Yıl: 2022 Cilt: 7 Sayı: 2 Sayfa Aralığı: 70 - 80 Metin Dili: İngilizce DOI: 10.47481/jscmt.1116561 İndeks Tarihi: 29-07-2022

Numerical analysis of flexural and shear behaviors of geopolymer concrete beams

Öz:
Geopolymer concrete (GPC) is obtained by activating industrial wastes such as fly ash with chemical liquids such as sodium hydroxide (NaOH) and sodium silicate (Na2 SiO3). In order to use environmentally friendly GPC obtained from industrial wastes instead of portland cement concrete (OPC), its behavior in structural elements is important and should be investigated in detail.Load-displacement characteristics, flexural and shear stiffnesses and crack development of samples were obtained by numerical analysis. The GPC beams to be an alternative to OPC beams, their mechanical properties and fracture modes must be at least as much as OPC. As a result of the analyses, it was determined that the 110x20x15 cm GPC beams with compression reinforcements of 2Φ8 and tension reinforcements of 2Φ8, 3Φ14 and 2Φ18, respectively, showed similar flexural, shear and crack development with OPC beams. Simulations of GPC beams were made up to the breaking point, contributing to the understanding of its behavior.
Anahtar Kelime: Fly ash Mechanical properties of GPC Geopolymer concrete Flexural and Shear behavior of GPC

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Pham, D. Q., Nguyen, T. N., Le, S. T., Pham, T. T., & Ngo, T. D. (2021). The structural behaviours of steel reinforced geopolymer concrete beams: An experimental and numerical investigation. In Structures (Vol. 33, pp. 567–580). Elsevier. [CrossRef]
  • [2] Hutagi, A., & Khadiranaikar, R. B. (2016). Flexural behavior of reinforced geopolymer concrete beams. In 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) (pp. 3463-3467). [CrossRef]
  • [3] Kumar, P. U., & Kumar, B. S. C. (2016). Flexural behaviour of reinforced geopolymer concrete beams with GGBS and metakaoline. International Journal of Civil Engineering and Technology, 7(6), 260–277.
  • [4] Nguyen, K. T., Ahn, N., Le, T. A., & Lee, K. (2016). Theoretical and experimental study on mechanical properties and flexural strength of fly ash-geopolymer concrete. Construction and Building Materials, 106, 65–77. [CrossRef]
  • [5] Amiri, A. M., Olfati, A., Najjar, S., Beiranvand, P., & Fard, M. N. (2016). The effect of fly ash on flexural capacity concrete beams. Advances in Science and Technology Research Journal, 10(30), 89–95. [CrossRef]
  • [6] Uma, K., Anuradha, R., & Venkatasubramani, R. (2012). Experimental investigation and analytical modeling of reinforced geopolymer concrete beam. International Journal of Civil and Structural Engineering, 2(3), 808. [CrossRef]
  • [7] Yost, J. R., Radlińska, A., Ernst, S., & Salera, M. (2013). Structural behavior of alkali activated fly ash concrete. Part 1: Mixture design, material properties and sample fabrication. Materials and Structures, 46(3), 435–447. [CrossRef]
  • [8] Yacob, N. S., ElGawady, M. A., Sneed, L. H., & Said, A. (2019). Shear strength of fly ash-based geopolymer reinforced concrete beams. Engineering Structures, 196, 109298. [CrossRef]
  • [9] Visintin, P., Ali, M. M., Albitar, M., & Lucas, W. (2017). Shear behaviour of geopolymer concrete beams without stirrups. Construction and Building Materials, 148, 10–21. [CrossRef]
  • [10] Mourougane, R., Puttappa, C. G., Sashidhar, C., & Muthu, K. U. (2012). Shear behavior of high strength GPC/TVC beams. Proceedings of International Conference on Advances in Architecture and Civil Engineering (AARCV 2012), 21st – 23rd June 2012, 21. 142.
  • [11] ACI Committee. (2002). Building code requirements for structural concrete:(ACI 318-02) and commentary (ACI 318R-02). American Concrete Institute.
  • [12] Chang, E. H. (2009). Shear and bond behaviour of reinforced fly ash-based geopolymer concrete beams [Doctoral dissertation]. Curtin University.
  • [13] Australian Standard AJCS (2004). Australian Standard. AJCS Standards Australia.
