Yıl: 2022 Cilt: 64 Sayı: 2 Sayfa Aralığı: 136 - 143 Metin Dili: İngilizce DOI: 10.4274/gulhane.galenos.2021.1461 İndeks Tarihi: 19-07-2022

Roles of angiotensin II, Olmesartan and PD123319 on proliferation, oxidative stress and TGF-β1 in HUVEC culture

Öz:
Aims: Angiotensin II (Ang II) causes endothelial cell damage. Oxidative stress is involved in the pathophysiology of cardiovascular diseases via transforming growth factor-beta 1 (TGF-β1). In most studies increases in Ang II and TGF-β1 levels in several cell types are bidirectional. The present study investigated the effects of Ang II on oxidative stress, cell proliferation, and TGF-β1 levels in human umbilical vein endothelial cells (HUVECs). Methods: HUVECs were treated with Ang II (0.1 µM), Ang II type 1 receptor (ATR1) antagonist Olmesartan (1 µM), and Ang II type 2 receptors (ATR2) antagonist PD123319 (1 µM) for 24 hours. Cell proliferation and viability were evaluated by the tetrazolium salt (MTT) assay. Total antioxidant capacity (TAC) and total oxidant capacity (TOC) were measured by spectrophotometer intracellularly and in the culture medium. The TGF-β1 level was measured by enzyme-linked immunosorbent assay (ELISA). Results: The addition of 1 µM, 0.1 µM, and 0.01 µM Ang II increased proliferation in HUVECs. Cell proliferation increased significantly in both Ang II and Ang II+Olmesartan+PD123319 groups. However, Ang II+Olmesartan tended to decrease cell proliferation. In the control group TAC and TOC levels remained in the normal range in HUVEC extracts. In other all groups, TOC values increased compared to control. In HUVECs medium, TAC level was higher in the control, Ang II and Ang II+Olmesartan groups, but normal and tolerable in other groups whereas, TOC levels were elevated in control and other all groups. In HUVECs extracts, compared with the control, TGF-β1 level was significantly lower in the Ang II group, but increased in the Ang II+Olmesartan group. There was no significant difference in TGF-β1 levels between medium groups. Conclusions: Ang II shows its proliferative effects through ATR1 activation, whereas stimulation of ATR2 seems to have a key role in the pathophysiology of oxidative stress.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Galley HF, Webster NR. Physiology of the endothelium. British Journal of Anaesthesia. 2004;93:105-113.
  • 2. Du J, Leng J, Zhang L, Bai G, Yang D, Lin H, et al. Angiotensin II-Induced Apoptosis of Human Umbilical Vein Endothelial Cells was Inhibited by Blueberry Anthocyanin Through Bax- and Caspase 3-Dependent Pathways. Med Sci Monit. 2016;22:3223-3228.
  • 3. Bierhansl L, Conradi LC, Treps L, Dewerchin M, Carmeliet P. Central Role of Metabolism in Endothelial Cell Function and Vascular Disease. Physiology. 2017;32:126-140.
  • 4. Medina-Leyte DJ, Dominguez-Perez M, Mercado I, VillarrealMolina MT, Jacobo-Albavera L. Use of Human Umbilical Vein Endothelial Cells (HUVEC) as a Model to Study Cardiovascular Disease: A Review. Appl Sci-Basel. 2020;10.
  • 5. Xu J, Shi GP. Vascular wall extracellular matrix proteins and vascular diseases. Biochim Biophys Acta. 2014;1842:2106- 2119.
  • 6. Atlas SA. The renin-angiotensin aldosterone system: pathophysiological role and pharmacologic inhibition. J Manag Care Pharm. 2007;13(8 Suppl B):9-20.
  • 7. Mehta PK, Griendling KK. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol-Cell Ph. 2007;292:C82-C97.
  • 8. Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, et al. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev. 2018;98:1627-1738.
  • 9. Wang M, Liu Y, Liang Y, Naruse K, Takahashi K. Systematic Understanding of Pathophysiological Mechanisms of Oxidative Stress-Related Conditions-Diabetes Mellitus, Cardiovascular Diseases, and Ischemia-Reperfusion Injury. Front Cardiovasc Med. 2021;8:649785.
  • 10. Sena CM, Leandro A, Azul L, Seica R, Perry G. Vascular Oxidative Stress: Impact and Therapeutic Approaches. Front Physiol. 2018;9:1668.
  • 11. Phaniendra A, Jestadi DB, Periyasamy L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Indian J Clin Bioche. 2015;30:11-26.
  • 12. Munzel T, Camici GG, Maack C, Bonetti NR, Fuster V, Kovacic JC. Impact of Oxidative Stress on the Heart and Vasculature Part 2 of a 3-Part Series. J Am Coll Cardiol. 201711;70:212- 229.
  • 13. Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta. 2016;1863:2977-2992.
  • 14. Massague J, Cheifetz S, Laiho M, Ralph DA, Weis FM, Zentella A. Transforming growth factor-beta. Cancer Surveys. 1992;12:81-103.
