Yıl: 2022 Cilt: 26 Sayı: 4 Sayfa Aralığı: 820 - 827 Metin Dili: İngilizce DOI: 10.29228/jrp.181 İndeks Tarihi: 25-07-2022

Ammi visnaga L. and Nanocarrier Approaches in the Treatment of Skin Diseases

Öz:
Ammi visnaga L. is a plant that grows naturally in Europe and is very common in Türkiye. It has various pharmacological effects due to its γ-pyrones, coumarins, flavonoids and essential oils content. And its major phytocontituent khellin, which has a furanochrome structure obtained by extraction from the seeds of the Ammi visnaga L. is effective on the photochemotherapy of skin diseases. In this context, researches on topical delivery of khellin has been increased and the use of nanocarriers has gain attention to achieve optimised efficacy and stability related khellin, for the treatment of some skin diseases especially psoriasis and vitiligo. In this review, studies on the efficacy of khellin, which is the major phytocontituent of Ammi visnaga L.in the treatment of skin diseases and topical delivery of it via nanocarrier systems has been overviewed to draw attention to the potential of herbal sources accompained modern carrier systems in the treatment.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • [1] Özbir E, Yazıcıoğlu A, Akalın E. Ammi Visnaga (Kürdanotu, Hiltan). Türk Farmakope Derg. 2019;4:95–111.
  • [2] Günaydin K, Beyazit N. The chemical investigations on the ripe fruits of Ammi visnaga (Lam.) Lamarck growing in Turkey. Nat Prod Res. 2004;18(2):169–175. [CrossRef]
  • [3] Al-Snafi AE. Chemical constituents and pharmacological activities of Ammi majus and Ammi visnaga. A review. Int J Pharm Ind Res. 2013;3(3):257–265.
  • [4] Adımcılar V, Beyazit N, Erim FB. Khellin and visnagin in different organs of Ammi visnaga and Ammi majus. Nat Prod Res. 2021;1–3. [CrossRef]
  • [5] Abdul-Jalil TZ, Saour K, Nasser A-M. Phytochemical study of some flavonoids present in the fruits of two Ammi L. species wildly grown in Iraq. Iraqi J Pharm Sci. 2010;19(1):48–57. [CrossRef]
  • [6] Khalil N, Bishr M, Desouky S, Salama O. Ammi visnaga L., a potential medicinal plant: A review. Molecules. 2020;25(2):301. [CrossRef]
  • [7] Vedaldi D, Caffieri S, Dall’Acqua F, Andreassi L, Bovalini L, Martelli P. Khellin, a naturally occurring furochromone, used for the photochemotherapy of skin diseases: mechanism of action. Farmaco Sci. 1988;43(4):333–346.
  • [8] Capella GL. Topical khellin and natural sunlight in the outpatient treatment of recalcitrant palmoplantar pompholyx: report of an open pilot study. Dermatol. 2005;211(4):381-383. [CrossRef]
  • [9] Tritrungtasna O, Jerasutus S, Suvanprakorn P. Treatment of alopecia areata with khellin and UVA. Int J Dermatol. 1993;32(9):690. [CrossRef]
  • [10] Ling TC, Clayton TH, Crawley J, Exton LS, Goulden V, Ibbotson S, McKenna K, Mohd Mustapa MF, Rhodes LE, Sarkany R, Dawe RS. British Association of Dermatologists and British Photodermatology Group guidelines for the safe and effective use of psoralen–ultraviolet A therapy 2015. Br J Dermatol. 2016;174(1):24–55. [CrossRef]
  • [11] Marconi B, Mancini F, Colombo P, Allegra F, Giordano F, Gazzaniga A, Orecchia G, Santi P. Distribution of khellin in excised human skin following iontophoresis and passive dermal transport. J Control Release. 1999;60(2–3):261– 268. [CrossRef]
  • [12] Garg B, Saraswat A, Bhatia A, Katare O. Topical treatment in vitiligo and the potential uses of new drug delivery systems. Indian J Dermatol Venereol Leprol. 2010;76(3):231-238. [CrossRef]
  • [13] Bhullar SK, Buttar HS. Nanofiber devices for the targeted-delivery of therapeutically active plant and herbal ingredients. Biomed Rev. 2015;26:37–42.
  • [14] Sofi HS, Abdal-hay A, Ivanovski S, Zhang YS, Sheikh FA. Electrospun nanofibers for the delivery of active drugs through nasal, oral and vaginal mucosa: Current status and future perspectives. Mater Sci Eng C. 2020;111:110756. [CrossRef]
  • [15] Kalita B, Das MK, Sharma AK. Novel phytosome formulations in making herbal extracts more effective. Res J Pharm Technol. 2013;6(11):1295–301.