  • [14] Ng, T. S., Amin, A., & Foster, S. J. (2013). The behaviour of steel-fibre-reinforced geopolymer concrete beams in shear. Magazine of Concrete Research, 65(5), 308–318. [CrossRef]
  • [15] Alfaiate, J., Pires, E. B., & Martins, J. A. C. (1997). A finite element analysis of non-prescribed crack propagation in concrete. Computers & Structures, 63(1), 17–26. [CrossRef]
  • [16] Mukherjee, D. (August 6, 2009). Impact of celebrity endorsements on brand image. https://papers.ssrn. com/sol3/papers.cfm?abstract_id=1444814
  • [17] Reitherman, R. (2008). The EERI oral history program. In Proceedings of the 14th World Conference on Earthquake Engineering (pp. 12–17). [CrossRef]
  • [18] Halahla, A. (2018). Study the behavior of reinforced concrete beam using finite element analysis. In Proceedings of the 3rd World Congress on Civil, Structural, and Environmental Engineering (April 2018). (Vol. 10). [CrossRef]
  • [19] Rajhgopal, A., Saranya, P., Nagarajan, P., & Shashikala, A. (2021). Performance evaluation of geopolymer concrete beam-column joints using finite element methods. In Singh, R. M., Sudheer, K. P., & Kurian, B. (Eds.). Advances in Civil Engineering. (pp. 677-690). Springer.
  • [20] Aksoylu, C., Yazman, Ş., Ozkilic, Y. O., Gemi, L., & Arslan, M. H. (2020). Experimental analysis of reinforced concrete shear deficient beams with circular web openings strengthened by CFRP composite. Composite Structures, 249, Article 112561. [CrossRef]
  • [21] Ozkilic, Y. O., Yazman, Ş., Aksoylu, C., Arslan, M. H., & Gemi, L. 2021. Numerical investigation of the parameters influencing the behavior of dapped end prefabricated concrete purlins with and without CFRP strengthening. Construction and Building Materials, 275, Article 122173. [CrossRef]
  • [22] Aksoylu, C., Ozkilic, Y. O., & Arslan, M. H. (2020). Damages on prefabricated concrete dapped-end purlins due to snow loads and a novel reinforcement detail. Engineering Structures, 225, Article 111225. [CrossRef]
  • [23] Gemi, L., Madenci, E., & Ozkilic, Y. O. (2021). Experimental, analytical and numerical investigation of pultruded GFRP composite beams infilled with hybrid FRP reinforced concrete. Engineering Structures, 244, Article 112790. [CrossRef]
  • [24] Gemi, L., Madenci, E., & Ozkilic, Y. O. (2020). Investigation of flexural performance of steel, glass FRP and hybrid reinforced concrete beams. Duzce Universitesi Bilim ve Teknoloji Dergisi, 8(2), 1470–1483. [CrossRef]
  • [25] Ozkilic, Y. O., Aksoylu, C., Yazman, S., Gemi, L., Arslan, M. H. (2022). Behavior of CFRP-strengthened RC beams with circular web openings in shear zones: Numerical study. Structures 2022. [Epub ahead of print].
  • [26] Gemi, L., Alsdudi, M., Aksoylu, C., Yazman, S., Ozkilic, Y. O., Arslan, M. H. (2022). Optimum amount of CFRP for strengthening shear deficient reinforced concrete beams. Steel and Composite Structures. 2022. [Epub ahead of print].
  • [27] Ozkilic, Y. O., Aksoylu, C., & Arslan, M. H. (2021). Numerical evaluation of effects of shear span, stirrup spacing and angle of stirrup on reinforced concrete beam behaviour. Structural Engineering and Mechanics, An International Journal, 79(3), 309–326.
  • [28] Ozkilic, Y. O., Aksoylu, C., & Arslan, M. H. (2021). Experimental and numerical investigations of steel fiber reinforced concrete dapped-end purlins. Journal of Building Engineering, 36, 102–119. [CrossRef]
  • [29] Aksoylu, C., Ozkilic, Y. O., Yazman, S., Gemi, L., & Arslan, M. H. (2021). Experimental and numerical investigation of load bearing capacity of thinned end precast purlin beams and solution proposals. Technical Journal of Turkish Chamber of Civil Engineers, 32(3), 10823–10858.