  • 15. Tian M, Schiemann WP. The TGF-beta paradox in human cancer: an update. Future Oncol. 2009;5:259-271.
  • 16. Kubiczkova L, Sedlarikova L, Hajek R, Sevcikova S. TGF-beta - an excellent servant but a bad master. Journal of Translational Medicine. 2012;10:183.
  • 17. Kim SK, Ohta K, Hamaguchi A, Omura T, Yukimura T, Miura K, et al. Angiotensin-II Type-I Receptor Antagonist Inhibits the Gene-Expression of Transforming Growth-Factor-Beta-1 and Extracellular-Matrix in Cardiac and Vascular Tissues of Hypertensive Rats. J Pharmacol Exp Ther. 1995;273:509-515.
  • 18. Crawford DC, Chobanian AV, Brecher P. Angiotensin II induces fibronectin expression associated with cardiac fibrosis in the rat. Circ Res. 1994;74:727-739.
  • 19. Rosenkranz S. TGF-beta1 and angiotensin networking in cardiac remodeling. Cardiovasc Res. 2004;63:423-432.
  • 20. Taniyama Y, Griendling KK. Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension. 2003;42:1075-1081.
  • 21. Riss TL, Moravec RA, Niles AL, Duellman S, Benink HA, Worzella TJ, et al. Cell Viability Assays. In: Markossian S, Grossman A, Brimacombe K, Arkin M, Auld D, Austin CP, et al., editors. Assay Guidance Manual. Bethesda (MD)2004.
  • 22. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265-275.
  • 23. Waterborg JH, Matthews HR. The Lowry method for protein quantitation. Methods Mol Biol. 1994;32:1-4.
  • 24. Esen C, Alkan BA, Kirnap M, Akgul O, Isikoglu S, Erel O. The effects of chronic periodontitis and rheumatoid arthritis on serum and gingival crevicular fluid total antioxidant/oxidant status and oxidative stress index. J Periodontol. 2012;83:773- 779.
  • 25. Oparil S, Acelajado MC, Bakris GL, Berlowitz DR, Cifkova R, Dominiczak AF, et al. Hypertension. Nature reviews Disease primers. 2018;4:18014.
  • 26. Van Haaster MC, McDonough AA, Gurley SB. Blood pressure regulation by the angiotensin type 1 receptor in the proximal tubule. Curr Opin Nephrol Hypertens. 2018;27:1-7.
  • 27. Xu XP, He HL, Hu SL, Han JB, Huang LL, Xu JY, et al. Ang IIAT2R increases mesenchymal stem cell migration by signaling through the FAK and RhoA/Cdc42 pathways in vitro. Stem Cell Res Ther. 2017;8:164.
  • 28. Tambelline N, Oliveira K, Olchanheski LR, Sordi R, Otuki MF, Favero GM, et al. The Effect of Losartan on Angiotensin IIInduced Cell Proliferation in a Rat Aorta Smooth Muscle Cell Line. Braz Arch Biol Techn. 2012;55:263-268.
  • 29. Cicek Z, Yasar ZG, Akillioglu K, Dogan A. Effect of Intracellular Angiotensin II on Diabetic Rat Vascular Smooth Muscle Cell Proliferation. Acta Physiol. 2018;225:45.
  • 30. Hwang YJ, Park JH, Cho DH. Activation of AMPK by Telmisartan Decreases Basal and PDGF-stimulated VSMC Proliferation via Inhibiting the mTOR/p70S6K Signaling Axis. Journal of Korean Medical Science. 2020;35:e289.
  • 31. Feng LH, Sun HC, Zhu XD, Zhang SZ, Li XL, Li KS, et al. Irbesartan inhibits metastasis by interrupting the adherence of tumor cell to endothelial cell induced by angiotensin II in hepatocellular carcinoma. Annals of Translational Medicine. 2021;9:207.
  • 32. Gong X, Shao L, Fu YM, Zou Y. Effects of Olmesartan on Endothelial Progenitor Cell Mobilization and Function in Carotid Atherosclerosis. Med Sci Monit. 2015; 21:1189-1193.
  • 33. Wen H, Gwathmey JK, Xie LH. Oxidative stress-mediated effects of angiotensin II in the cardiovascular system. World J Hypertens. 2012;2:34-44.
  • 34. Zhao Y, Vanhoutte PM, Leung SW. Vascular nitric oxide: Beyond eNOS. J Pharmacol Sci. 2015;129:83-94.
  • 35. Miguel-Carrasco JL, Beaumont J, San Jose G, Moreno MU, Lopez B, Gonzalez A, et al. Mechanisms underlying the cardiac antifibrotic effects of losartan metabolites. Scientific Reports. 2017;7:41865.
  • 36. Wenzel S, Taimor G, Piper HM, Schluter KD. Redox-sensitive intermediates mediate angiotensin II-induced p38 MAP kinase activation, AP-1 binding activity, and TGF-beta expression in adult ventricular cardiomyocytes. FASEB J. 2001;15:2291- 2293.
