Yıl: 2022 Cilt: 14 Sayı: 2 Sayfa Aralığı: 207 - 224 Metin Dili: İngilizce DOI: 10.3906/mat-2109-11 İndeks Tarihi: 19-07-2022

Numerical solution of a singularly perturbed Fredholm integro differential equation with Robin boundary condition

Öz:
In this paper, we deal with singularly perturbed Fredholm integro differential equation (SPFIDE) with mixed boundary conditions. By using interpolating quadrature rules and exponential basis function, fitted second order difference scheme has been constructed on a Shishkin mesh. The stability and convergence of the difference scheme have been analyzed in the discrete maximum norm. Some numerical examples have been solved and numerical outcomes are obtained.
Anahtar Kelime:

Resistance Exercise with Blood Flow Restriction: A Novel Training Technique to Maximize Strength and Hypertrophy: A Brief Review

Öz:
Low-load resistance exercise with blood flow restriction has been known to stimulate muscle development that is comparable to conventional High-load Resistance Exercise. Resistance exercise with blood flow restriction is a pretty new training technique that can be an option to High-load Resistance Exercise for increasing muscle mass and strength not only in athletes but also in healthy people and elderly people, or rehabilitation for injured athletes with load restrictions. This brief review study aims to summarize the existing literature concerning the basic principles of resistance exercise with blood flow restriction and to provide a brief description of blood flow restriction training to maximize strength and hypertrophy. Blood flow restriction training can be performed when High-load Resistance Exercise is not tolerated be- cause of pain or other contraindications such as absolute weight-bear- ing restrictions, for instance after surgical procedures to regain strength and muscle mass. High-load Resistance Exercise is associated with high mechanical tension, however in some cases, this is not warranted. In these cases, resistance exercise with blood flow restriction seems to be a better option. Consequently, blood flow restriction training should not replace High-load Resistance Exercise for the general public or un- injured athletes, but blood flow restriction training can be used as an al- ternating training tool or in situations where High-load Resistance Exercise is inadvisable.
Anahtar Kelime:

Kan Akışı Kısıtlamalı Direnç Egzersizi: Kuvvet ve Hipertrofiyi En Üst Düzeye Çıkarmak İçin Yeni Bir Antrenman Tekniği: Kısa Derleme

Öz:
Kan akışı kısıtlama ile birlikte kombine olarak yapılan düşük yüklü direnç egzersizlerinin, geleneksel yüksek yüklü direnç egzersiz- leri ile karşılaştırılabilir kas büyümesi sağladığı gösterilmiştir. Kan akışı kısıtlama antrenmanı, sadece sporcularda değil, aynı zamanda sağlıklı insanlarda, yaşlı erişkinlerde veya yüksek yüklü antrenmanlara bağlı yaralanma sorunları olan sporcularda kas boyutunu ve kuvvetini geliş- tirmek için yüksek yüklü direnç antrenmanına alternatif olabilecek ol- dukça yeni bir antrenman tekniğidir. Bu kısa derleme çalışması, kan akışı kısıtlama antrenmanının temel ilkeleri ile ilgili mevcut literatürü özetlemeyi ve kuvvet ve hipertrofiyi en üst düzeye çıkarmak için kan akışı kısıtlama antrenmanının kısa bir tanımını sağlamayı amaçlamak- tadır. Kan akışı kısıtlama antrenmanı, yüksek yüklü direnç antrenman- larının tolere edilemediği durumlarda, kuvvet ve hipertrofi kazandırmak amacıyla yapılabilir. Kan akışı kısıtlama antrenmanı, ağrı veya ağırlık kaldıramama kısıtlamaları gibi diğer kontraendikasyonlar nedeniyle yüksek yüklü direnç egzersizleri tolere edilmediğinde, örneğin kuvvet ve kas kütlesini yeniden kazanmak için cerrahi prosedürlerden sonra yapılabilir. Yüksek yüklü direnç egzersizleri yüksek mekanik gerilim ile ilişkilidir, ancak bazı durumlarda yüksek yükü tolere etmek müm- kün olmayabilir, bu gibi durumlarda kan akışı kısıtlamalı direnç eg- zersizi iyi bir seçenek olarak görülebilir. Sonuç olarak, kan akışı kısıtlama antrenman metodu, genel popülasyon ve sakatlık geçirmemiş sporcular için yüksek yüklü direnç egzersizlerinin yerini almamalıdır, ancak kan akışı kısıtlama antrenmanı, alternatif bir antrenman aracı ola- rak veya yüksek yüklü direnç egzersizlerinin tavsiye edilmediği du- rumlarda kullanılabilir
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Patterson SD, Hughes L, Warmington S, Burr J, Scott BR, Owens J, et al. Blood flow restriction exercise: considerations of methodology, appli- cation, and safety. Front Physiol. 2019;10:533. Erratum in: Front Phys- iol. 2019;10:1332. [Crossref] [PubMed] [PMC]
  • [1] Amiraliyev GM, Durmaz ME, Kudu M. Uniform convergence results for singularly perturbed Fredholm integrodifferential equation. Journal of Mathematical Analysis 2018; 9 (6): 55-64.
