of Inorganic Chemistry, 22(7), 1115–1120. [CrossRef]
  • [11] Ghosh, A., Shee,S., & Biju, A. T., (2022) A benzannulation strategy for rapid access to quinazoline-2,4-diones via oxidative N-heterocyclic carbene catalysis. Organic Letters, 24(14), 2772–2777. [CrossRef]
  • [12] Ghosh, D., Ghosh, S., Ghosh, A., Pyne, P., Majumder, S. & Hajra, (2022). A. Visible light-induced functionalization of indazole and pyrazole: a recent update, 28(58), 4435–4455. [CrossRef]
  • [13] Shi, Q., Pei Z., Song, J., Li, S., Wei, D., Coote, M. L., & Lan, Y. (2022). Diradical generation via relayed proton-coupled electron transfer. Journal of the American Chemical Society, 144(7), 3137–3145. [CrossRef]
  • [14] Pacholak, A., Burlaga, N., Frankowski, R., Zgoła-Grześkowiak, A., & Kaczorek, E. 2022. Azole fungicides: (Bio)degradation, transformation products and toxicity elucidation, Science of The Total Environment, 802, Article 149917. [CrossRef]
  • [15] Campillo, D., Escudero, D., Baya, M., & Martín, A. (2022). Heteropolymetallic architectures as snapshots of transmetallation processes at different degrees of Transfer. Chemistry-A European Journal, 28(7), Article e202104538. [CrossRef]
  • [16] Bourissou, D., Guerret, O., Gabbai, P.F., & Betrand, G. (2000). Stable carbenes. Chemical Reviews, 100(1), 39–92. [CrossRef]
  • [17] Seki, M., & Yoshida, K. (2022). Chiral bicyclic NHC/ Rh complexes and their application to catalytic asymmetric ring-opening reaction of oxabenzonorbornadienes with amines. The Journal of Organic Chemistry, 87(5) 3007–3013. [CrossRef]
  • [18] Jahnke, M. C., Hahn, F. E., (2015) Complexes with protic (NH,NH and NH,NR) N-heterocyclic carbene ligands. Coordination Chemistry Reviews, 293– 294, 95–115. [CrossRef]
  • [19] Das, R., Hepp, A., Daniliuc, C. G., & Hahn, F. E. (2014). Synthesis of complexes with protic NH,NHNHC ligands via oxidative addition of 2-Halogenoazoles to zero-valent transition metals. Organometallics, 33(23), 6975–6987. [CrossRef]
  • [20] Haque, R. A., Asekunowo, P. O., Razali, M. R., & Mohammad, F. (2019). NHC–Silver(I) Complexes as Chemical Nucleases; Synthesis, Crystal Structures, and Antibacterial Studies. Heteroatom Chemistry, 253, 94–204.
  • [21] Edwards, P. G., & Hahn, F. E. (2011). Synthesis and coordination chemistry of macrocyclic ligands featuring NHC donor groups. Dalton Trans, 40(40), 10278–10288. [CrossRef]
  • [22] Marelius, D. C., Darrow E. H., Moore C. E., Golen, J. A., Rheingold, A. L., & Grotjahn, D. B. (2015). Hydrogen-bonding pincer complexes with two protic N-Heterocyclic carbenes from direct metalation of a 1,8-Bis(imidazol-1-yl)carbazole by Platinum, Palladium, and Nickel. Chemistry A European Journal, 21(31), 10988–10992. [CrossRef]
  • [23] Flowers, S. E., Johnson, M. C. Pitre B. Z., & Cossairt, B. M. (2018). Synthetic routes to a coordinatively unsaturated ruthenium complex supported by a tripodal, protic bis(N-heterocyclic carbene) phosphine ligand. Dalton Transactions, 47(4), 1276– 1283. [CrossRef]
  • [24] Hussaini, S. Y., Haque, R. A., & Razali, M. R. (2019). Recent progress in silver(I)-, gold(I)/(III)- and palladium(II)-N-heterocyclic carbene complexes: A review towards biological perspectives. Journal of Organometalic Chemistry, 882, 96–111. [CrossRef]
  • [25] Uluçam, G., & Turkyilmaz, M., (2018). Synthesis, structural analysis, and biological activities of some imidazolium salts. Bioinorganic Chemistry and Applications, 2018, Article 1439810. [CrossRef]
  • [26] Nunnari, G., Argyris E., Fang, J., Mehlman, K. E., Pomerantz, R. J., & Daniel, R. (2005). Inhibition of HIV-1 replication by caffeine and caffeine-related methylxanthines. Virology, 335(2), 177–184. [CrossRef]