  • 37. Moriguchi Y, Matsubara H, Mori Y, Murasawa S, Masaki H, Maruyama K, et al. Angiotensin II-induced transactivation of epidermal growth factor receptor regulates fibronectin and transforming growth factor-beta synthesis via transcriptional and posttranscriptional mechanisms. Circulation Research. 1999;84:1073-1084.
  • 38. Robertson IB, Rifkin DB. Regulation of the Bioavailability of TGF-beta and TGF-beta-Related Proteins. Cold Spring Harb Perspect Biol. 2016;8:a021907.
  • 39. Derynck R, Budi EH. Specificity, versatility, and control of TGFbeta family signaling. Sci Signal. 2019;12.
APA cicek z, akillioglu k, İLHAN A (2022). Roles of angiotensin II, Olmesartan and PD123319 on proliferation, oxidative stress and TGF-β1 in HUVEC culture. , 136 - 143. 10.4274/gulhane.galenos.2021.1461
Chicago cicek zehra,akillioglu kübra,İLHAN Ayşe Şebnem Roles of angiotensin II, Olmesartan and PD123319 on proliferation, oxidative stress and TGF-β1 in HUVEC culture. (2022): 136 - 143. 10.4274/gulhane.galenos.2021.1461
MLA cicek zehra,akillioglu kübra,İLHAN Ayşe Şebnem Roles of angiotensin II, Olmesartan and PD123319 on proliferation, oxidative stress and TGF-β1 in HUVEC culture. , 2022, ss.136 - 143. 10.4274/gulhane.galenos.2021.1461
AMA cicek z,akillioglu k,İLHAN A Roles of angiotensin II, Olmesartan and PD123319 on proliferation, oxidative stress and TGF-β1 in HUVEC culture. . 2022; 136 - 143. 10.4274/gulhane.galenos.2021.1461
Vancouver cicek z,akillioglu k,İLHAN A Roles of angiotensin II, Olmesartan and PD123319 on proliferation, oxidative stress and TGF-β1 in HUVEC culture. . 2022; 136 - 143. 10.4274/gulhane.galenos.2021.1461
IEEE cicek z,akillioglu k,İLHAN A "Roles of angiotensin II, Olmesartan and PD123319 on proliferation, oxidative stress and TGF-β1 in HUVEC culture." , ss.136 - 143, 2022. 10.4274/gulhane.galenos.2021.1461
ISNAD cicek, zehra vd. "Roles of angiotensin II, Olmesartan and PD123319 on proliferation, oxidative stress and TGF-β1 in HUVEC culture". (2022), 136-143. https://doi.org/10.4274/gulhane.galenos.2021.1461
APA cicek z, akillioglu k, İLHAN A (2022). Roles of angiotensin II, Olmesartan and PD123319 on proliferation, oxidative stress and TGF-β1 in HUVEC culture. Gülhane Tıp Dergisi, 64(2), 136 - 143. 10.4274/gulhane.galenos.2021.1461
Chicago cicek zehra,akillioglu kübra,İLHAN Ayşe Şebnem Roles of angiotensin II, Olmesartan and PD123319 on proliferation, oxidative stress and TGF-β1 in HUVEC culture. Gülhane Tıp Dergisi 64, no.2 (2022): 136 - 143. 10.4274/gulhane.galenos.2021.1461
MLA cicek zehra,akillioglu kübra,İLHAN Ayşe Şebnem Roles of angiotensin II, Olmesartan and PD123319 on proliferation, oxidative stress and TGF-β1 in HUVEC culture. Gülhane Tıp Dergisi, vol.64, no.2, 2022, ss.136 - 143. 10.4274/gulhane.galenos.2021.1461
AMA cicek z,akillioglu k,İLHAN A Roles of angiotensin II, Olmesartan and PD123319 on proliferation, oxidative stress and TGF-β1 in HUVEC culture. Gülhane Tıp Dergisi. 2022; 64(2): 136 - 143. 10.4274/gulhane.galenos.2021.1461
Vancouver cicek z,akillioglu k,İLHAN A Roles of angiotensin II, Olmesartan and PD123319 on proliferation, oxidative stress and TGF-β1 in HUVEC culture. Gülhane Tıp Dergisi. 2022; 64(2): 136 - 143. 10.4274/gulhane.galenos.2021.1461
IEEE cicek z,akillioglu k,İLHAN A "Roles of angiotensin II, Olmesartan and PD123319 on proliferation, oxidative stress and TGF-β1 in HUVEC culture." Gülhane Tıp Dergisi, 64, ss.136 - 143, 2022. 10.4274/gulhane.galenos.2021.1461
ISNAD cicek, zehra vd. "Roles of angiotensin II, Olmesartan and PD123319 on proliferation, oxidative stress and TGF-β1 in HUVEC culture". Gülhane Tıp Dergisi 64/2 (2022), 136-143. https://doi.org/10.4274/gulhane.galenos.2021.1461