Yıl: 2022 Cilt: 30 Sayı: 4 Sayfa Aralığı: 1439 - 1459 Metin Dili: İngilizce DOI: 10.55730/1300-0632.3858 İndeks Tarihi: 18-07-2022

Priority enabled content based forwarding in fog computing via SDN

Öz:
As the number of Internet of Things (IoT) applications increases, an efficient transmitting of the data generated by these applications to a centralized cloud server can be a challenging issue. This paper aims to facilitate transmission by utilizing fog computing (FC) and software defined networking (SDN) technologies. To this end, it proposes two novel content based forwarding (CBF) models for IoT networks. The first model takes advantage of FC to reduce transmission and computational delay. Based on the first model, the second model makes use of the prioritization concept to address the timely delivery of critical data while ensuring the data rate and delay requirements. Extensive simulations are conducted to evaluate the proposed models and uncover their impact on throughput, delay, and loss rate metrics. According to the results, the proposed models ensure efficient transmission and low computational delay. In addition, the second model has the ability to transmit critical data more effectively.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Mahmud R, Kotagiri R, Buyya R. Fog Computing: A Taxonomy, Survey and Future Directions. In: Di Martino B, Li KC, Yang L, Esposito A (editors). Internet of Everything. Internet of Things (Technology, Communications and Computing). Springer, Singapore, 2018, pp. 103-130. doi:10.1007/978-981-10-5861-5_5
  • [2] Yousefpour A, Ishigaki G, Jason JP. Fog computing: Towards minimizing delay in the internet of things. In: 2017 IEEE international conference on edge computing (EDGE); Honolulu, HI, USA; 2017. pp.17-24. doi:10.1109/IEEE.EDGE.2017.12
  • [3] Samann FEF, Zeebaree SR, Askar S. IoT provisioning QoS based on cloud and fog computing. Journal of Applied Science and Technology Trends 2021; 2 (01): 29-40. doi:10.38094/jastt20190
  • [4] Hu P, Dhelim S, Ning H, Qiu T. Survey on fog computing: architecture, key technologies, applications and open issues. Journal of network and computer applications 2017; 98: 27-42. doi:10.1016/j.jnca.2017.09.002
  • [5] García-Pérez CA, Merino P. Experimental evaluation of fog computing techniques to reduce latency in LTE networks. Transactions on Emerging Telecommunications Technologies 2018; 29 (4): 1-17. doi:10.1002/ett.3201
  • [6] Siasi N, Jaesim A. Priority-aware SFC provisioning in fog computing. In: IEEE 2020 17th Annual Consumer Communications & Networking Conference (CCNC); Las Vegas, USA; 2020. pp. 1-6. doi:10.1109/CCNC46108.2020.9045275
  • [7] Okay FY, Ozdemir S. Routing in fog-enabled IoT platforms: A survey and an SDN-based solution. IEEE Internet of Things Journal 2018; 5(6): 4871-4889. doi:10.1109/JIOT.2018.2882781
  • [8] Eki RL, Randy L, Kumar S. Method and system for priority based routing. U.S. Patent No. 8,014,404. 6 Sep. 2011.
  • [9] Kreutz D, Ramos FM, Verissimo PE, Rothenberg CE, Azodolmolky S et al. Software-defined networking: A comprehensive survey. Proceedings of the IEEE 2014; 103 (1): 14-76. doi:10.1109/JPROC.2014.2371999
  • [10] Kirkpatrick K. Software-defined networking. Communications of the ACM 2013; 56 (9): 16-19. doi:10.1145/2500468.2500473
  • [11] Alomari A, Subramaniam SK, Samian N, Latip R, Zukarnain Z. Resource Management in SDN-Based Cloud and SDN-Based Fog Computing: Taxonomy Study. Symmetry 2021; 13 (5): 734-764. doi:10.3390/sym13050734
  • [12] Lara A, Quesada L. Priority-based routing in a campus network using SDN. IN: IEEE 2017 9th LatinAmerican Conference on Communications (LATINCOM); Guatemala City, Guatemala; 2017. pp. 1-6. doi:10.1109/LATINCOM.2017.8240172
