Yıl: 2022 Cilt: 10 Sayı: 4 Sayfa Aralığı: 562 - 568 Metin Dili: İngilizce DOI: 10.24925/turjaf.v10i4.562-568.4601 İndeks Tarihi: 29-07-2022

Mitigation of Chilling Stress Effects on Eggplant Seedlings by Exogenous Application of Melatonin

Öz:
The purpose of this study was to explore the possibilities of improving chilling stress tolerance of eggplant seedlings through exogenous melatonin (MEL) application. Eggplant (Hadrian F1) seedlings were treated with various concentrations (0, 1, 5 or 25 μM) of MEL via soil drench after which they were subjected to chilling stress at 5°C/10°C (night/day) for 3 days. Following stress imposition, the efficacy of MEL applications on enhancing chilling stress tolerance was determined by several physical and physiological measurements and biochemical analyses. The results demonstrated that exogenous application of MEL alleviated the adverse effects of chilling stress in eggplant seedlings. Among the MEL concentrations tested, 5 μM was determined as the most effective concentration since antioxidant enzyme (CAT, POX and APOX) and photosynthetic activities increased while visual and membrane damage decreased in 5 μM MEL-treated seedlings. Also, these results are the first experimental evidence that exogenous application of MEL could improve chilling stress tolerance in eggplant, but further detailed studies are necessary to better understand the mechanism in acquiring chilling tolerance
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Ahmad S, Kamran M, Ding R, Meng X, Wang H, Ahmad I, Fahad S, Han Q. 2019. Exogenous melatonin confers drought stress by promoting plant growth, photosynthetic capacity and antioxidant defense system of maize seedlings. Peer J, 7:e7793.
  • Adamczewska-Sowińska K, Krygier M, Turczuk J. 2016. The yield of eggplant depending on climate conditions and mulching. Folia Horticulturae, 28(1):19-24.
  • Arnao MB. 2014. Phytomelatonin: discovery, content, and role in plants. Advances in Botany Article ID 815769, 11. https://doi.org/10.1155/2014/815769
  • Arnao MB, Hernández-Ruiz J. 2008. Assessment of different sample processing procedures applied to the determinat ion of melatonin in plants. Phytochemical Analysis, 20(1):14-18. Arnao MB, Hernández-Ruiz J. 2019a. Melatonin: a new plant hormone and/or a plant master regulator? Trends in Plant Science, 24:38-48.
  • Arnao MB, Hernández-Ruiz J. 2019b. Melatonin as a chemical substance or as phytomelatonin rich-extracts for use as plant protector and/or biostimulant in accordance with EC Legislation. Agronomy, 9:570.
  • Back K, Tan DX, Reiter RJ. 2016. Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts. Journal of Pineal Research, 61:426-437.
  • Bajwa VS, Shukla MR, Sherif SM, Murch SJ, Saxena PK. 2014. Role of melatonin in alleviating cold stress in Arabidopsis thaliana. Journal of Pineal Research, 56:238-245.
  • Campos PS, Nia Quartin V, Chicho Ramalho J, Nunes MA. 2003. Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. plants. Journal of Plant Physiology, 160(3):283-292.
  • Cardinali DP, Pevet P. 1998. Basic aspects of melatonin action. Sleep Medicine Reviews, 2:175-190.
  • Catala A. 2007. The ability of melatonin to counteract lipid peroxidation in biological membranes. Current Molecular Medicine, 7(7): 638-49.
  • Cen H, Wang T, Liu H, Tian D, Zhang Y. 2020. Melatonin application improves salt tolerance of alfalfa (Medicago sativa L.) by enhancing antioxidant capacity. Plants, 9:220.
  • Cui G, Zhao X, Liu S, Sun F, Zhang C, Xi Y. 2017. Beneficial effects of melatonin in overcoming drought stress in wheat seedlings. Plant Physiology and Biochemistry 118:138-149.
  • Dar MI, Naikoo MI, Rehman F, Naushin F, Khan FA. 2016. Proline accumulation in plants: roles in stress tolerance and plant development. N. Iqbal et al., (eds.), Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies pp. 155-166. doi: 10.1007/978-81-322-2616-1-9
  • Debnath B, Islam W, Li M, Sun Y, Lu X, Mitra S, Hussain M, Liu S, Qiu D. 2019. Melatonin mediates enhancement of stress tolerance in plants. International Journal of Molecular Sciences, 20:1040. doi:10.3390/ijms20051040
  • Dey SK, Dey J, Patra S, Pothal D. 2007. Changes in the antioxidative enzyme activities and lipid peroxidation in wheat seedlings exposed to cadmium and lead stress. Brazilian Journal of Plant Physiology, 19: 53-60.