  • 2. Pope ZK, Willardson JM, Schoenfeld BJ. Exercise and blood flow re- striction. J Strength Cond Res. 2013;27(10):2914-26. [Crossref] [PubMed]
  • [2] Amiraliyev GM, Durmaz ME, Kudu M. Fitted second order numerical method for a singularly perturbed Fredholm integro-differential equation. Bulletin of the Belgian Mathematical Society - Simon Stevin 2020; 27 (1): 71-88. doi: 10.36045/bbms/1590199305
  • 3. Sato Y. The history and future of KAATSU training. Int J Kaatsu Training Res. 2005;1(1):1-5. [Crossref]
  • [3] Amiraliyev GM, Durmaz ME, Kudu M. A numerical method for a second order singularly perturbed Fredholm integro-differential equation. Miskolc Mathematical Notes 2021; 22 (1): 37-48. doi: 10.18514/MMN.2021.2930
  • 4. Laurentino GC, Ugrinowitsch C, Roschel H, Aoki MS, Soares AG, Neves M Jr, et al. Strength training with blood flow restriction diminishes myo- statin gene expression. Med Sci Sports Exerc. 2012;44(3):406-12. [Crossref] [PubMed]
  • [4] Amiraliyev GM, Mamedov YD. Difference schemes on the uniform mesh for singularly perturbed pseudo-parabolic equations. Turkish Journal of Mathematics 1995; 19: 207-222.
  • 5. Takarada Y, Takazawa H, Sato Y, Takebayashi S, Tanaka Y, Ishii N. Ef- fects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol (1985). 2000;88(6):2097- 106. [Crossref] [PubMed]
  • [5] Brunner H. Numerical Analysis and Computational Solution of Integro-Differential Equations. Contemporary Computational Mathematics-A Celebration of the 80th Birthday of Ian Sloan (J. Dick et al., eds.) 2018. Springer, Cham: pp. 205-231. doi: 10.1007/978-3-319-72456-0_11
  • 6. Abe T, Fujita S, Nakajima T, Sakamaki M, Ozaki H, Ogasawara R, et al. Effects of low-intensity cycle training with restricted leg blood flow on thigh muscle volume and VO2MAX in young men. J Sports Sci Med. 2010;9(3):452-8. [PubMed] [PMC]
  • [6] Chen J, He M, Zeng T. A multiscale Galerkin method for second-order boundary value problems of Fredholm integro-differential equation II: Efficient algorithm for the discrete linear system. Journal of Visual Communication and Image Representation 2019; 58: 112-118. doi: 10.1016/j.jvcir.2018.11.027
  • 7. Ishii N, Madarame H, Odagiri K, Naganuma M, Shinoda K. Circuit train- ing without external load induces hypertrophy in lower-limb muscles when combined with moderate venous occlusion. International Journal of KAATSU Training Research. 2005;1(1):24-8. [Crossref]
  • [7] Chen J, He M, Huang Y. A fast multiscale Galerkin method for solving second order linear Fredholm integrodifferential equation with Dirichlet boundary conditions. Journal of Computational and Applied Mathematics 2020; 364: 112352. doi: 10.1016/j.cam.2019.112352
  • 8. Kacin A, Strazar K. Frequent low-load ischemic resistance exercise to failure enhances muscle oxygen delivery and endurance capacity. Scand J Med Sci Sports. 2011;21(6):e231-41. [Crossref] [PubMed]
  • [8] Dehghan M. Chebyshev finite difference for Fredholm integro-differential equation. International Journal of Computer Mathematics 2008; 85 (1): 123-130. doi: 10.1080/00207160701405436
  • 9. Takarada Y, Sato Y, Ishii N. Effects of resistance exercise combined with vascular occlusion on muscle function in athletes. Eur J Appl Physiol. 2002;86(4):308-14. [Crossref] [PubMed]
  • [9] Doolan ER, Miller JJH, Schilders WHA. Uniform Numerical Methods for Problems with Initial and Boundary Layers. Dublin, Boole Press, 1980.