  • [13] Oh B, Vural S, Wang N, Tafazolli R. Priority-Based Flow Control for Dynamic and Reliable Flow Management in SDN. IEEE Transactions on Network and Service Management 2018; 15 (4): 1720-1732. doi:10.1109/TNSM.2018.2880517
  • [14] Lu Y, Fu B, Xi X, Zhang Z, Wu H. An SDN-based flow control mechanism for guaranteeing QoS and maximizing throughput. Wireless Personal Communications 2017; 97 (1): 417-442. doi:10.1007/s11277-017-4512-9
  • [15] Shinkuma R, Yamada Y, Sato T, Oki E. Flow control in SDN-Edge-Cloud cooperation system with machine learning. In: IEEE 2020 40th International Conference on Distributed Computing Systems (ICDCS); Singapore, Singapore; 2020. pp. 1304-1309. doi:10.1109/ICDCS47774.2020.00169
  • [16] Deng GC, Wang K. An application-aware QoS routing algorithm for SDN-based IoT networking. In: IEEE 2018 Symposium on Computers and Communications (ISCC); Natal, Brazil; 2018. pp. 186-191. doi:10.1109/ISCC.2018.8538551
  • [17] Diro AA., Reda HT, Chilamkurti N. Differential flow space allocation scheme in SDN based fog computing for IoT applications. Journal of Ambient Intelligence and Humanized Computing 2018: 1-11. doi:10.1007/s12652-017-0677-z
  • [18] Bardalai P, Medhi N, Bargayary B, Saikia DK. OpenHealthQ: OpenFlow based QoS management of Healthcare Data in a Software-Defined Fog environment. In: IEEE 2021 International Conference on Communications(ICC); 2021. pp. 1-6. https://doi.org/10.1109/ICC42927.2021.9500637
  • [19] Ghazi MU, Khattak MAK, Shabir B, Malik AW, Ramzan MS. Emergency message dissemination in vehicular networks: A review. IEEE Access 2020; 8: 38606-38621. doi:10.1109/ACCESS.2020.2975110
  • [20] Kadhim AJ, Seno SAH. Energy-efficient multicast routing protocol based on SDN and fog computing for vehicular networks. Ad Hoc Networks 2019; 84: 68-81. doi:10.1016/j.adhoc.2018.09.018
  • [21] Secinti G, Darian PB, Canberk B, Chowdhury KR. SDNs in the sky: Robust end-to-end connectivity for aerial vehicular networks. IEEE Communications Magazine 2018; 56 (1): 16-21. doi:10.1109/MCOM.2017
  • [22] Atlam HF, Walters RJ, Wills GB. Fog computing and the internet of things: a review. big data and cognitive computing. Big data and cognitive computing 2018; 2(2): 10-28. doi:10.3390/bdcc2020010
  • [23] Beck MT, Werner M, Feld S, Schimper S. Mobile edge computing: A taxonomy. In: Sixth International Conference on Advances in Future Internet (AFIN); Lisbon, Portugal; 2014. pp. 48-55. doi:10.1.1.670.9418
  • [24] Zhang C. Design and application of fog computing and Internet of Things service platform for smart city. Future Generation Computer Systems 2020; 112: 630-640. doi:10.1016/j.future.2020.06.016
  • [25] Okay FY, Ozdemir S. A fog computing based smart grid model. In: IEEE 2016 international symposium on networks, computers and communications (ISNCC); Yasmine Hammamet, Tunisia; 2016. p. 1-6. doi:10.1109/ISNCC.2016.7746062
  • [26] Qin H, Zhang H. Intelligent traffic light under fog computing platform in data control of real-time traffic flow. The Journal of Supercomputing 2021; 77(5): 4461-4483. doi:10.1007/s11227-020-03443-3
  • [27] Ning Z, Huang J, Wang X. Vehicular fog computing: Enabling real-time traffic management for smart cities. IEEE Wireless Communications 2019; 26(1): 87-93. doi:10.1109/MWC.2019.1700441
  • [28] Negash B, Gia TN, Anzanpour A, Azimi I, Jiang M et al. Leveraging fog computing for healthcare iot. In: Rahmani A, Liljeberg P, Preden JS, Jantsch A (editors). Fog Computing in the Internet of Things. Springer, Cham, 2018. doi:10.1007/978-3-319-57639-8_8
  • [29] Pop P, Zarrin B, Barzegaran M, Schulte S, Punnekkat S et al. The FORA fog computing platform for industrial IoT. Information Systems 2021; 98: 101727. doi:10.1016/j.is.2021.101727