  • Ding F, Liu B, Zhang S. 2017. Exogenous melatonin ameliorates cold-induced damage in tomato plants. Scientia Horticulturae, 219(17):264-271.
  • Dolatabadian A, Sanavy SAMM, Chashmi NA. 2008. The effects of foliar application of ascorbic acid (vitamin C) on antioxidant enzymes activities, lipid peroxidation and proline accumulation of canola (Brassica napus L.) under conditions of salt stres. Journal Agronomy and Crop Science, 194:206-213.
  • Dubbels R, Reiter RJ, Klenke E, Goebel A, Schnakenberg E, Ehlers C. 1995. Melatonin in edible plants ıdentified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. Journal of Pineal Research, 18: 28-31.
  • Fan J, Xie Y, Zhang Z, Chen L. 2018. Melatonin: A multifunctional factor in plants. International Journal of Molecular Sciences, 19:1528. doi: 10.3390/ijms19051528
  • Garcia JJ, Lopez-Pingarron L, Almeida-Souza P, Tres A, Escadero P, Garcia-Gil FA, Tan DX, Reiter RJ, Ramírez JM, Bernal- Pérez M. 2014. Protective effects of melatonin in reducing oxidative stress and in preserving the fluidity of biological membranes: a review. Journal of Pineal Research 56: 225-237.
  • Güneş A, İnal A, Bagci E, Pilbeam DJ. 2007. Silicon-mediated changes of some physiological and enzymatic parameters symptomatic for oxidative stress in spinach and tomato grown in sodic-b toxic soil. Plant Soil, 290:103-114.
  • Han QH, Huang B, Ding CB, Zhang ZW, Chen YE, Hu C, Zhou LJ, Huang Y, Liao JQ, Yuan S, Yuan M. 2017. Effects of melatonin on anti-oxidative systems and photosystem ıı in cold-stressed rice seedlings. Frontiers in Plant Science, 8:785. doi:10.3389/fpls.2017.00785.
  • Hattori A, Migitaka, H, Masayaki I, Itoh M, Yamamoto K, Ohtani-Kaneko R, Hara M, Suzuki T, Reiter RJ. 1995. Identification of melatonin in plant seed its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. International Journal of Biochemistry and Molecular Biology, 35:627-634.
  • Jiang C, Cui Q, Feng K, Xu D, Li C, Zheng Q. 2016. Melatonin improves antioxidant capacity and ion homeostasis and enhances salt tolerance in maize seedlings. Acta Physiologiae Plantarum, 38: 82. doi: 10.1007/s11738-016-2101-2
  • Kolár J, Machácková I. 2005. Melatonin in higher plants: occurrence and possible functions. Journal of Pineal Research, 39:333-341.
  • Korkmaz A. 2002. Amelioration of chilling injuries in watermelon seedlings by abscisic acid. Turkish Journal of Agriculture and Forestry, 26:17-20.
  • Korkmaz A, Korkmaz Y, Demirkiran AR. 2010. Enhancing chilling stress tolerance of pepper seedlings by exogenous application of 5-aminolevulinic acid. Environmental and Experimental Botany, 67(3):495-501.
  • Korkmaz A, Değer Ö, Cuci Y. 2014. Profiling the melatonin content in organs of the pepper plant during different growth stages. Scientia Horticulturae, 172:242-247.
  • Korkmaz A, Karaca A, Kocaçınar F, Cuci Y. 2017. The effects of seed treatment with melatonin on germination and emergence performance of pepper seeds under chilling stress. Journal of Agricultural Sciences, 23:167-176.
  • Korkmaz A, Yakupoğlu G, Köklü Ş, Cuci Y, Kocaçınar F. 2017. Determining diurnal and seasonal changes in tryptophan and melatonin content of eggplant (Solanum melongena L.). Turkish Journal of Botany, 41:356-366.
  • Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W. 1958. Isolation of melatonin, the pineal factor that lightness melanocytes. Journal of American Chemical Society, 80:2587-2592.
  • Li C, Wang P, Wei Z, Liang D, Liu C, Yin L, Jia D, Fu M, Ma F. 2012. The mitigation effects of exogenous melatonin on salinity-induced stress in Malus hupehensis. Journal of Pineal Research, 53(3):298-306.
  • Lichtenthaler HK. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology 148: 350-382.
  • Nakano Y, Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiology, 22:867-880.
  • Nawaz MA, Huang Y, Bie Z, Ahmed W, Reiter RJ, Niu M, Hameed S. 2016. Melatonin: current status and future perspectives in plant science. Frontiers in Plant Science, 6:1230. doi: 10.3389/fpls.2015.01230
  • Özden Ö, Erkan N, Deval MC. 2009. Trace mineral profiles of the bivalve species Chamelea gallina and Donax trunculus. Food Chemistry, 113:222-226.