  • [16] Havsteen BH. The biochemistry and medical significance of the flavonoids. Pharmacol Ther. 2002;96(2–3):67–202. [CrossRef]
  • [17] Fenniche S, Hammami H, Zaouak A. Association of khellin and 308-nm excimer lamp in the treatment of severe alopecia areata in a child. J Cosmet Laser Ther. 2018;20(3):156–158. [CrossRef]
  • [18] De Leeuw J, Assen YJ, Van Der Beek N, Bjerring P, Martino Neumann HA. Treatment of vitiligo with khellin liposomes, ultraviolet light and blister roof transplantation. J Eur Acad Dermatol Venereol. 2011;25(1):74–81. [CrossRef]
  • [19] Risaliti L, Yu X, Vanti G, Bergonzi MC, Wang M, Bilia AR. Hydroxyethyl cellulose hydrogel for skin delivery of khellin loaded in ascosomes: Characterization, in vitro/in vivo performance and acute toxicity. Int J Biol Macromol. 2021;179:217–229. [CrossRef]
  • [20] Lisuzzo L, Cavallaro G, Milioto S, Lazzara G. Halloysite nanotubes coated by chitosan for the controlled release of khellin. Polymers (Basel). 2020;12(8):1766. [CrossRef]
  • [21] Pereira J, Gonçalves R, Barreto M, Dias C, Carvalho F, Almeida AJ, Ribeiro HM, Marto J. Development of Gel-in-Oil Emulsions for Khellin Topical Delivery. Pharmaceutics. 2020;12(5):398. [CrossRef]
  • [22] Grifoni L, Vanti G, Vannucchi MG, Bergonzi MC, Bilia AR. Development and evaluation of khellin-loaded microemulgel for dermatological applications. Planta Med. 2022; A head of print [CrossRef]
  • [23] Bergqvist C, Ezzedine K. Vitiligo: a review. Dermatol. 2020;236(6):571–592. [CrossRef]
  • [24] Hussain I. The safety of medicinal plants used in the treatment of vitiligo and hypermelanosis: a systematic review of use and reports of harm. Clin Cosmet Investig Dermatol. 2021;14:261-284. [CrossRef]
  • [25] Rashighi M, Harris JE. Vitiligo pathogenesis and emerging treatments. Dermatol Clin. 2017;35(2):257–265. [CrossRef]
  • [26] Carlie G, Ntusi NBA, Hulley PA, Kidson SH. KUVA (khellin plus ultraviolet A) stimulates proliferation and melanogenesis in normal human melanocytes and melanoma cells in vitro. Br J Dermatol. 2003;149(4):707–717. [CrossRef]
  • [27] Nishimura EK, Jordan SA, Oshima H, Yoshida H, Osawa M, Moriyama M, Jackson IJ, Barrandon Y, Miyachi Y, Nishikawa J-I. Dominant role of the niche in melanocyte stem-cell fate determination. Nature. 2002;416(6883):854– 860. [CrossRef]
  • [28] Saraceno R, Nistico SP, Capriotti E, Chimenti S. Monochromatic excimer light 308 nm in monotherapy and combined with topical khellin 4% in the treatment of vitiligo: A controlled study. Dermatol Ther. 2009;22(4):391–394. [CrossRef] [29] Abdel-Fattah A, Aboul-Enein MN, Wasset GM, El-Menshawi BS. An approach to the treatment of vitiligo by khellin. Dermatol. 1982;165(2):136–140. [CrossRef]
  • [30] Ortel B, Tanew A, Hönigsmann H. Treatment of vitiligo with khellin and ultraviolet A. J Am Acad Dermatol. 1988;18(4):693–701.
  • [31] Orecchia G, Perfetti L. Photochemotherapy with topical khellin and sunlight in vitiligo. Dermatol. 1992;184(2):120– 123. [CrossRef]
  • [32] Procaccini EM, Riccio G, Monfrecola G. Ineffectiveness of topical khellin in photochemotherapy of vitiligo. J Dermatolog Treat. 1995;6(2):117–120. [CrossRef]
  • [33] Leung AKC, Barankin B, Hon KL. Dyshidrotic eczema. Pediatr Neonatol Biol. 2014; 1(1):002.
  • [34] Meguid AMA, Attallah DA, Alzzubidi NAS. Comparison between narrowband UVB phototherapy and khellin photochemotherapy in the treatment of alopecia areata. J Egypt Women’s Dermatologic Soc. 2013;10(3):130–136. [CrossRef]
  • [35] Michalek IM, Loring B, John SM. Global report on psoriasis. World Health Organization; 2016. https://apps.who.int/iris/bitstream/handle/10665/204417/9789241565189_eng.pdf.psoriasis?sequence=1, (accessed May 9, 2022).