  • [30] Alzoubi YI, Osmanaj VH, Jaradat A, Al‐Ahmad A. Fog computing security and privacy for the Internet of Thing applications: State‐of‐the‐art. Security and Privacy 2021; 4 (2): e145. doi:10.1002/spy2.145
  • [31] Mekki T, Jabri I, Rachedi A, Chaari L. Software-defined networking in vehicular networks: A survey. Transactions on Emerging Telecommunications Technologies 2021: e4265. doi:10.1002/ett.4265
  • [32] Tomovic S, Yoshigoe K, Maljevic I, Radusinovic I. Software-defined fog network architecture for IoT. Wireless Personal Communications 2017; 92 (1): 181-196. doi:10.1007/s11277-016-3845-0
  • [33] Nunes BAA, Mendonca M, Nguyen XN, Obraczka K, Turletti T. A survey of software-defined networking: Past, present, and future of programmable networks. IEEE Communications Surveys & Tutorials 2014; 16 (3): 1617-1634. doi:10.1109/SURV.2014.012214.00180
  • [34] McKeown N, Anderson T, Balakrishnan H, Parulkar G, Peterson L et al. OpenFlow: enabling innovation in campus networks. ACM SIGCOMM Computer Communication Review 2008; 38 (2): 69-74. doi:0.1145/1355734.1355746
  • [35] Rawat DB, Reddy SR. Software defined networking architecture, security and energy efficiency: A survey. IEEE Communications Surveys & Tutorials 2016; 19 (1): 325-346. doi:0.1109/COMST.2016.2618874
  • [36] Benzekki K, El Fergougui A, Elbelrhiti EA. Software-defined networking (SDN): a survey. Security and communication networks 2016; 9 (18): 5803-5833. doi:0.1002/sec.1737
  • [37] Lv Z, Xiu W. Interaction of edge-cloud computing based on SDN and NFV for next generation IoT. IEEE Internet of Things Journal 2019; 7 (7): 5706-5712. doi:1109/JIOT.2019.2942719
  • [38] Cicioğlu M, Çalhan A. Energy-efficient and SDN-enabled routing algorithm for wireless body area networks. Computer Communications 2020; 160: 228-239. doi:0.1016/j.comcom.2020.06.003
  • [39] Al‐Hubaishi M, Çeken C, Al‐Shaikhli A. A novel energy‐aware routing mechanism for SDN‐enabled WSAN. International Journal of Communication Systems 2019; 32 (17): e3724. doi:1002/dac.3724
  • [40] Baktir AC, Ozgovde A, Ersoy C. How can edge computing benefit from software-defined networking: A survey, use cases, and future directions. IEEE Communications Surveys & Tutorials 2017; 19 (4): 2359-2391. doi:0.1109/COMST.2017.2717482
  • [41] Huang L, Li G, Wu J, Li L, Li J et al. Software-defined QoS provisioning for fog computing advanced wireless sensor networks. In: IEEE 2016 Sensors; Orlando, FL, USA; 2016. p. 1-3. doi:10.1109/ICSENS.2016.7808814
  • [42] Kadhim AJ, Naser JI. Proactive load balancing mechanism for fog computing supported by parked vehicles in IoV-SDN. China Communications 2021; 18 (2): 271-289. doi:23919/JCC.2021.02.019
  • [43] Alizadeh MR, Khajehvand V, Rahmani AM, Akbari E. Task scheduling approaches in fog computing: A systematic review. International Journal of Communication Systems 2020; 33 (16): e4583.doi:0.1109/TC.2016.2536019
  • [44] Muthanna A, Ateya AA, Khakimov A, Gudkova I, Abuarqoub A et al. Secure and reliable IoT networks using fog computing with software-defined networking and blockchain. Journal of Sensor and Actuator Networks 2019; 8 (1): 15. doi:03390/jsan8010015
  • [45] SIM (Sürekli Izleme Merkezi / Continuous Monitoring Center): Minister of Environment, Urbanisation and Climate Change. https://sim.csb.gov.tr/Services/AirQuality (Accessed on: 25.09.2021)
  • [46] Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T et al. Missing value estimation methods for DNA microarrays. Bioinformatics 2001; 17 (6): 520–525. doi:0.1093/bioinformatics/17.6.520
  • [47] Inagaki Y, Shinkuma R, Sato T, Oki E. Prioritization of Mobile IoT Data Transmission Based on Data Importance Extracted From Machine Learning Model. IEEE Access 2019; 7: 93611-93620. doi:0.1109/ACCESS.2019.2928216