  • Paredes SD, Korkmaz A, Manchester LC, Tan DX, Reiter RJ. 2009. Phytomelatonin: a review. Journal of Pineal Research, 60:57-69.
  • Peirce LC. 1987. Vegetables: Characteristics, Production and Marketing. John Wiley and Sons, Inc., Hoboken. Posmyk MM, Kontek R, Janas KM. 2009. Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress. Ecotoxicology and Environmental Safety, 72:596-602.
  • Posmyk MM, Kuran H, Marciniak K, Janas KM. 2008. Presowing seed treatment with melatonin protects red cabbage seedlings against toxic copper ion concentrations. Journal of Pineal Research, 45:24-31.
  • Reiter RJ, Tan DX, Burkhardt S, Manchester LC. 2001. Melatonin in plants. Nutrition Reviews, 59:286-290.
  • Reiter RJ, Tan DX, Zhou Z, Cruz MHC, Fuentes-Broto L, Galano A. 2015. Phytomelatonin: assisting plants to survive and thrive. Molecules, 20:7396-7437.
  • Statistical Analysis System, 2001. User’s Guide: Statistics, Version 8.2. SAS Institute, NC, USA.
  • Seçkin B, Turkan I, Sekmen AH, Ozfidan C. 2010. The role of antioxidant defense systems at differential salt tolerance of Hordeum marinum Huds. (sea barleygrass) and Hordeum vulgare L. (cultivated barley). Environmental and Experimental Botany, 69:76-85.
  • Sharif R, Xie C, Zhang H, Arnao MB, Ali M, Ali Q, Muhammad I, Shalmani A, Nawaz, MA, Chen P, Li Y. 2018. Melatonin and its effects on plant systems. Molecules, 23:2352. doi: 10.3390/molecules23092352
  • Shi H, Tan DX, Reiter RJ, Ye T, Yang F, Chan Z. 2015. Melatonin induces class A1 heat shock factors (HSFA1s) and their possible involvement of thermotolerance in Arabidopsis. Journal of Pineal Research, 58:335-342.
  • Tan DX, Hardeland R, Manchester LC, Korkmaz A, Ma S, Rosales-Corral S, Reiter R. 2012. Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. Journal of Experimental Botany, 63(2):577-597.
  • Tan DX, Manchester LC, Di Mascio P, Martinez GR, Prado FM, Reiter RJ. 2007a. Novel rhythms of N1-acetyl-N2-formyl-5- methoxykynuramine and its precursor melatonin in water hyacinth: importance for phytoremediation. The FASEB Journal, 21:1724-1729.
  • Tan DX, Manchester LC, Helton P, Reiter RJ. 2007b. Phytoremediative capacity of plants enriched with melatonin. Plant Signaling and Behavior, 2:514-516.
  • Van Tassel D, Li J, O’Neill S. 1993. Melatonin: Identification of a potential dark signal in plants. Plant Physiology, 102:659.
  • Wang P, Sun X, Li C, Wei Z, Liang D, Ma F. 2013. Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple. Journal of Pineal Research 54: 292- 302.
  • Wei W, Li QT, Chu YN, Reiter RJ, Yu XM, Zhu DH, Zhang WK, Ma B, Lin Q, Zhang JS, Chen SY. 2015. Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. Journal Experimental Botany, 66:695-707.
  • Yakupoğlu G, Köklü Ş, Korkmaz A. 2018. Bitkilerde melatonin ve üstlendiği görevler. KSÜ Tarim ve Doğa Dergisi, 2(2):264-276 (in Turkish).
  • Zhang HJ, Huang WD, Liu YP, Pan QH. 2005. Effects of temperature acclimation pretreatment on the ultrastructure of mesophyll cells in young grape plants (Vitis vinifera L. cv. Jingxiu) under cross-temperature stresses. Journal of Integrative Plant Biology, 47:959-970.
  • Zhang HJ, Zhang N, Yang RC, Wang L, Sun QQ, Li DB, Cao YY, Weeda S, Zhao B, Ren S, Guo YD. 2014. Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA₄ interaction in cucumber (Cucumis sativus L.). Journal of Pineal Research, 57(3):269-279.
  • Zhang T, Shi Z, Zhang X, Zheng S, Wang J, Mo J. 2020. Alleviating effects of exogenous melatonin on salt stress in cucumber. Scientia Horticulturae 262: 27. doi: 10.1016/j. scienta.2019.109070
  • Zhang YP, Xu S, Yang SJ, Chen YY. 2017. Melatonin alleviates cold-induced oxidative damage by regulation of ascorbate– glutathione and proline metabolism in melon seedlings (Cucumis melo L.). The Journal of Horticultural Science and Biotechnology, 92(3):313-324.