  • [36] Wang F, Lee E, Lowes MA, Haider AS, Fuentes-Duculan J, Abello MV, Chamian F, Cardinale I, Krueger JG. Prominent production of IL-20 by CD68+/CD11c+ myeloid-derived cells in psoriasis: Gene regulation and cellular effects. J Invest Dermatol. 2006;126(7):1590–1599. [CrossRef]
  • [37] Azfar RS, Gelfand JM. Psoriasis and metabolic disease: Epidemiology and pathophysiology. Curr Opin Rheumatol. 2008;20(4):416-422. [CrossRef]
  • [38] Köşger F, Bilgili ME, Genek M, Yıldız B, Saraçoğlu N, Eşsizoğlu A. Psoriasis hastalarında depresyon, anksiyete ve yaşam kalitesinin hastalığın şiddeti ile ilişkisi. J Mood Disord. 2014;4(4):157–162.
  • [39] Akyol M, Alper S, Atakan N, Baskan EB, Gürer MA, Koç E, Onsun N, Özarmağan G, Şentürk N, Yaylı S. Türkiye Psoriasis Tedavi Kilavuzu-2016. (Türkderm Türk Deri Hast ve Frengi Arşivi) Turkderm Turkish Arch Dermatol Venereol. 2016;50(Suppl 1):1
  • [40] Van Smeden J, Janssens M, Gooris GS, Bouwstra J. The important role of stratum corneum lipids for the cutaneous barrier function. Biochim Biophys Acta (BBA)-Molecular Cell Biol Lipids. 2014;1841(3):295–313. [CrossRef]
  • [41] Risaliti L, Ambrosi M, Calamante M, Bergonzi MC, Lo Nostro P, Bilia AR. Preparation and characterization of ascosome vesicles loaded with khellin. J Pharm Sci [Internet]. 2020;109(10):3114–3124. [CrossRef]
  • [42] Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26(11):1261–1268. [CrossRef]
  • [43] Singhal M, Lapteva M, Kalia YN. Formulation challenges for 21st century topical and transdermal delivery systems. Vol. 14, Expert opinion on drug delivery. Taylor & Francis; 2017. p. 705–8. [CrossRef]
  • [44] Escobar-Chávez JJ, Rodríguez-Cruz IM, Domínguez-Delgado CL, Díaz-Torres R, Revilla-Vázquez AL, Aléncaster NC. Nanocarrier systems for transdermal drug delivery. In: Sezer AD. (Ed). Recent Advances in Novel Drug Carrier Systems. IntechOpen, Croatia, 2012, pp.201-240.
  • [45] Bhattacharya S. Phytosomes: the new technology for enhancement of bioavailability of botanicals and nutraceuticals. Int J Heal Res. 2009;2(3):225–232. [CrossRef]
  • [46] Trishna B, Sandeep G, Rajora AD, Sharma SR, Hars H. An Insight into Nanosomes: potential nanopharmaceutical delivery system. Nanopharmaceutical Adv Deliv Syst. 2021;267–283. [CrossRef]
  • [47] De Leeuw J, Van Der Beek N, Maierhofer G, Neugebauer WD. A case study to evaluate the treatment of vitiligo with khellin encapsulated in L-phenylalanin stabilized phosphatidylcholine liposomes in combination with ultraviolet light therapy. Eur J Dermatol. 2003;13(5):474–477.