  • [48] Stancu AL, Halunga S, Vulpe A, Suciu G, Fratu O et al. A comparison between several Software Defined Networking controllers. In: IEEE 2015 12th international conference on telecommunication in modern satellite, cable and broadcasting services (TELSIKS); Nis, Serbia; 2015. pp. 223-226.doi:0.1109/TELSKS.2015.7357774
  • [49] Salman O, Elhajj IH, Kayssi A, Chehab A. SDN controllers: A comparative study. In: IEEE 2016 18th Mediterranean Electrotechnical Conference (MELECON); Limassol, Cyprus; 2016. pp. 1-6. doi:0.1109/MELCON.2016.7495430
  • [50] Khondoker R, Zaalouk A, Marx R, Bayarou K. Feature-based comparison and selection of Software Defined Networking(SDN) controllers. In: IEEE 2014 World congress on computer applications and information systems (WCCAIS); Hammamet, Tunisia; 2014. pp. 1-7. doi:0.1109/WCCAIS.2014.6916572
APA İNAĞ Y, GÜZEL M, OKAY F, D. M, Özdemir D (2022). Priority enabled content based forwarding in fog computing via SDN. , 1439 - 1459. 10.55730/1300-0632.3858
Chicago İNAĞ Yasin,GÜZEL Metehan,OKAY Feyza YILDIRIM,D. Mehmet,Özdemir Dr. Suat Priority enabled content based forwarding in fog computing via SDN. (2022): 1439 - 1459. 10.55730/1300-0632.3858
MLA İNAĞ Yasin,GÜZEL Metehan,OKAY Feyza YILDIRIM,D. Mehmet,Özdemir Dr. Suat Priority enabled content based forwarding in fog computing via SDN. , 2022, ss.1439 - 1459. 10.55730/1300-0632.3858
AMA İNAĞ Y,GÜZEL M,OKAY F,D. M,Özdemir D Priority enabled content based forwarding in fog computing via SDN. . 2022; 1439 - 1459. 10.55730/1300-0632.3858
Vancouver İNAĞ Y,GÜZEL M,OKAY F,D. M,Özdemir D Priority enabled content based forwarding in fog computing via SDN. . 2022; 1439 - 1459. 10.55730/1300-0632.3858
IEEE İNAĞ Y,GÜZEL M,OKAY F,D. M,Özdemir D "Priority enabled content based forwarding in fog computing via SDN." , ss.1439 - 1459, 2022. 10.55730/1300-0632.3858
ISNAD İNAĞ, Yasin vd. "Priority enabled content based forwarding in fog computing via SDN". (2022), 1439-1459. https://doi.org/10.55730/1300-0632.3858
APA İNAĞ Y, GÜZEL M, OKAY F, D. M, Özdemir D (2022). Priority enabled content based forwarding in fog computing via SDN. Turkish Journal of Electrical Engineering and Computer Sciences, 30(4), 1439 - 1459. 10.55730/1300-0632.3858
Chicago İNAĞ Yasin,GÜZEL Metehan,OKAY Feyza YILDIRIM,D. Mehmet,Özdemir Dr. Suat Priority enabled content based forwarding in fog computing via SDN. Turkish Journal of Electrical Engineering and Computer Sciences 30, no.4 (2022): 1439 - 1459. 10.55730/1300-0632.3858
MLA İNAĞ Yasin,GÜZEL Metehan,OKAY Feyza YILDIRIM,D. Mehmet,Özdemir Dr. Suat Priority enabled content based forwarding in fog computing via SDN. Turkish Journal of Electrical Engineering and Computer Sciences, vol.30, no.4, 2022, ss.1439 - 1459. 10.55730/1300-0632.3858
AMA İNAĞ Y,GÜZEL M,OKAY F,D. M,Özdemir D Priority enabled content based forwarding in fog computing via SDN. Turkish Journal of Electrical Engineering and Computer Sciences. 2022; 30(4): 1439 - 1459. 10.55730/1300-0632.3858
Vancouver İNAĞ Y,GÜZEL M,OKAY F,D. M,Özdemir D Priority enabled content based forwarding in fog computing via SDN. Turkish Journal of Electrical Engineering and Computer Sciences. 2022; 30(4): 1439 - 1459. 10.55730/1300-0632.3858
IEEE İNAĞ Y,GÜZEL M,OKAY F,D. M,Özdemir D "Priority enabled content based forwarding in fog computing via SDN." Turkish Journal of Electrical Engineering and Computer Sciences, 30, ss.1439 - 1459, 2022. 10.55730/1300-0632.3858
ISNAD İNAĞ, Yasin vd. "Priority enabled content based forwarding in fog computing via SDN". Turkish Journal of Electrical Engineering and Computer Sciences 30/4 (2022), 1439-1459. https://doi.org/10.55730/1300-0632.3858