  • 10. Yasuda T, Abe T, Sato Y, Midorikawa T, Kearns K, Inoue CF, et al. Mus- cle fiber cross-sectional area is increased after two weeks of twice-daily KAATSU-resistance training. International Journal of KAATSU Training Research. 2005;1(2):65-70. [Crossref]
  • [10] Dönmez Demir D, Lukonde AP, Kürkçü ÖK, Sezer M. Pell–Lucas series approach for a class of Fredholm-type delay integro-differential equations with variable delays. Mathematical Sciences 2021; 15: 55-64. doi: 10.1007/s40096-020- 00370-5
  • 11. Fujita T, WF B, Kurita K, Sato Y, Abe T. Increased muscle volume and strength following six days of low-intensity resistance training with re- stricted muscle blood flow. International Journal of KAATSU Training Re- search. 2008;4(1):1-8. [Crossref]
  • [11] Dzhumabaev DS, Nazarova KZ, Uteshova RE. Modification of the parameterization method for a linear boundary value problem for a Fredholm integro-differential equation. Lobachevskii Journal of Mathematics 2020; 41: 1791- 1800. doi: 10.1134/S1995080220090103
  • 12. Madarame H, Neya M, Ochi E, Nakazato K, Sato Y, Ishii N. Cross-trans- fer effects of resistance training with blood flow restriction. Med Sci Sports Exerc. 2008;40(2):258-63. [Crossref] [PubMed]
  • [12] Durmaz ME, Amiraliyev GM. A robust numerical method for a singularly perturbed Fredholm integrodifferential equation. Mediterranean Journal of Mathematics 2021; 18: 24. doi: 10.1007/s00009-020-01693-21660- 5446/21/010001-17
  • 13. Shinohara M, Kouzaki M, Yoshihisa T, Fukunaga T. Efficacy of tourni- quet ischemia for strength training with low resistance. Eur J Appl Phys- iol Occup Physiol. 1998;77(1-2):189-91. [Crossref] [PubMed]
  • [13] Farrell PA, Hegarty AF, Miller JJH, O’Riordan E, Shishkin GI. Robust Computational Techniques for Boundary Layers. New York: Chapman Hall/CRC, 2000.
