1 1

Proje Grubu: MAG Sayfa Sayısı: 143 Proje No: 105M354 Proje Bitiş Tarihi: 01.06.2008 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Güç kaynakları ve otomotiv elektroniği uygulamaları için bor tabanlı kalın kesitli metalik cam / nanokristal manyetik malzemelerin geliştirilmesi

Öz:
-
Anahtar Kelime:

Erişim Türü: Erişime Açık
0
0
0
  • ABRAHAM F.F., Melting in Two Dimensions is First Order: An Isothermal-Isobaric Monte Carlo Study, Physical Review Letters, 44, 463-66, (1980).
  • AKDENIZ M.V., Mekhrabov A.O., The effect of substitutional impurities on the evolution of Fe-Al diffusion layer, Acta Materialia, 46, 4, 1185-92, (1998).
  • ANANTHARAMAN T.R., in Metallic Glasses Production, Properties and Applications, Trans Tech Publications, 1984), Pp: 5.
  • ANIMALU A.O.E., Electronic Structure of Transition Metals. II. Phonon Spectra, Physical Review B, 8, 3542-62, (1973).
  • BAILEY N.P., Schiotz J., Jacobsen K.W., Simulation of Cu-Mg metallic glass: Thermodynamics and structure, Physical Review B., 69, 1442051-11, (2004).
  • BARMIN Y.V., Bataronov I.L., Bondarev A.V., Posmet'yev V.V., The fractal skeleton of the atomic structure of amorphous metals, Journal of Physics: Condensed Matter, 20, 11, 1141171-7, (2008).
  • BELASHCHENKO D.K., Syrykh G.F., Computer Simulation of Amorphous Ni–Nb Alloys from Diffraction Data, Inorganic Materials, 40, 483-93, (2004).
  • BRATKOVSKY A.M., Smirnov A.V., Local order and XAFS spectra of metal-metalloid glasses, Journal of Physics: Condensed Matter., 3, 5153-61, (1991).
  • BRATKOVSKY A.M., Smirnov A.V., Amorphous magnetism in iron-boron systems: First-principles real-space tight-binding LMTO study, Physical Review B., 48, 9606-10, (1993).
  • CAHN R.W., Physical Metallurgy, 3 ed. Elsevier Science Publishers B.V., 1983.
  • CAI A., Sun G., Pan Y., Evaluation of the parameters related to glass-forming ability of bulk metallic glasses, Materials & Design, 27, 479-88, (2006).
  • CARGILL G.S., Spaepen F., Description of chemical ordering in amorphous alloys, Journal of Non-crystalline Solids, 43, 91-97, (1981).
  • CHEN H.S., Glassy Metals, Reports on Progress in Physics., 43, 353-432, (1980).
  • CHEN H.S., Turnbull D., Evidence Of A Glass-Liquid Transition In A GoldGermanium-Silicon Alloy, Chemical Physics, 48, 2560-71, (1968).
  • DAVIES H.A., The kinetics of formation of A Au-Ge-Si metallic glass, Journal of Noncrystalline Solids, 17, 266-72, (1975).
  • DAVIES H.A., Aucote J., Hull J.B., The kinetics of formation and stabilities of metallic glasses, Scripta Metallurgica, 8, 1179-89, (1974).
  • DUBOIS J.M., Gaskell P.H., Le Caer G., A model for the structure of metallic glasses based on chemical twinning, Proceedings of Royal Soceity A, 402, 323-57, (1985).
  • DUBOIS J.M., Le Caer G., Structural Description Of Transition Metal-Metalloid Glasses, Journal de Physique Colloques, 43, 67-74, (1982).
  • DUWEZ P., Lin S.C.H., Amorphous ferromagnetic phase in iron-carbon-phosphorus alloys, Journal of Applied Physics, 38, 4096-97, (1967).
  • EGAMI T., The atomic structure of aluminum based metallic glasses and universal criterion for glass formation Journal of Non-crystalline Solids, 205-207, 575- 82, (1996).
