0 3

Proje Grubu: MAG Sayfa Sayısı: 160 Proje No: 110M057 Proje Bitiş Tarihi: 01.02.2013 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Nanoakışkanlarla zorlanmış taşınımla ısı transferinin sayısal analizi

Öz:
-
Anahtar Kelime:

Erişim Türü: Erişime Açık
  • AKBARİ M., Galanis N., Behzamehr A., Comparative Analysis Of Single And Two-Phase Models For CFD Studies Of Nanofluid Heat Transfer, Int. J. Therm. Sci., 50, 1343-1354, (2011).
  • ANOOP, K., Sundararajan, T., and Das, S. K., Effect of Particle Size on the Convective HeatTransfer in Nanofluid in the Developing Region, Int. J. Heat Mass Tran., 52(9-10), 2189-2195, (2009).
  • ANSYS Fluent 12. Theory Guide. 16, (2009).
  • BATCHELOR, G. K., The Effect of Brownian Motion on the Bulk Stress in a Suspension of Spherical Particles, J. Fluidmech, 83, 97-117, (1977).
  • BECK, M., Yuan, Y., Warrier, P., and Teja, A., The Effect of Particle Size on the Thermal Conductivity of Alumina Nanofluids, J. Nanopart. Res., 11(5), 1129-1136, (2009).
  • BEHZADMEHR, A., Saffar-Avval, M., and Galanis, N., Prediction of Turbulent Forced Convection of a Nanofluid in a Tube with Uniform Heat Flux Using a Two Phase Approach, Int. J. Heat Fluid Fl., 28(2), 211-219, (2007).BIANCO, V., Chiacchio, F., Manca, O., and Nardini, S., Numerical Investigation of Nanofluids Forced Convection in Circular Tubes, Appl. Therm. Eng., 29(17-18), 3632-3642, (2009).
  • BIANCO, V., Manca, O., Nardini, S., Numerical Investigation on Nanofluids TurbulentConvection Heat Transfer Inside a Circular Tube,Int. J. Therm. Sci, 50(3), 341-349, (2010).
  • BOUSSINESQ, J., Theory de L’eco ReynoldsStresses Ulment Tourbillant. Memoires Presentes Par Divers SavantsSciences Mathematique at Physiques, pp. 46-50 (1877).BRINKMAN, H. C., The Viscosity of Concentrated Suspensions and Solutions, J. Chemistry Phy, 20, 571-581, (1952).
  • BUONGIORNO, J., Convective Transport in Nanofluids, J. Heat Transfer, 128(3), 240-250, (2006).
  • CHANDRASEKAR, M., and Suresh, S., A Review on the Mechanisms of Heat Transport in Nanofluids, Heat Transfer Eng., 30(14), 1136-1150, (2009).
  • CHANDRASEKAR, M., Suresh, S., Chandra Bose, A., Experimental Investigations and Theoretical Determination of Thermal Conductivity and Viscosity of Al2O3/Water Nanofluid, Experimental Thermal and Fluid Science, 34, 210-216, (2010).
  • CHEIN, R., and Chuang, J., Experimental Microchannel Heat Sink Performance Studies using Nanofluids, Int. J. Therm. Sci., 46(1), 57-66, (2007).
  • CHEN, S.C., ANAND, N.K., TREE, D.R., Analysis of Transient Laminar Convective Heat Transfer Inside a Circular Duct, J. Heat Transfer Vol. 105, 1661-1667, (1983).
  • CHEN, H., Yang, W., He, Y., Ding, Y., Zhang, L., Tan, C., Lapkin, A. A., and Bavykin, D. V., Heat Transfer and Flow Behaviour of Aqueous Suspensions of Titanate Nanotubes (Nanofluids), Powder Technol., 183(1), 63-72, (2008).
  • CHEN, H., Ding, Y., Tan, C., , Rheological Behaviour of Nanofluids, New Journal Of Physics, 9, 367, 1-24, (2007-a).
  • CHEN, H., Ding, Y., He, Y., Tan, C., Rheological Behaviour of Ethylene Glycol Based Titania Nanofluids, Chemical Physics Letters, 444, 333-337, (2007-b).
  • CHEN, H., Ding, Y., Lapkin, A., Fan, X., Rheological Behaviour of Ethylene Glycol-Titanate Nanotube Nanofluids, J Nanopart Res, 11, 1513-1520, (2009).
  • CHEVALIER, J., Tillement, O., Ayela, F., Rheological Properties of Nanofluids Flowing Through Microchannels, Applied Physics Letters, 91, 233103, 1-3, (2007).