  • 14. Korkmaz E, Dönmez G, Uzuner K, Babayeva N, Torgutalp ŞŞ, Özçakar L. Effects of blood flow restriction training on muscle strength and ar- chitecture. J Strength Cond Res. 2020. [Crossref] [PubMed]
  • [14] Jalilian R, Tahernezhad T. Exponential spline method for approximation solution of Fredholm integrodifferential equation. International Journal of Computer Mathematics 2020; 97 (4): 791-801. doi: 10.1080/00207160.2019.1586891
  • 15. Vechin FC, Libardi CA, Conceição MS, Damas FR, Lixandrão ME, Berton RP, et al. Comparisons between low-intensity resistance training with blood flow restriction and high-intensity resistance training on quadri- ceps muscle mass and strength in elderly. J Strength Cond Res. 2015;29(4):1071-6. [Crossref] [PubMed]
  • [15] Jalius C, Majid ZA. Numerical solution of second-order Fredholm integrodifferential equations with boundary conditions by quadrature-difference method. Journal of Applied Mathematics 2017. doi: 10.1155/2017/2645097
  • 16. Counts BR, Dankel SJ, Barnett BE, Kim D, Mouser JG, Allen KM, et al. In- fluence of relative blood flow restriction pressure on muscle activation and muscle adaptation. Muscle Nerve. 2016;53(3):438-45. [Crossref] [PubMed]
  • [16] Kadalbajoo MK, Gupta V. A brief survey on numerical methods for solving singularly perturbed problems. Applied Mathematics and Computation 2010; 217: 3641-3716. doi: 10.1016/j.amc.2010.09.059
  • 17. Abe T, Kawamoto K, Yasuda T, Kearns CF, Midorikawa T, Sato Y. Eight days KAATSU-resistance training improved sprint but not jump per- formance in collegiate male track and field athletes. International Jour- nal of KAATSU Training Research. 2005;1(1):19-23. [Crossref]
  • [17] Kudu M, Amirali I, Amiraliyev GM. A finite-difference method for a singularly perturbed delay integro–differential equation, Journal of Computational and Applied Mathematics 2016; 308: 379–390. doi: 10.1016/j.cam.2016.06.018
  • 18. Yamanaka T, Farley RS, Caputo JL. Occlusion training increases mus- cular strength in division IA football players. J Strength Cond Res. 2012;26(9):2523-9. [Crossref] [PubMed]
  • [18] Miller JJH, O’Riordan E, Shishkin GI. Fitted Numerical Methods for Singular Perturbation Problems. Singapore: World Scientific, 1996.
  • 19. Takarada Y, Takazawa H, Ishii N. Applications of vascular occlusion di- minish disuse atrophy of knee extensor muscles. Med Sci Sports Exerc. 2000;32(12):2035-9. [Crossref] [PubMed]
  • [19] Mishra HK, Saini S. Various numerical methods for singularly perturbed boundary value problems. American Journal of Applied Mathematics and Statistics 2014; 2 (3): 129-142. doi: 10.12691/ajams-2-3-7
  • 20. Rolnick N, Schoenfeld BJ. Blood flow restriction training and the physique athlete: a practical research-based guide to maximizing mus- cle size. Strength & Conditioning Journal. 2020;42(5):22-36. [Crossref]
  • [20] Nayfeh AH. Introduction to Perturbation Techniques. New York: Wiley, 1993.
  • 21. Mouser JG, Laurentino GC, Dankel SJ, Buckner SL, Jessee MB, Counts BR, et al. Blood flow in humans following low-load exercise with and without blood flow restriction. Appl Physiol Nutr Metab. 2017;42(11):1165- 71. [Crossref] [PubMed]
  • [21] O’Malley RE, Singular Perturbations Methods for Ordinary Differential Equations. New York: Springer-Verlag, 1991.
  • 22. Yasuda T, Fujita S, Ogasawara R, Sato Y, Abe T. Effects of low-intensity bench press training with restricted arm muscle blood flow on chest mus- cle hypertrophy: a pilot study. Clin Physiol Funct Imaging. 2010;30(5):338-43. [Crossref] [PubMed
  • [22] Roos HG, Stynes M, Tobiska L. Numerical Methods for Singularly Perturbed Differential Equations. Berlin: Springer-Verlag, 1996.
  • 23. Goodman CA, Frey JW, Mabrey DM, Jacobs BL, Lincoln HC, You JS, et al. The role of skeletal muscle mTOR in the regulation of mechanical load-induced growth. J Physiol. 2011;589(Pt 22):5485-501. [Crossref] [PubMed] [PMC]
  • [23] Saadatmandi A, Dehghan M. Numerical solution of the higher-order linear Fredholm integro-differential-difference equation with variable coefficients. Computers and Mathematics with Applications 2010; 59 (8): 2996-3004. doi: 10.1016/j.camwa.2010.02.018
  • 24. Schoenfeld BJ. Science and Development of Muscle Hypertrophy. 2 nd ed. USA: Human Kinetics; 2020.
  • [24] Samarskii AA. The Theory of Difference Schemes. New York: Marcel Dekker, Inc., 2001.