  • [27] Novena, L. M., Athimoolam, S., Anitha, R., & Bahadu S. A. (2022). Synthesis, crystal structure, hirshfeld surface analysis, spectral and quantum chemical studies of pharmaceutical cocrystals of a bronchodilator drug (Theophylline). Journal of Molecular Structure, 1249, Article 131585. [CrossRef]
  • [28] Habib A., Iqbal A. M., Bhatti H. N., Kamal A, & Kamal S. (2020) Synthesis of alkyl/aryl linked binuclear silver(I)-N-Heterocyclic carbene complexes and evaluation of their antimicrobial, hemolytic and thrombolytic potential. Inorganic Chemistry Communications, 111, Article 107670. [CrossRef]
  • [29] Lv, G., Guo, L., Qiu, L., Yang, H., Wang, T., Liu, H., & Lin, J. (2015). Lipophilicity-dependent ruthenium N-heterocyclic carbene complexes as potential anticancer agents. Dalton Transactions, 44(16), 7324– 7331. [CrossRef]
  • [30] Iqbal, M. A., Umar, M. I., Haque, R. A., Ahamed, M. B. K., Asmawi, M. Z. B. & Majid, A. M. S. A. (2015). Macrophage and colon tumor cells as targets for a binuclear silver(I) N-heterocyclic carbene complex, an anti-inflammatory and apoptosis mediator. Journal of Inorganic Biochemistry, 146, 1–13. [CrossRef]
  • [31] Oñatibia-Astibia, A., Franco, R. & Martínez-Pinilla E. 2017. Health benefits of methylxanthines in neurodegenerative diseases. Molecular Nutritoon & Food Research, 61(6), Article 1600670. [CrossRef]
  • [32] Cherak, Z., Loucif L., Moussi, A., Bendjama E., Benbouza A., & Rolain, J.-M. (2022). Emergence of metallo-β-lactamases and oxa-48 carbapenemase producing gram-negative bacteria in Hospital Wastewater in Algeria: A potential dissemination pathway ınto the environment. Microbial Drug Resistance, 28(1), 23–30. [CrossRef]
  • [33] Dagi, H. T., Findik, D., Senkeles, C., & Arslan, U. (2016). Identification and antifungal susceptibility of Candida species isolated from bloodstream infections in Konya, Turkey. Annals of Clinical Microbiology and Antimicrobials, 15(1), 36. [CrossRef]
  • [34] Hu, J., Li, M., Wan J., Sun J.,Gao, H., Zhang, F., & Zhang, Z. (2022). Metal-free oxidative synthesis of benzimidazole compounds by dehydrogenative coupling of diamines and alcohols. Organic & Biomolecular Chemistry, 20, 2852–2856. [CrossRef]
  • [35] Hu, A., & Wilson, J. J. (2022). Advancing chelation strategies for large metal ıons for nuclear medicine applications, Accounts Chemical Research, 55(6), 904–915. [CrossRef]
  • [36] Augustine, R., Malik, H. N., Singhal, D. K., Mukherjee, A., Malakar, D., Kalarikkal, N., & Thomas, S. (2014). Electrospun polycaprolactone/ZnO nanocomposite membranes as biomaterials with antibacterial and cell adhesion properties. Journal Polymer Research, 21(3), 347. [CrossRef]
  • [37] Wang, P., Fitzpatrick, K. P., & Scheid, K. A. (2021). Combined Photoredox and Carbene Catalysis for the Synthesis of γ-Aryloxy Ketones, 364(3), 518– 524. [CrossRef]
  • [38] Harper, M. J., Arthur, C. J., Crosby, J., Emmett, E. J., Falconer, R. L., Fensham-Smith, A. J., Gates PJ, Leman, T., McGrady, J. E., Bower, J. F., & Russell, C. A. (2018) Oxidative addition, transmetalation, and reductive elimination at a 2,2′-bipyridyl-ligated gold center. Journal of the American Chemical Society, 140(12), 4440–4445. [CrossRef]
  • [39] Çetinkaya, B., Demir, S., Özdemir, I., Toupet, L., Sémeril, D., Bruneau, C., & Dixneuf, P. H. (2001) First ruthenium complexes with a chelating arene carbine ligand as catalytic precursors for alkene metathesis and cycloisomerisation, New Journal of Chemistry, 4(25), 519. [CrossRef]