  • EGAMI T., Universal criterion for metallic glass formation, Materials Science and Engineering A, 226-228, 261-67, (1997).
  • EGAMI T., Formation and deformation of metallic glasses: Atomistic theory, Intermetallics, 14, 882-87, (2006).
  • EGAMI T., Waseda Y., Atomic size effect on the formability of metallic glasses, Journal of Non-crystalline Solids, 64, 113-34, (1984).
  • FINNEY J.L., Journal de Physique Colloques, 36, C2 1, (1975).
  • FINNEY J.L., Modeling structures of amorphous metals and alloys, Nature, 266, 309- 14, (1977).
  • FRANK F.C., Supercooling of Liquids, Proceedings of Royal Soceity A, 215, 43-46, (1952).
  • FUJIWARA T., Chen H.S., Waseda Y., On the structure of Fe-B metallic glasses of hypereutectic concentration, Journal of Physics F: Metal Physics, 11, 1327-33, (1981).
  • FUKUNAGA T., Suzuki K., Science Reports of the Research Institutes Tohoku University A, 29, 153, (1981).
  • FURUMI S., Yokoyama S., Otomo A., Mashiko S., Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals, Applied Physics Letters, 82, 1, 16-18, (2003).
  • GANESH P., Widom M., Geometrical frustration in liquid Fe and Fe-based metallic glass, Physical Review B, 74, 134205, (2006).
  • GANESH P., Widom M., Ab initio simulations of geometrical frustration in supercooled liquid Fe and Fe-based metallic glass, Physical Review B., 77, 1, 014205-10, (2008).
  • GASKELL P.H., A new structural model for transition metal-metalloid glasses, Nature, 276, 484-85, (1978).
  • GASKELL P.H., A new structural model for amorphous transition metal silicides, borides, phosphides and carbides, Journal of Non-crystalline Solids, 32, 207- 24, (1979).
  • GIBBS J.H., Dimarzio E.A., Nature of the Glass Transition and the Glassy State, Chemical Physics, 28, 373-83, (1958).
  • GIESSEN B.C., Wagner C.N.J., in In Liquid Metals – Physics and Chemistry, edited by S. Z. Beer, Dekker, New York, 1972), Pp: 660.
  • GUBANOV A.I., Amophous Magnetic Materials (in Russian), Fizika, 2, 502, (1960).
  • HAFNER J., Triplet correlation functions in metallic glasses, Journal of Physics F: Metal Physics, 12, 1205-09, (1982).
  • HAMADA T., Fujita F.E., Calculation of High-Resolution Electron Microscopic Images of Crystalline Embryos in Amorphous Metals, Japanese Journal of Applied Physics, 25, 318-27, (1986).
  • HAN X.J., Teichler H., Liquid-to-glass transition in bulk glass-forming Cu60Ti20Zr20 alloy by molecular dynamics simulations, Physical Review E, 75, 0615011-15, (2007).
  • HARRIS R., Lewis L.J., Chemical short-range order in computer-simulated metallic glasses, Journal of Physics F: Metal Physics, 13, 1359-67, (1983).
  • HAUSLEITNER C., Hafner J., Structural modeling of transition-metal–metalloid glasses by use of tight-binding-bond forces, Physical Review B., 47, 10, 5689, (1993).
  • HAUSLEITNER C., Hafner J., Becker C., Computer simulation of medium-range order in amorphous transition-metal–metalloid alloys, Physical Review B, 48, 17, 13119, (1993).
  • HERMANN H., Mattern N., Analytic approach to the structure of amorphous ironboron alloys, Journal of Physics F, 16, 131-40, (1986).
  • HERZER G., Hilzinger H.R., Surface crystallisation and magnetic properties in amorphous iron rich alloys, Journal of Magnetism and Magnetic Materials, 62, 143-51, (1986).