  • 25. Schoenfeld BJ. The mechanisms of muscle hypertrophy and their appli- cation to resistance training. J Strength Cond Res. 2010;24(10):2857-72. [Crossref] [PubMed]
  • [25] Shahsavaran A. On the Convergence of Lagrange Interpolation to Solve Special Type of Second Kind Fredholm Integro Differential Equations. Applied Mathematical Sciences 2012; 6 (7): 343-348.
  • 26. Wackerhage H, Schoenfeld BJ, Hamilton DL, Lehti M, Hulmi JJ. Stimuli and sensors that initiate skeletal muscle hypertrophy following resist- ance exercise. J Appl Physiol (1985). 2019;126(1):30-43. [Crossref] [PubMed]
  • [26] Yapman Ö, Amiraliyev GM, Amirali I. Convergence analysis of fitted numerical method for a singularly perturbed nonlinear Volterra integro-differential equation with delay. Journal of Computational and Applied Mathematics 2019; 355: 301–309. doi: 10.1016/j.cam.2019.01.026
  • 27. Psatha M, Wu Z, Gammie FM, Ratkevicius A, Wackerhage H, Lee JH, et al. A longitudinal MRI study of muscle atrophy during lower leg immobilization following ankle fracture. J Magn Reson Imaging. 2012;35(3):686-95. [Crossref] [PubMed]
  • [27] Yapman Ö, Amiraliyev GM. Convergence analysis of the homogeneous second order difference method for a singularly perturbed Volterra delay-integro-differential equation. Chaos Solitons Fractals. 2021; 150: 111100. doi: 10.1016/j.chaos.2021.111100
  • 28. Loenneke JP, Pujol TJ. The use of occlusion training to produce muscle hypertrophy. Strength & Conditioning Journal. 2009;31(3):77-84. [Cross- ref]
  • [28] Xue Q, Niu J, Yu D, Ran C. An improved reproducing kernel method for Fredholm integro-differential type twopoint boundary value problems. International Journal of Computer Mathematics 2018; 95 (5): 1015-1023. doi: 10.1080/00207160.2017.1322201
  • 29. Lasevicius T, Ugrinowitsch C, Schoenfeld BJ, Roschel H, Tavares LD, De Souza EO, et al. Effects of different intensities of resistance training with equated volume load on muscle strength and hypertrophy. Eur J Sport Sci. 2018;18(6):772-80. [Crossref] [PubMed]
  • 30. Schoenfeld BJ. Potential mechanisms for a role of metabolic stress in hy- pertrophic adaptations to resistance training. Sports Med. 2013;43(3): 179-94. [Crossref] [PubMed]
  • 31. Paulsen G, Mikkelsen UR, Raastad T, Peake JM. Leucocytes, cytokines and satellite cells: what role do they play in muscle damage and regen- eration following eccentric exercise? Exerc Immunol Rev. 2012;18:42-97. [PubMed]
  • 32. Schoenfeld BJ. Does exercise-induced muscle damage play a role in skeletal muscle hypertrophy? J Strength Cond Res. 2012;26(5):1441- 53. [Crossref] [PubMed]
  • 33. Baroni BM, Pompermayer MG, Cini A, Peruzzolo AS, Radaelli R, Brusco CM, et al. Full range of motion induces greater muscle damage than par- tial range of motion in elbow flexion exercise with free weights. J Strength Cond Res. 2017;31(8):2223-30. [Crossref] [PubMed]
  • 34. Bloomquist K, Langberg H, Karlsen S, Madsgaard S, Boesen M, Raas- tad T. Effect of range of motion in heavy load squatting on muscle and tendon adaptations. Eur J Appl Physiol. 2013;113(8):2133-42. [Cross- ref] [PubMed]
  • 35. Noorkõiv M, Nosaka K, Blazevich AJ. Effects of isometric quadriceps strength training at different muscle lengths on dynamic torque produc- tion. J Sports Sci. 2015;33(18):1952-61. [Crossref] [PubMed]
  • 36. Finni T, Ikegawa S, Lepola V, Komi PV. Comparison of force-velocity re- lationships of vastus lateralis muscle in isokinetic and in stretch-short- ening cycle exercises. Acta Physiol Scand. 2003;177(4):483-91. [Crossref] [PubMed]