  • [40] Özdemir, I., Gürbüz, N., Kaloglu, N., Dogan, Ö., Kaloglu, M., Bruneau, C., & Doucet, H. (2013). N-Heterocyclic carbene–palladium catalysts for the direct arylation of pyrrole derivatives with aryl chlorides. Beilstein Journal of Organic Chemistry, 9, 303–312. [CrossRef]
  • [41] Bertrand, B., Stefan, L., Pirrotta, M., Monchaud, D., Bodio, E., Richard, P., Le Gendre P., Warmerdam, E., de Jager, M. H., Groothuis, G. M. M., Picquet, M., & Casini, A. (2014). Caffeine-based gold(ı) n heterocyclic carbenes as possible anticancer agents: synthesis and biological properties. Inorganic Chemistry, 53(4), 2296–2303. [CrossRef]
  • [42] Chang, Y. L., Hsu, Y. J., Chen, Y., Wang, Y. W., & Huang S. M. (2017). Theophylline exhibits anticancer activity via suppressing SRSF3 in cervical and breast cancer cell lines. Oncotarget, 8(60), 101461– 101474. [CrossRef]
  • [43] Chen, X., Wei, Z., Huang, K.-H., Uehling, M., Wleklinski, M., Krska, S., Makarov, A, A., Nowak, T., & Cooks, G. (2022). Pd Reaction Intermediates in Suzuki-Miyaura Cross-Coupling Characterized by Mass Spectrometry. ChemPlusChem, 87(3), Article 202100545. [CrossRef]
  • [44] Kaloglu, M., Kaloglu, N., Özdemir, I., Günal, S., & Özdemir, I. (2016). Novel benzimidazol-2-ylidene carbene precursors and their silver(I) complexes: Potential antimicrobial agents, Bioorganic & Medicinal Chemistry. 24(16), 3649–3656. [CrossRef]
  • [45] Ma, Q., Davidson, P. M., & Zhong, Q., (2013). Antimicrobial properties of lauric arginate alone or in combination with essential oils in tryptic soy broth and 2% reduced fat milk, International Journal of Food Microbiology, 166(1), 77–84. [CrossRef]
  • [46] Ragab, A., Elsisi, D. M,. Ali, O. A. A., Abusaif M. S., Askar, A. A., Farag, A. A., & Ammar, Y. A. (2022). Design, synthesis of new novel quinoxalin-2(1H)-one derivatives incorporating hydrazone, hydrazine, and pyrazole moieties as antimicrobial potential with in-silico ADME and molecular docking simulation, Arabian Journal of Chemistry, 15(1), Article 103497. [CrossRef]
  • [47] Jiang, X., Wang, Y., & Jiang, S. (2010). The effects of substitution of Cr for Mo on the mechanical properties of nanocrystalline Mo5 Si3 films. Nanoscale, 2(3), 394–398. [CrossRef]
  • [48] Li, Y., Wang, J.-M., Kan, J.-L., Li, F., Dong, Y. & Dong, Y.-B. (2022). Combination of a Metal-N-Heterocyclic-Carbene Catalyst and a Chiral Aminocatalyst within a Covalent Organic Framework: a Powerful Cooperative Approach for Relay Asymmetric Catalysis, Inorganic Chemistry Communications, 61(5), 2455–2462. [CrossRef]
  • [49] Pei, X.-L., Zhao, P., Ube, H., Lei, Z., Nagata, K., Ehara, M., & Shionoya, M. (2022). Asymmetric twisting of c-centered octahedral gold(I) clusters by chiral n-heterocyclic carbene ligation. Journal of the American Chemical Society, 144(5), 2156–2163. [CrossRef]
  • [50] Peng, J., Wu, D., Song, F., Wang, S., Niu, Q. Xu, J., Lu, P., Li, H., Chen, L., & Wu, F. (2021) High current density and long cycle life enabled by sulfide solid electrolyte and dendrite-free liquid lithium anode, Advanced Functional Materials, 32(2), Article 2105776. [CrossRef]
  • [51] Günal, S., Kaloglu, N., Özdemir, I., & Demir, S. (2012). Novel benzimidazolium salts and their silver complexes: Synthesis and antibacterial properties. Inorganic Chemistry Communications, 21, 142–146. [CrossRef]
  • [52] Medici, S., Peana M., Crisponi, G., Nurchi, V. M., Lachowicz, J. I., Remelli M., & Zoroddu, M. A. (2016). Silver coordination compounds: a new horizon in medicine. Coordination Chemical Reviews, 327-328, 349–359. [CrossRef]