  • HILTUNEN E.J., Lehto J.A., Takacs L., On the Stucture of Fe-P Amorphous Alloys Prepared by Electrodeposition and Melt Spinning Methods, Physica Scripta, 34, 239-44, (1986).
  • HIRATA A., Hirotsu Y., Amiya K., Nishiyama N., Inoue A., Nanocrystallization of complex Fe23B6-type structure in glassy Fe-Co-B-Si-Nb alloy, Intermetallics, 16, 4, 491-97, (2008).
  • HIRATA A., Hirotsu Y., Ohkubo T., Hanada T., Bengus V.Z., Compositional dependence of local atomic structures in amorphous Fe100 - xBx (x = 14,17,20) alloys studied by electron diffraction and high-resolution electron microscopy, Physical Review B., 74, 21, 214206-9, (2006).
  • HIRATA A., Hirotsu Y., Ohkubo T., Matsubara E., Makino A., Local structure studies of Fe-Nb-B metallic glasses using electron diffraction, Journal of Microscopy – Oxf., 223, 191-94, (2006).
  • HIRATA A., Hirotsu Y., Ohkubo T., Tanaka N., Nieh T.G., Local atomic structure of Pd-Ni-P bulk metallic glass examined by high-resolution electron microscopy and electron diffraction, Intermetallics, 14, 8-9, 903-07, (2006).
  • HIROTSU Y., Ohkubo T., Matsushita M., Study of amorphous alloy structures with medium range atomic ordering, Microscopy Research and Technique, 40, 284-312, (1998).
  • HONEYCUTT J.D., Andersen H.C., Molecular dynamics study of melting and freezing of small Lennard-Jones clusters, Journal of Physical Chemistry, 91, 4950-63, (1987).
  • HOSOKAWA S., Berar J.F., Boudet N., Ichitsubo T., Matsubara E., Pilgrim W.C., Nishiyama N., Partial structure of Pd42.5Ni7.5Cu30P20 bulk metallic glass: Comparison to the reference Pd40Ni40P20 glass, Journal of Physics: Conference Series, 98, 1, 012013, (2008).
  • HUBBARD J., The Description of Collective Motions in Terms of Many-Body Perturbation Theory Proceedings of Royal Soceity A, 240, 339-560, (1957).
  • HUFNAGEL T.C., Brennan S., Short- and medium-range order in (Zr70Cu20Ni10)90- xTaxAl10 bulk amorphous alloys, Physical Review B, 67, 014203, (2003).
  • HUI X., Gao R., Chen G.L., Shang S.L., Wang Y., Liu Z.K., Short-to-medium-range order in Mg65Cu25Y10 metallic glass, Physics Letters A, 372, 17, 3078-84, (2008).
  • IMAFUKU M., Sato S., Koshiba H., Matsubara E., Inoue A., Structural Variation Of Fe-Nb-B Metallıc Glasses During Crystallization Process, Scripta Materialia, 44, 2369-72, (2001).
  • INOUE A., High Strength Bulk Amorphous Alloys with Low. Critical Cooling Rates, Materials Transactions JIM, 36, 866-75, (1995).
  • INOUE A., Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Materialia, 48, 279-85, (2000).
  • INOUE A., Gook J.S., Multicomponent Fe-Based Glassy Alloys With Wide Supercooled Liquid Region Before Crystallization, Materials Transactions JIM, 36, 1282-85, (1995).
  • INOUE A., Nakamura T., Nishiyama N., Masumoto T., Mg-Cu-Y Bulk Amorphous Alloys with High Tensile Strength Produced by a High-Pressure Die Casting Method, Materials Transactions JIM, 33, 937-45, (1990).
  • INOUE A., Park R.E., Soft Magnetic Properties and Wide Supercooled Liquid Region of Fe-P-B-Si Base Amorphous Alloys, Materials Transactions JIM, 37, 1715- 21, (1996).
  • INOUE A., Shen B., Soft Magnetic Bulk Glassy Fe-B-Si-Nb Alloys with High Saturation Magnetization above 1.5 T, Materials Transactions JIM, 43, 766-69, (2002).