  • [48] Tamjidi F, Shahedi M, Varshosaz J, Nasirpour A. Nanostructured lipid carriers (NLC): A potential delivery system for bioactive food molecules. Innov Food Sci Emerg Technol. 2013;19:29–43. [CrossRef]
  • [49] Salvi VR, Pawar P. Nanostructured lipid carriers (NLC) system: A novel drug targeting carrier. J Drug Deliv Sci Technol. 2019; 51: 255-267. [CrossRef]
  • 50] Vanti G, Muti L, D’Ambrosio M, Grifoni L, Bergonzi MC, Luceri C, Bilia AR. Nanostructured Lipid Carriers Can Enhance Oral Absorption of Khellin, a Natural Pleiotropic Molecule. Molecules. 2021;26(24):7657. [CrossRef]
  • [51] Yuan P, Tan D, Annabi-Bergaya F. Properties and applications of halloysite nanotubes: recent research advances and future prospects. Appl Clay Sci. 2015;112:75–93. [CrossRef]
  • [52] R. Price Y. Lvov, R BPG. In-vitro release characteristics of tetracycline HCl, khellin and nicotinamide adenine dineculeotide from halloysite; a cylindrical mineral. J Microencapsul. 2001;18(6):713–722. [CrossRef]
  • [53] Pitorre M, Gondé H, Haury C, Messous M, Poilane J, Boudaud D, Kanber E, Rossemond Ndombina GA, Benoit J-P, Bastiat G. Recent advances in nanocarrier-loaded gels: Which drug delivery technologies against which diseases? J Control Release. 2017;266:140–155. [CrossRef]
  • [54] Dickinson E. Emulsion gels: The structuring of soft solids with protein-stabilized oil droplets. Food Hydrocoll. 2012;28(1):224–241. [CrossRef]
  • [55] Kushwah P, Sharma PK, Koka SS, Gupta A, Sharma R, Darwhekar GN. Microemulgel: a novel approach for topical drug delivery. J Appl Pharm Res. 2021;9(3):14–20. [CrossRef]
  • [56] Ashara KC, Paun JS, Soniwala MM, Chavda JR, Mendapara VP, Mori NM. Microemulgel: An overwhelming approach to improve therapeutic action of drug moiety. Saudi Pharm J. 2016;24(4):452–457. [CrossRef]
  • [57] Patzelt A, Mak WC, Jung S, Knorr F, Meinke MC, Richter H, Rühl E, Cheung KY, Tran NBNN, Lademann J. Do nanoparticles have a future in dermal drug delivery? J Control Release. 2017;246:174–182. [CrossRef]
  • [58] Lademann J, Richter H, Schaefer UF, Blume-Peytavi U, Teichmann A, Otberg N, Sterry W. Hair follicles–a long-term reservoir for drug delivery. Skin Pharmacol Physiol. 2006;19(4):232–236. [CrossRef]
  • [59] Radad K, Al-Shraim M, Moldzio R, Rausch W-D. Recent advances in benefits and hazards of engineered nanoparticles. Environ Toxicol Pharmacol. 2012;34(3):661–672. [CrossRef]
  • [60] Fang C-L, Aljuffali IA, Li Y-C, Fang J-Y. Delivery and targeting of nanoparticles into hair follicles. Ther Deliv. 2014;5(9):991–1006. [CrossRef]
  • [61] Radtke M, Patzelt A, Knorr F, Lademann J, Netz RR. Ratchet effect for nanoparticle transport in hair follicles. Eur J Pharm Biopharm. 2017;116:125–130. [CrossRef]
  • [62] Sultana F, Manirujjaman M, Imran-Ul-Haque MA, Sharmin S. An overview of nanogel drug delivery system. J Appl Pharm Sci. 2013;3(8):95–105. [CrossRef]
  • [63] Sivaram AJ, Rajitha P, Maya S, Jayakumar R, Sabitha M. Nanogels for delivery, imaging and therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015;7(4):509–533. [CrossRef]
  • [64] Sill TJ, von Recum HA. Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials [Internet]. 2008;29(13):1989–2006. [CrossRef]
  • [65] Groeber F, Holeiter M, Hampel M, Hinderer S, Schenke-Layland K. Skin tissue engineering--in vivo and in vitro applications. Adv Drug Deliv Rev. 2011;63(4–5):352–366. [CrossRef]
  • [66] Esentürk İ, Erdal MS, Güngör S. Electrospinning method to produce drug-loaded nanofibers for topical/ transdermal drug delivery applications. J Fac Pharm Istanbul Univ. 2016;46(1):49–69.