  • 37. Wilson JM, Lowery RP, Joy JM, Loenneke JP, Naimo MA. Practical blood flow restriction training increases acute determinants of hypertrophy with- out increasing indices of muscle damage. J Strength Cond Res. 2013;27(11):3068-75. [Crossref] [PubMed]
  • 38. Karabulut M, Abe T, Sato Y, Bemben MG. The effects of low-intensity resistance training with vascular restriction on leg muscle strength in older men. Eur J Appl Physiol. 2010;108(1):147-55. [Crossref] [PubMed]
  • 39. Spranger MD, Krishnan AC, Levyæ PD, O'Leary DS, Smith SA. Blood flow restriction training and the exercise pressor reflex: a call for con- cern. Am J Physiol Heart Circ Physiol. 2015;309(9):H1440-52. [Crossref] [PubMed] [PMC]
  • 40. Barnett BE, Dankel SJ, Counts BR, Nooe AL, Abe T, Loenneke JP. Blood flow occlusion pressure at rest and immediately after a bout of low load exercise. Clin Physiol Funct Imaging. 2016;36(6):436-40. [Crossref] [PubMed]
  • 41. Patterson SD, Leggate M, Nimmo MA, Ferguson RA. Circulating hor- mone and cytokine response to low-load resistance training with blood flow restriction in older men. Eur J Appl Physiol. 2013;113(3):713-9. [Crossref] [PubMed]
  • 42. Shimizu R, Hotta K, Yamamoto S, Matsumoto T, Kamiya K, Kato M, et al. Low-intensity resistance training with blood flow restriction improves vascular endothelial function and peripheral blood circulation in healthy elderly people. Eur J Appl Physiol. 2016;116(4):749-57. [Crossref] [PubMed]
  • 43. Manini TM, Yarrow JF, Buford TW, Clark BC, Conover CF, Borst SE. Growth hormone responses to acute resistance exercise with vascular restriction in young and old men. Growth Horm IGF Res. 2012;22(5):167- 72. [Crossref] [PubMed] [PMC]
  • 44. Gorgey AS, Timmons MK, Dolbow DR, Bengel J, Fugate-Laus KC, Mich- ener LA, et al. Electrical stimulation and blood flow restriction increase wrist extensor cross-sectional area and flow meditated dilatation follow- ing spinal cord injury. Eur J Appl Physiol. 2016;116(6):1231-44. [Cross- ref] [PubMed]
  • 45. Abe T, Sakamaki M, Fujita S, Ozaki H, Sugaya M, Sato Y, et al. Effects of low-intensity walk training with restricted leg blood flow on muscle strength and aerobic capacity in older adults. J Geriatr Phys Ther. 2010;33(1):34-40. [PubMed]
  • 46. Drummond MJ, Fry CS, Glynn EL, Dreyer HC, Dhanani S, Timmerman KL, et al. Rapamycin administration in humans blocks the contraction-in- duced increase in skeletal muscle protein synthesis. J Physiol. 2009;587(Pt 7):1535-46. [Crossref] [PubMed] [PMC]
  • 47. Teramoto M, Golding LA. Low-intensity exercise, vascular occlusion, and muscular adaptations. Res Sports Med. 2006;14(4):259-71. [Crossref] [PubMed]
  • 48. Loenneke JP, Fahs CA, Rossow LM, Sherk VD, Thiebaud RS, Abe T, et a l. Effects of cuff width on arterial occlusion: implications for blood flow restricted exercise. Eur J Appl Physiol. 2012;112(8):2903-12. [Crossref] [PubMed] [PMC]
  • 49. Jessee MB, Buckner SL, Dankel SJ, Counts BR, Abe T, Loenneke JP. The influence of cuff width, sex, and race on arterial occlusion: implica- tions for blood flow restriction research. Sports Med. 2016;46(6):913-21. [Crossref] [PubMed]
  • 50. Hughes L, Jeffries O, Waldron M, Rosenblatt B, Gissane C, Paton B, et al. Influence and reliability of lower-limb arterial occlusion pressure at different body positions. PeerJ. 2018;6:e4697. [Crossref] [PubMed] [PMC]