  • INOUE A., Shen B., Soft magnetic properties of nanocrystalline Fe-Co-B-Si-Nb-Cu alloys in ribbon and bulk forms, Journal of Materials Research, 18, 2799-806, (2003).
  • INOUE A., Shen B., New Fe-based bulk glassy alloys with high saturated magnetic flux density of 1.4–1.5 T, Materials Science and Engineering A, 375-377, 302- 06, (2004).
  • INOUE A., Zhang T., Koshiba H., Makino A., New Bulk Amorphous Fe-(Co,Ni)-M-B (M=Zr,Hf,Nb,Ta,Mo,W) Alloys with Good Soft Magnetic Properties, Journal of Applied Physics, 83, 6326-28, (1998).
  • INOUE A., Zhang T., Takeuchi A., Bulk Amorphous Alloys with High Mechanical Strength and Good Soft Magnetic Properties in Fe-TM-B(TM=IV-VIII Group Transition Metal) System, Applied Physics Letters, 71, 464, (1997).
  • KATSNELSON A.A., Mekhrabov A.O., Silonov V.M., Electronic theory of Atomic Short-Range Order for Ternary Alloys in the Pseudopotential Approximation, Fiz. Metal Metalloved, 52, 661-63, (1981).
  • KAUZMANN W., The nature of the glassy state and the behavior of liquids at low temperatures, Chemical Reviews, 43, 219-56, (1948).
  • KIM D., Lee B.J., Kim N.J., Thermodynamic approach for predicting the glass forming ability of amorphous alloys, Intermetallics, 12, 1103-07, (2004).
  • KLEMENT W., Willens R.H., Duwez P.O.L., Non-crystalline Structure in Solidified Gold-Silicon Alloys, Nature, 187, 4740, 869-70, (1960).
  • KOSHIBA H., Inoue A., Makino A., Nanocrystallization and magnetic properties of Fe56Co7Ni7Zr2M8B20(M = Nb or Ta) Glassy alloys, Nanostructured Materials, 8, 997-1005, (1997).
  • KÖSTER U., Meinhardt J., Crystallization of highly undercooled metallic melts and metallic glasses around the glass transition temperature, Materials Science and Engineering A, 178, 271-78, (1994).
  • KURZ W., Fisher D.H., in Fundamentals of Solidification, Trans Tech Publications, 1992), Pp: 34-41.
  • LAMPARTER P., Sperl W., Steeb S., Bletry J., Atomic structure of amorphous metallic Ni81B19 Z. Naturforsch Teil A, 37, 1223-34, (1982).
  • LAMPARTER P., Steeb S., in Proc. 5th Conf. on Rapidly Quenched Metals (NorthHolland 1985, Wilzburg, 1984), pp. 459.
  • LEE H.J., Cagin T., Johnson W.L., Goddard W.A., Criteria for formation of metallic glasses: The role of atomic size ratio, Journal of Chemical Physics, 119, 9858- 70, (2003).
  • LIN C.-Y., Tien H.-Y., Chin T.-S., Soft magnetic ternary iron-boron-based bulk metallic glasses, Applied Physics Letters, 86, 16, 162501-3, (2005).
  • LU Z.P., Li Y., Ng S.C., Reduced glass transition temperature and glass forming ability of bulk glass forming alloys, Journal of Non-crystalline Solids, 270, 103- 14, (2000).
  • LU Z.P., Liu C.T., A new approach to understanding and measuring glass formation in bulk amorphous materials, Intermetallics, 12, 1035-43, (2004).
  • LU Z.P., Tan H., Li Y., The correlation between reduced glass transition temperature and glass forming ability of bulk metallic glasses, Scripta Materialia, 42, 667- 73, (2000).
  • LUPIS C.H.P., Chemical Thermodynamics of Materials. Wiley, 1983.
  • MATSUMOTO M., Nishimura T., Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom number generator ACM Trans. Modeling and Computer Simulation, 8, 3-30, (1998).