  • [67] Baskan H, Esentürk I, Dösler S, Sarac AS, Karakas H. Electrospun nanofibers of poly (acrylonitrile-co-itaconic acid)/silver and polyacrylonitrile/silver: In situ preparation, characterization, and antimicrobial activity. J Ind Text. 2019;50(10):1594-1624. [CrossRef]
  • [68] Esentürk İ, Balkan T, Özhan G, Döşler S, Güngör S, Erdal MS, Saraç AS. Voriconazole incorporated nanofiber formulations for topical application: preparation, characterization and antifungal activity studies against Candida species. Pharm Dev Technol. 2020;25(4):440–453. [CrossRef]
  • [69] Qurt MS, Esentürk İ, Birteksöz Tan S, Erdal MS, Araman A, Güngör S. Voriconazole and sertaconazole loaded colloidal nano-carriers for enhanced skin deposition and improved topical fungal treatment. J Drug Deliv Sci Technol. 2018;48:215–222. [CrossRef]
APA ESENTÜRK-GÜZEL İ, TOPUZOĞLU S, ABDO L, GÜRER E, ALGIN YAPAR E (2022). Ammi visnaga L. and Nanocarrier Approaches in the Treatment of Skin Diseases. , 820 - 827. 10.29228/jrp.181
Chicago ESENTÜRK-GÜZEL İmren,TOPUZOĞLU Sehernaz,ABDO Lüceyn,GÜRER Eda SÖNMEZ,ALGIN YAPAR Evren Ammi visnaga L. and Nanocarrier Approaches in the Treatment of Skin Diseases. (2022): 820 - 827. 10.29228/jrp.181
MLA ESENTÜRK-GÜZEL İmren,TOPUZOĞLU Sehernaz,ABDO Lüceyn,GÜRER Eda SÖNMEZ,ALGIN YAPAR Evren Ammi visnaga L. and Nanocarrier Approaches in the Treatment of Skin Diseases. , 2022, ss.820 - 827. 10.29228/jrp.181
AMA ESENTÜRK-GÜZEL İ,TOPUZOĞLU S,ABDO L,GÜRER E,ALGIN YAPAR E Ammi visnaga L. and Nanocarrier Approaches in the Treatment of Skin Diseases. . 2022; 820 - 827. 10.29228/jrp.181
Vancouver ESENTÜRK-GÜZEL İ,TOPUZOĞLU S,ABDO L,GÜRER E,ALGIN YAPAR E Ammi visnaga L. and Nanocarrier Approaches in the Treatment of Skin Diseases. . 2022; 820 - 827. 10.29228/jrp.181
IEEE ESENTÜRK-GÜZEL İ,TOPUZOĞLU S,ABDO L,GÜRER E,ALGIN YAPAR E "Ammi visnaga L. and Nanocarrier Approaches in the Treatment of Skin Diseases." , ss.820 - 827, 2022. 10.29228/jrp.181
ISNAD ESENTÜRK-GÜZEL, İmren vd. "Ammi visnaga L. and Nanocarrier Approaches in the Treatment of Skin Diseases". (2022), 820-827. https://doi.org/10.29228/jrp.181
APA ESENTÜRK-GÜZEL İ, TOPUZOĞLU S, ABDO L, GÜRER E, ALGIN YAPAR E (2022). Ammi visnaga L. and Nanocarrier Approaches in the Treatment of Skin Diseases. Journal of research in pharmacy (online), 26(4), 820 - 827. 10.29228/jrp.181
Chicago ESENTÜRK-GÜZEL İmren,TOPUZOĞLU Sehernaz,ABDO Lüceyn,GÜRER Eda SÖNMEZ,ALGIN YAPAR Evren Ammi visnaga L. and Nanocarrier Approaches in the Treatment of Skin Diseases. Journal of research in pharmacy (online) 26, no.4 (2022): 820 - 827. 10.29228/jrp.181
MLA ESENTÜRK-GÜZEL İmren,TOPUZOĞLU Sehernaz,ABDO Lüceyn,GÜRER Eda SÖNMEZ,ALGIN YAPAR Evren Ammi visnaga L. and Nanocarrier Approaches in the Treatment of Skin Diseases. Journal of research in pharmacy (online), vol.26, no.4, 2022, ss.820 - 827. 10.29228/jrp.181
AMA ESENTÜRK-GÜZEL İ,TOPUZOĞLU S,ABDO L,GÜRER E,ALGIN YAPAR E Ammi visnaga L. and Nanocarrier Approaches in the Treatment of Skin Diseases. Journal of research in pharmacy (online). 2022; 26(4): 820 - 827. 10.29228/jrp.181
Vancouver ESENTÜRK-GÜZEL İ,TOPUZOĞLU S,ABDO L,GÜRER E,ALGIN YAPAR E Ammi visnaga L. and Nanocarrier Approaches in the Treatment of Skin Diseases. Journal of research in pharmacy (online). 2022; 26(4): 820 - 827. 10.29228/jrp.181
IEEE ESENTÜRK-GÜZEL İ,TOPUZOĞLU S,ABDO L,GÜRER E,ALGIN YAPAR E "Ammi visnaga L. and Nanocarrier Approaches in the Treatment of Skin Diseases." Journal of research in pharmacy (online), 26, ss.820 - 827, 2022. 10.29228/jrp.181
ISNAD ESENTÜRK-GÜZEL, İmren vd. "Ammi visnaga L. and Nanocarrier Approaches in the Treatment of Skin Diseases". Journal of research in pharmacy (online) 26/4 (2022), 820-827. https://doi.org/10.29228/jrp.181