  • 51. McEwen JA, Owens JG, Jeyasurya J. Why is it crucial to use personalized occlusion pressures in blood flow restriction (BFR) rehabilitation? Journal of Medical and Biological Engineering. 2019;39(2):173-7. [Crossref
APA Durmaz M, Kamiş O, AMIRALIYEV G, AYDOS L, KUDU M (2022). Numerical solution of a singularly perturbed Fredholm integro differential equation with Robin boundary condition. , 207 - 224. 10.3906/mat-2109-11
Chicago Durmaz Muhammet Enes,Kamiş Okan,AMIRALIYEV Gabil M.,AYDOS Latif,KUDU Mustafa Numerical solution of a singularly perturbed Fredholm integro differential equation with Robin boundary condition. (2022): 207 - 224. 10.3906/mat-2109-11
MLA Durmaz Muhammet Enes,Kamiş Okan,AMIRALIYEV Gabil M.,AYDOS Latif,KUDU Mustafa Numerical solution of a singularly perturbed Fredholm integro differential equation with Robin boundary condition. , 2022, ss.207 - 224. 10.3906/mat-2109-11
AMA Durmaz M,Kamiş O,AMIRALIYEV G,AYDOS L,KUDU M Numerical solution of a singularly perturbed Fredholm integro differential equation with Robin boundary condition. . 2022; 207 - 224. 10.3906/mat-2109-11
Vancouver Durmaz M,Kamiş O,AMIRALIYEV G,AYDOS L,KUDU M Numerical solution of a singularly perturbed Fredholm integro differential equation with Robin boundary condition. . 2022; 207 - 224. 10.3906/mat-2109-11
IEEE Durmaz M,Kamiş O,AMIRALIYEV G,AYDOS L,KUDU M "Numerical solution of a singularly perturbed Fredholm integro differential equation with Robin boundary condition." , ss.207 - 224, 2022. 10.3906/mat-2109-11
ISNAD Durmaz, Muhammet Enes vd. "Numerical solution of a singularly perturbed Fredholm integro differential equation with Robin boundary condition". (2022), 207-224. https://doi.org/10.3906/mat-2109-11
APA Durmaz M, Kamiş O, AMIRALIYEV G, AYDOS L, KUDU M (2022). Numerical solution of a singularly perturbed Fredholm integro differential equation with Robin boundary condition. Turkish Journal of Mathematics, 14(2), 207 - 224. 10.3906/mat-2109-11
Chicago Durmaz Muhammet Enes,Kamiş Okan,AMIRALIYEV Gabil M.,AYDOS Latif,KUDU Mustafa Numerical solution of a singularly perturbed Fredholm integro differential equation with Robin boundary condition. Turkish Journal of Mathematics 14, no.2 (2022): 207 - 224. 10.3906/mat-2109-11
MLA Durmaz Muhammet Enes,Kamiş Okan,AMIRALIYEV Gabil M.,AYDOS Latif,KUDU Mustafa Numerical solution of a singularly perturbed Fredholm integro differential equation with Robin boundary condition. Turkish Journal of Mathematics, vol.14, no.2, 2022, ss.207 - 224. 10.3906/mat-2109-11
AMA Durmaz M,Kamiş O,AMIRALIYEV G,AYDOS L,KUDU M Numerical solution of a singularly perturbed Fredholm integro differential equation with Robin boundary condition. Turkish Journal of Mathematics. 2022; 14(2): 207 - 224. 10.3906/mat-2109-11
Vancouver Durmaz M,Kamiş O,AMIRALIYEV G,AYDOS L,KUDU M Numerical solution of a singularly perturbed Fredholm integro differential equation with Robin boundary condition. Turkish Journal of Mathematics. 2022; 14(2): 207 - 224. 10.3906/mat-2109-11
IEEE Durmaz M,Kamiş O,AMIRALIYEV G,AYDOS L,KUDU M "Numerical solution of a singularly perturbed Fredholm integro differential equation with Robin boundary condition." Turkish Journal of Mathematics, 14, ss.207 - 224, 2022. 10.3906/mat-2109-11
ISNAD Durmaz, Muhammet Enes vd. "Numerical solution of a singularly perturbed Fredholm integro differential equation with Robin boundary condition". Turkish Journal of Mathematics 14/2 (2022), 207-224. https://doi.org/10.3906/mat-2109-11