  • MATTERN N., Hermann H., Roth S., Sakowski J., Macht M.-P., Jovari P., Jiang J., Structural behavior of Pd40Cu30Ni10P20 bulk metallic glass below and above the glass transition, Applied Physics Letters, 82, 16, 2589-91, (2003).
  • MATTERN N., Schöps A., Kühn U., Acker J., Khvostikova O., Eckert J., Structural behavior of CuxZr100-x metallic glass (x = 35-70), Journal of Non-crystalline Solids, 354, 10-11, 1054-60, (2008).
  • MCDONALD I.R., NpT-ensemble Monte Carlo calculations for binary liquid mixtures, Mol. Phys., 23, 1, 41 - 58, (1972).
  • MEKHRABOV A.O., Akdeniz M.V., Effect of ternary alloying elements addition on atomic ordering characteristics of Fe-Al intermetallics, Acta Materialia, 47, 2067-75, (1999).
  • MEKHRABOV A.O., Akdeniz M.V., Modelling and Monte Carlo simulation of the atomic ordering processes in Ni3Al intermetallics, Modelling and Simulation in Materials Science and Engineering, 15, 1-12, (2007).
  • MEKHRABOV A.O., Akdeniz M.V., Arer M.M., Atomic ordering characteristics of Ni3Al intermetallics with substitutional ternary additions, Acta Materialia, 45, 3, 1077-83, (1997).
  • MEKHRABOV A.O., Babaev Z.M., A.A. K., Matysina Z.A., Pseudopotential Calculations of the Atomic Pair Interaction Energies and Order-Disorder Phase Transformation Temperature of Ni3(Fe,Me) Alloys, Fiz. Metal Metalloved, 61, 1089-93, (1986).
  • MEKHRABOV A.O., Doyama M., Electronic Theory of Atomic Short-Range Order for Ternary Alloys using the Pseudopotential Approximation and its Comparison with Experiments, Physica Status Solidi B, 126, 453-58, (1984).
  • MEKHRABOV A.O., Ressamoglu A., Ozturk T., A study of impurity effect on ordering characteristics of Fe3Al intermetallics, Journal of Alloys and Compounds, 205, 1-2, 147-55, (1994).
  • MIRACLE D.B., A structural model for metallic glasses, Nature Materials, 3, 697-702, (2004).
  • MIRACLE D.B., Sanders W.S., Senkov O.N., The influence of efficient atomic packing on the constitution of metallic glasses, Philosophical Magazine A, 83, 2409-28, (2003).
  • MIRACLE D.B., Senkov O.N., Topological criterion for metallic glass formation, Materials Science and Engineering A, 347, 50-58, (2003).
  • NOH T.H., Lee M.B., Kim H.J., Kang I.K., Relationship between crystallization process and magnetic properties of Fe-(Cu-Nb)-Si-B amorphous alloys, Journal of Applied Physics, 67, 5568, (1990).
  • NOH T.H., Pi W.K., Kim H.J., Kang I.K., Magnetic Properties of Fe73.5Cu1Nb3(SixB1-x)22.5 (x=0.5-0.8) Alloys, Journal of Applied Physics, 69, 5921-23, (1991).
  • NOLD E., Lamparter O., Olbrich H., Rainer-Harbach G., Steeb S., Determination of the Partial Structure Factors on the Metallic Glass Fe80B20, Z. Naturforsch Teil A, 36, 1032-44, (1981).
  • OHKOBU T., Hirotsu Y., Electron diffraction and high-resolution electron microscopy study of an amorphous Pd82Si18 alloy with nanoscale phase separation, Physical Review B, 67, 094201, (2003).
  • OHKUBO T., Kai H., Hirotsu Y., Structural modeling of Pd-Si and Fe-Zr-B amorphous alloys based on the microphase separation model, Materials Science and Engineering A, 304-306, 300-04, (2001).