APA YAKUPOĞLU G, Köklü Ş, CUCI Y, Korkmaz A (2022). Mitigation of Chilling Stress Effects on Eggplant Seedlings by Exogenous Application of Melatonin. , 562 - 568. 10.24925/turjaf.v10i4.562-568.4601
Chicago YAKUPOĞLU Gökçen,Köklü Şebnem,CUCI YAKUP,Korkmaz Ahmet Mitigation of Chilling Stress Effects on Eggplant Seedlings by Exogenous Application of Melatonin. (2022): 562 - 568. 10.24925/turjaf.v10i4.562-568.4601
MLA YAKUPOĞLU Gökçen,Köklü Şebnem,CUCI YAKUP,Korkmaz Ahmet Mitigation of Chilling Stress Effects on Eggplant Seedlings by Exogenous Application of Melatonin. , 2022, ss.562 - 568. 10.24925/turjaf.v10i4.562-568.4601
AMA YAKUPOĞLU G,Köklü Ş,CUCI Y,Korkmaz A Mitigation of Chilling Stress Effects on Eggplant Seedlings by Exogenous Application of Melatonin. . 2022; 562 - 568. 10.24925/turjaf.v10i4.562-568.4601
Vancouver YAKUPOĞLU G,Köklü Ş,CUCI Y,Korkmaz A Mitigation of Chilling Stress Effects on Eggplant Seedlings by Exogenous Application of Melatonin. . 2022; 562 - 568. 10.24925/turjaf.v10i4.562-568.4601
IEEE YAKUPOĞLU G,Köklü Ş,CUCI Y,Korkmaz A "Mitigation of Chilling Stress Effects on Eggplant Seedlings by Exogenous Application of Melatonin." , ss.562 - 568, 2022. 10.24925/turjaf.v10i4.562-568.4601
ISNAD YAKUPOĞLU, Gökçen vd. "Mitigation of Chilling Stress Effects on Eggplant Seedlings by Exogenous Application of Melatonin". (2022), 562-568. https://doi.org/10.24925/turjaf.v10i4.562-568.4601
APA YAKUPOĞLU G, Köklü Ş, CUCI Y, Korkmaz A (2022). Mitigation of Chilling Stress Effects on Eggplant Seedlings by Exogenous Application of Melatonin. Türk Tarım - Gıda Bilim ve Teknoloji dergisi, 10(4), 562 - 568. 10.24925/turjaf.v10i4.562-568.4601
Chicago YAKUPOĞLU Gökçen,Köklü Şebnem,CUCI YAKUP,Korkmaz Ahmet Mitigation of Chilling Stress Effects on Eggplant Seedlings by Exogenous Application of Melatonin. Türk Tarım - Gıda Bilim ve Teknoloji dergisi 10, no.4 (2022): 562 - 568. 10.24925/turjaf.v10i4.562-568.4601
MLA YAKUPOĞLU Gökçen,Köklü Şebnem,CUCI YAKUP,Korkmaz Ahmet Mitigation of Chilling Stress Effects on Eggplant Seedlings by Exogenous Application of Melatonin. Türk Tarım - Gıda Bilim ve Teknoloji dergisi, vol.10, no.4, 2022, ss.562 - 568. 10.24925/turjaf.v10i4.562-568.4601
AMA YAKUPOĞLU G,Köklü Ş,CUCI Y,Korkmaz A Mitigation of Chilling Stress Effects on Eggplant Seedlings by Exogenous Application of Melatonin. Türk Tarım - Gıda Bilim ve Teknoloji dergisi. 2022; 10(4): 562 - 568. 10.24925/turjaf.v10i4.562-568.4601
Vancouver YAKUPOĞLU G,Köklü Ş,CUCI Y,Korkmaz A Mitigation of Chilling Stress Effects on Eggplant Seedlings by Exogenous Application of Melatonin. Türk Tarım - Gıda Bilim ve Teknoloji dergisi. 2022; 10(4): 562 - 568. 10.24925/turjaf.v10i4.562-568.4601
IEEE YAKUPOĞLU G,Köklü Ş,CUCI Y,Korkmaz A "Mitigation of Chilling Stress Effects on Eggplant Seedlings by Exogenous Application of Melatonin." Türk Tarım - Gıda Bilim ve Teknoloji dergisi, 10, ss.562 - 568, 2022. 10.24925/turjaf.v10i4.562-568.4601
ISNAD YAKUPOĞLU, Gökçen vd. "Mitigation of Chilling Stress Effects on Eggplant Seedlings by Exogenous Application of Melatonin". Türk Tarım - Gıda Bilim ve Teknoloji dergisi 10/4 (2022), 562-568. https://doi.org/10.24925/turjaf.v10i4.562-568.4601