  • [30] Arslan, M. H., Yazman, Ş., Hamad, A. A., Aksoylu, C., Ozkilic, Y. O., & Gemi, L. (2022). Shear strengthening of reinforced concrete T-beams with anchored and non-anchored CFRP fabrics. Structures, 39, 527–542. [CrossRef]
  • [31] Mo, K. H., Alengaram, U. J., & Jumaat, M. Z. (2016). Structural performance of reinforced geopolymer concrete members: A review. Construction and Building Materials, 120, 251–264. [CrossRef]
  • [32] Venkatachalam, S., Vishnuvardhan, K., Amarapathi, G. D., Mahesh, S. R., & Deepasri, M. (2021). Experimental and finite element modelling of reinforced geopolymer concrete beam. Materials Today: Proceedings, 45, 6500–6506. [CrossRef]
  • [33] SOLID65 Element Description. (2022). https:// www.mm.bme.hu/~gyebro/files/ans_help_v182/ ans_elem/Hlp_E_SOLID65.html
APA Çelik A, Özbayrak A, ŞENER A, Acar M (2022). Numerical analysis of flexural and shear behaviors of geopolymer concrete beams. , 70 - 80. 10.47481/jscmt.1116561
Chicago Çelik Ali İhsan,Özbayrak Ahmet,ŞENER AHMET,Acar Mehmet Cemal Numerical analysis of flexural and shear behaviors of geopolymer concrete beams. (2022): 70 - 80. 10.47481/jscmt.1116561
MLA Çelik Ali İhsan,Özbayrak Ahmet,ŞENER AHMET,Acar Mehmet Cemal Numerical analysis of flexural and shear behaviors of geopolymer concrete beams. , 2022, ss.70 - 80. 10.47481/jscmt.1116561
AMA Çelik A,Özbayrak A,ŞENER A,Acar M Numerical analysis of flexural and shear behaviors of geopolymer concrete beams. . 2022; 70 - 80. 10.47481/jscmt.1116561
Vancouver Çelik A,Özbayrak A,ŞENER A,Acar M Numerical analysis of flexural and shear behaviors of geopolymer concrete beams. . 2022; 70 - 80. 10.47481/jscmt.1116561
IEEE Çelik A,Özbayrak A,ŞENER A,Acar M "Numerical analysis of flexural and shear behaviors of geopolymer concrete beams." , ss.70 - 80, 2022. 10.47481/jscmt.1116561
ISNAD Çelik, Ali İhsan vd. "Numerical analysis of flexural and shear behaviors of geopolymer concrete beams". (2022), 70-80. https://doi.org/10.47481/jscmt.1116561
APA Çelik A, Özbayrak A, ŞENER A, Acar M (2022). Numerical analysis of flexural and shear behaviors of geopolymer concrete beams. Journal of sustainable construction materials and technologies (Online), 7(2), 70 - 80. 10.47481/jscmt.1116561
Chicago Çelik Ali İhsan,Özbayrak Ahmet,ŞENER AHMET,Acar Mehmet Cemal Numerical analysis of flexural and shear behaviors of geopolymer concrete beams. Journal of sustainable construction materials and technologies (Online) 7, no.2 (2022): 70 - 80. 10.47481/jscmt.1116561
MLA Çelik Ali İhsan,Özbayrak Ahmet,ŞENER AHMET,Acar Mehmet Cemal Numerical analysis of flexural and shear behaviors of geopolymer concrete beams. Journal of sustainable construction materials and technologies (Online), vol.7, no.2, 2022, ss.70 - 80. 10.47481/jscmt.1116561
AMA Çelik A,Özbayrak A,ŞENER A,Acar M Numerical analysis of flexural and shear behaviors of geopolymer concrete beams. Journal of sustainable construction materials and technologies (Online). 2022; 7(2): 70 - 80. 10.47481/jscmt.1116561
Vancouver Çelik A,Özbayrak A,ŞENER A,Acar M Numerical analysis of flexural and shear behaviors of geopolymer concrete beams. Journal of sustainable construction materials and technologies (Online). 2022; 7(2): 70 - 80. 10.47481/jscmt.1116561
IEEE Çelik A,Özbayrak A,ŞENER A,Acar M "Numerical analysis of flexural and shear behaviors of geopolymer concrete beams." Journal of sustainable construction materials and technologies (Online), 7, ss.70 - 80, 2022. 10.47481/jscmt.1116561
ISNAD Çelik, Ali İhsan vd. "Numerical analysis of flexural and shear behaviors of geopolymer concrete beams". Journal of sustainable construction materials and technologies (Online) 7/2 (2022), 70-80. https://doi.org/10.47481/jscmt.1116561