  • OKAMOTO H., B-Fe (boron-iron), Journal of Phase Equilibria and Diffusion, 25, 297- 98, (2004).
  • PAWLIK P., Davies H.A., Gibbs M.R.J., The glass forming abilities and magnetic properties of Fe–Al–Ga–P–B–Si and Fe–Al–Ga–P–B–C alloys, Materials Science and Engineering A, 375-377, 372-76, (2004).
  • PEKALA K., Latuch J., Kulik T., Antonowicz J., Jaskiewicz P., Magnetic and transport properties of nanocrystallizing supercooled amorphous alloy Fe74Al4Ga2P11B4Si4Cu1, Materials Science and Engineering A, 375-377, 377-80, (2004).
  • POLK D.E., Giessen B.C., in In Metallic Glasses, edited by J. J. Gilman, H. J. Leamy, American Soceity for Metals, Metals Park, Ohio, 1978), Pp: 1.
  • POND R., Maddin R., A Method of Producing Rapidly Solidified Filamentary Castings, Transactions of The Metallurgical Society of AIME, 245, 2475-76, (1969).
  • QI D.W., Wang S., Icosahedral order and defects in metallic liquids and glasses, Physical Review B, 44, 884-87, (1991).
  • QI L., Dong L.F., Zhang S.L., Chen X.B., Liu R.P., Liaw P.K., Glass formation and local structure evolution in rapidly cooled PdNi alloy melt under high pressure, Physics Letters A, 372, 5, 708-11, (2008).
  • QI L., Dong L.F., Zhang S.L., Ma M.Z., Jing Q., Li G., Liu R.P., Cluster evolution in the rapid cooling process of Cu-Ag melts under high pressure: Moleculardynamics simulation, Comput. Mater. Sci., In Press, Corrected Proof, (2008).
  • QI L., Zhang H.F., Hu Z.Q., Intermetallics, 12, 1191, (2004).
  • QI Y., Cagin T., Kimura Y., Goddard W.A., Molecular-dynamics simulations of glass formation and crystallization in binary liquid metals: Cu-Ag and Cu-Ni, Physical Review B., 59, 3527-33, (1999).
  • ROLLMANN G., Gruner M.E., Hucht A., Meyer R., Entel P., Tiago M.L., Chelikowsky J.R., Shellwise Mackay Transformation in Iron Nanoclusters, Physical Review Letters, 99, 8, 083402-4, (2007).
  • SHEN B., Chang C., Inoue A., Formation, ductile deformation behavior and softmagnetic properties of (Fe,Co,Ni)-B-Si-Nb bulk glassy alloys, Intermetallics, 15, 1, 9-16, (2007).
  • SHEN B., Inoue A., Chang C., Superhigh strength and good soft-magnetic properties of (Fe,Co)–B–Si–Nb bulk glassy alloys with high glass-forming ability, Applied Physics Letters, 85, 4911-13, (2004).
  • SHEN T.D., Schwarz R.B., Bulk ferromagnetic glasses prepared by flux melting and water quenching, Applied Physics Letters, 75, 49, (1999).
  • SHENG H.W., Luo W.K., Alamgir F.M., Bai J.M., Ma E., Atomic packing and short-tomedium-range order in metallic glasses, Nature, 439, 7075, 419-25, (2006).
  • SMOLANDER K.J., Monte Carlo Study of Aluminium in Liquid and Amorphous States, Physica Scripta, 31, 427-4332, (1985).
  • SOURMAIL T., Near equiatomic FeCo alloys: Constitution, mechanical and magnetic properties, Progress in Materials Science, 50, 7, 816-80, (2005).
  • SUZUKI K., Makino A., Inoue A., Masumoto T., Soft magnetic properties of nanocrystalline bcc Fe-Zr-B and Fe-M-B-Cu (M=transition metal) alloys with high saturation magnetization (invited), Journal of Applied Physics, 70, 6232- 37, (1991).