  • [53] Nikolić, M. V., Mijajlović, M. Ž., Jevtić, V. V., Ratković, Z. R., Radojević, I. D., Čomić, Lj. R., Novaković, S. B., Bogdanović, G. A., Trifunović, S. R., & Radić, G. P. (2014). Synthesis, characterization and antimicrobial activity of copper(II) complexes with some S-alkyl derivatives of thiosalicylic acid. Crystal structure of the binuclear copper(II) complex with S-methyl derivative of thiosalicylic acid. Polyhedron, 79, 80–87. [CrossRef]
  • [54] Balachandar, R., Navaneethan, R., Biruntha, M., Kumar, K. K. A., Govarthanan M., & Karmegam, N. (2022). Antibacterial activity of silver nanoparticles phytosynthesized from Glochidion candolleanum leaves. Materials Letters, 311, Article 131572. [CrossRef]
APA türkyılmaz m, Dönmez M, Ates M (2022). Synthesis of Pincer type carbene andtheir Ag(I)-NHC complexes, and their Antimicrobial activities. , 53 - 61. 10.47481/jscmt.1117139
Chicago türkyılmaz murat,Dönmez Murat,Ates Murat Synthesis of Pincer type carbene andtheir Ag(I)-NHC complexes, and their Antimicrobial activities. (2022): 53 - 61. 10.47481/jscmt.1117139
MLA türkyılmaz murat,Dönmez Murat,Ates Murat Synthesis of Pincer type carbene andtheir Ag(I)-NHC complexes, and their Antimicrobial activities. , 2022, ss.53 - 61. 10.47481/jscmt.1117139
AMA türkyılmaz m,Dönmez M,Ates M Synthesis of Pincer type carbene andtheir Ag(I)-NHC complexes, and their Antimicrobial activities. . 2022; 53 - 61. 10.47481/jscmt.1117139
Vancouver türkyılmaz m,Dönmez M,Ates M Synthesis of Pincer type carbene andtheir Ag(I)-NHC complexes, and their Antimicrobial activities. . 2022; 53 - 61. 10.47481/jscmt.1117139
IEEE türkyılmaz m,Dönmez M,Ates M "Synthesis of Pincer type carbene andtheir Ag(I)-NHC complexes, and their Antimicrobial activities." , ss.53 - 61, 2022. 10.47481/jscmt.1117139
ISNAD türkyılmaz, murat vd. "Synthesis of Pincer type carbene andtheir Ag(I)-NHC complexes, and their Antimicrobial activities". (2022), 53-61. https://doi.org/10.47481/jscmt.1117139
APA türkyılmaz m, Dönmez M, Ates M (2022). Synthesis of Pincer type carbene andtheir Ag(I)-NHC complexes, and their Antimicrobial activities. Journal of sustainable construction materials and technologies (Online), 7(2), 53 - 61. 10.47481/jscmt.1117139
Chicago türkyılmaz murat,Dönmez Murat,Ates Murat Synthesis of Pincer type carbene andtheir Ag(I)-NHC complexes, and their Antimicrobial activities. Journal of sustainable construction materials and technologies (Online) 7, no.2 (2022): 53 - 61. 10.47481/jscmt.1117139
MLA türkyılmaz murat,Dönmez Murat,Ates Murat Synthesis of Pincer type carbene andtheir Ag(I)-NHC complexes, and their Antimicrobial activities. Journal of sustainable construction materials and technologies (Online), vol.7, no.2, 2022, ss.53 - 61. 10.47481/jscmt.1117139
AMA türkyılmaz m,Dönmez M,Ates M Synthesis of Pincer type carbene andtheir Ag(I)-NHC complexes, and their Antimicrobial activities. Journal of sustainable construction materials and technologies (Online). 2022; 7(2): 53 - 61. 10.47481/jscmt.1117139
Vancouver türkyılmaz m,Dönmez M,Ates M Synthesis of Pincer type carbene andtheir Ag(I)-NHC complexes, and their Antimicrobial activities. Journal of sustainable construction materials and technologies (Online). 2022; 7(2): 53 - 61. 10.47481/jscmt.1117139
IEEE türkyılmaz m,Dönmez M,Ates M "Synthesis of Pincer type carbene andtheir Ag(I)-NHC complexes, and their Antimicrobial activities." Journal of sustainable construction materials and technologies (Online), 7, ss.53 - 61, 2022. 10.47481/jscmt.1117139
ISNAD türkyılmaz, murat vd. "Synthesis of Pincer type carbene andtheir Ag(I)-NHC complexes, and their Antimicrobial activities". Journal of sustainable construction materials and technologies (Online) 7/2 (2022), 53-61. https://doi.org/10.47481/jscmt.1117139