  • TAKAYAMA S., Amorphous structures and their formation and stability, Journal of Materials Science, 70, 164-85, (1976).
  • TAKEUCHI A., Inoue A., Quantitative evaluation of critical cooling rate for metallic glasses, Materials Science and Engineering A, 304-306, 446-51, (2001).
  • TORRES M., Pastor G., Jimenez I., Fayos J., Geometric models for continuous transitions from quasicrystals to crystals Philosophical Magazine Letters, 59, 181-88, (1989).
  • TREBST S., Gull E., Troyer M., Optimized ensemble Monte Carlo simulations of dense Lennard-Jones fluids, Journal of Chemical Physics, 123, 204501, (2005).
  • TURNBULL D., Under what conditions can a glass be formed, Contemporary Physics, 10, 473-88, (1969).
  • TURNBULL D., Cohen M.H., Free-volume model of the amorphous phase: Glass transition, Journal of Chemical Physics, 34, 120-25, (1961).
  • TURNBULL D., Cohen M.H., On Free-Volume Model of Liquid-Glass Transition, Journal of Chemical Physics, 52, 3038-41, (1970).
  • VERHOEVEN J.D., Fundamentals of Physical Metallurgy. Wiley and Sons, 1975.
  • WEBER T.A., Stillinger F.H., Local order and structural transitions in amorphous metal-metalloid alloys, Physical Review B, 31, 1954-63, (1985).
  • WILLARD M.A., Huang M.Q., Laughlin D.E., Mchenry M.E., Cross J.O., Harris V.G., Franchetti C., Magnetic properties of HITPERM (Fe, Co)88Zr7B4Cu1 magnets, Applied Physics Letters, 85, 4421-23, (1999).
  • YAN X.Y., Chang Y.A., Yang Y., Xie F.X., Chen S.L., Zhang F., Daniel S., He M.H., A thermodynamic approach for predicting the tendency of multicomponent metallic alloys for glass formation, Intermetallics, 9, 535-38, (2001).
  • YASHIRO K., Nishimura M., Tomita Y., Deformation analysis of amorphous metals based on atomic elastic stiffness coefficients, Modelling Simul. Mater. Sci. Eng., 14, 4, 597-605, (2006).
  • YOSHIZAWA Y., Fujii S., Ping D.H., Ohnuma M., Hono K., Magnetic properties of nanocrystalline FeMCuNbSiB alloys (M: Co, Ni), Scripta Materialia, 48, 863- 68, (2003).
  • YOSHIZAWA Y., Kakimoto E., Doke K., Soft magnetic properties in bulk nanocrystalline alloys fabricated by a shock-wave sintering, Materials Science and Engineering A, 449-451, 480-84, (2007).
  • YOSHIZAWA Y., Oguma S., Yamauchi K., Journal of Applied Physics, 64, 6044, (1988).
  • YOSHIZAWA Y., Yamauchi K., Yamane T., Sugihara H., Common mode choke cores using the new Fe-based alloys composed of ultrafine grain structure, Journal of Applied Physics, 64, 6047-49, (1988).
  • ZALLEN S., The physics of amorphous solids. Wiley, 1983.
  • ZBROSZCZYK J., Narita K., Olszewski J., Ciurzynska W., Lijun W., Wyslocki B., Szymura S., Hasiak M., Effect of Co addition on the microstructure and magnetic properties of Fe---Cu---Nb---Si---B alloy, Journal of Magnetism and Magnetic Materials, 160, 281-83, (1996).
  • ZHANG J., Tan H., Feng Y.P., The effect of Y on glass forming ability, Scripta Materialia, 53, 183-87, (2005). ZHANG Q., Lai W.S., Liu B.X., Atomic structure and physical properties of Ni–Nb amorphous alloys determined by an n-body potential, Journal of Noncrystalline Solids, 261, 137-45, (2000).
APA AKDENİZ M, MEKHRABOV O, AYKOL M (2008). Güç kaynakları ve otomotiv elektroniği uygulamaları için bor tabanlı kalın kesitli metalik cam / nanokristal manyetik malzemelerin geliştirilmesi. , 1 - 143.
Chicago AKDENİZ M. Vedat,MEKHRABOV O. Amdulla,AYKOL Muratahan Güç kaynakları ve otomotiv elektroniği uygulamaları için bor tabanlı kalın kesitli metalik cam / nanokristal manyetik malzemelerin geliştirilmesi. (2008): 1 - 143.
MLA AKDENİZ M. Vedat,MEKHRABOV O. Amdulla,AYKOL Muratahan Güç kaynakları ve otomotiv elektroniği uygulamaları için bor tabanlı kalın kesitli metalik cam / nanokristal manyetik malzemelerin geliştirilmesi. , 2008, ss.1 - 143.
AMA AKDENİZ M,MEKHRABOV O,AYKOL M Güç kaynakları ve otomotiv elektroniği uygulamaları için bor tabanlı kalın kesitli metalik cam / nanokristal manyetik malzemelerin geliştirilmesi. . 2008; 1 - 143.
Vancouver AKDENİZ M,MEKHRABOV O,AYKOL M Güç kaynakları ve otomotiv elektroniği uygulamaları için bor tabanlı kalın kesitli metalik cam / nanokristal manyetik malzemelerin geliştirilmesi. . 2008; 1 - 143.
IEEE AKDENİZ M,MEKHRABOV O,AYKOL M "Güç kaynakları ve otomotiv elektroniği uygulamaları için bor tabanlı kalın kesitli metalik cam / nanokristal manyetik malzemelerin geliştirilmesi." , ss.1 - 143, 2008.
ISNAD AKDENİZ, M. Vedat vd. "Güç kaynakları ve otomotiv elektroniği uygulamaları için bor tabanlı kalın kesitli metalik cam / nanokristal manyetik malzemelerin geliştirilmesi". (2008), 1-143.
APA AKDENİZ M, MEKHRABOV O, AYKOL M (2008). Güç kaynakları ve otomotiv elektroniği uygulamaları için bor tabanlı kalın kesitli metalik cam / nanokristal manyetik malzemelerin geliştirilmesi. , 1 - 143.
Chicago AKDENİZ M. Vedat,MEKHRABOV O. Amdulla,AYKOL Muratahan Güç kaynakları ve otomotiv elektroniği uygulamaları için bor tabanlı kalın kesitli metalik cam / nanokristal manyetik malzemelerin geliştirilmesi. (2008): 1 - 143.
MLA AKDENİZ M. Vedat,MEKHRABOV O. Amdulla,AYKOL Muratahan Güç kaynakları ve otomotiv elektroniği uygulamaları için bor tabanlı kalın kesitli metalik cam / nanokristal manyetik malzemelerin geliştirilmesi. , 2008, ss.1 - 143.
AMA AKDENİZ M,MEKHRABOV O,AYKOL M Güç kaynakları ve otomotiv elektroniği uygulamaları için bor tabanlı kalın kesitli metalik cam / nanokristal manyetik malzemelerin geliştirilmesi. . 2008; 1 - 143.
Vancouver AKDENİZ M,MEKHRABOV O,AYKOL M Güç kaynakları ve otomotiv elektroniği uygulamaları için bor tabanlı kalın kesitli metalik cam / nanokristal manyetik malzemelerin geliştirilmesi. . 2008; 1 - 143.
IEEE AKDENİZ M,MEKHRABOV O,AYKOL M "Güç kaynakları ve otomotiv elektroniği uygulamaları için bor tabanlı kalın kesitli metalik cam / nanokristal manyetik malzemelerin geliştirilmesi." , ss.1 - 143, 2008.
ISNAD AKDENİZ, M. Vedat vd. "Güç kaynakları ve otomotiv elektroniği uygulamaları için bor tabanlı kalın kesitli metalik cam / nanokristal manyetik malzemelerin geliştirilmesi". (2008), 1-143.