  • CHOI, S. U. S., Enhancing Thermal Conductivity of Fluids with Nanoparticles, Developments and Applications of Non-Newtonian Flows, D. A. Siginer, and H. P. Wang, eds., The American Society of Mechanical Engineers, New York, (1995). FED-Vol. 231 / MD-Vol.66. Pp. 99-105.
  • CHOI, S. U. S., Zhang, Z. G., Yu, W., Lockwood, F. E., and Grulke, E. A., Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions, Appl. Phys. Lett., 79(14), 2252-2254, (2001).
  • CHOI, S. U. S., Nanofluids: From Vision to Reality through Research, J. Heat Transfer, 131(3), 033106, (2009).
  • CHON, C. H., Kihm, K. D., Lee, S. P., and Choi, S. U. S., Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement, Appl. Phys. Lett., 87(15), 153107, (2005).
  • CHOUDHURY, D., Introductuon to the Renormalization Group Method and Turbulence Modeling. Fluent Inc. Technical Memorandum TM-107(1993).
  • CORCIONE, M., Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids, Energy Conversion and Management, 52, 789–793, (2011).
  • CZARNETZKI, W., and Roetzel, W., Temperature Oscillation Techniques for Simultaneous Measurement of Thermal Diffusivity and Conductivity, Int. J. Thermophys., 16(2), 413-422, (1995).DAS, S. K., Putra, N., Thiesen, P., and Roetzel, W., Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids, J. Heat Transfer, 125(4), 567-574, (2003).
  • DEMIR, H., Dalkilic, A.S., Kurekci, N.A., Kelesoglu, B., and Wongwises, S., A Numerical investigation of Nanofluids Forced Convection Fow in a Horizontal Smooth Tube, International Heat Transfer Conference, ASME, 2010, August 8–13, USA, (2010).
  • DING, Y., Alias, H., Wen, D., and Williams, R. A., Heat Transfer of Aqueous Suspensions of Carbon Nanotubes (CNT Nanofluids), Int. J. Heat Mass Tran., 49(1-2), 240-250, (2006).
  • DING, Y., and Wen, D., Particle Migration in a Flow of Nanoparticle Suspensions, Powder Technol., 149(2-3), 84-92, (2005).
  • DUAN, F., Kwek, D., Crivoi, A., Viscosity Affected by Nanoparticle Aggragation in Al2O3-Water Nanofluids, Nanoscale Research Letters, 6, 248, 1-5, (2011). DUANGTHONGSUK, W., Wongwises, S., Measurement of Temperature-Dependent Thermal Conductivity and Viscosity of TiO2-Water Nanofluids, Experimental Thermal and Fluid Science, 33, 706-714, (2009).
  • EASTMAN, J. A., Choi, S. U. S., Li, S., Yu, W., and Thompson, L. J., Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles, Appl. Phys. Lett., 78(6), 718-720, (2001).
  • EINSTEIN, A., A New Determination of Molecular Dimensions, Annalen der Physik, Vol. 19, No. 4, 289-306. Corrections, ibid., Vol. 34, 1911, 591-592, (1906).
  • FARD M. H., Esfahany M. N., Talaie M.R., Numerical Study of Convective Heat Transfer of Nanofluids in a Circular Tube: Two-Phase Model versus Single-Phase Model, Int . Comm. Heat Mass Trans., 37, 91-97, (2010).
  • FARD M. H., Talaie M.R, Nasr S., Numerical and Experimental Investigation of Heat Transfer of ZnO/Water Nanofluid in the Concentric Tube and Plate Heat Exchangers, Therm. Sci., 15, 183-194, (2011).
  • GODSON, L., Raja, B., Mohan Lal, D., and Wongwises, S., Enhancement of Heat Transfer Using Nanofluids-An Overview, Renew. Sust. Energ. Rev., 14(2), 629-641, (2010).
  • GODSON, L., Raja, B., Lal, D. M., Wongwises, S., Experimental Investigation on the Thermal Conductivity and Viscosity of Silver-Deionized Water Nanofluid, Experimental Heat Transfer, 23, 317-332, (2010).
  • GRAETZ, L., Über die Wärmeleitungs Fähigkeit von Flüssigkeiten, Ann. der Phys. Chem., 18 79-94 (1883).
  • HAGHSHENAS FARD, M., Nasr Esfahany, M., Talaie, M.R., Numerical Study of Convective Heat Transfer of Nanofluids in a Circular Tube Two-phase Model versus Single-phase Model, Int. Comm. Heat Mass Trans., 37, 91-97, (2010).
  • HAMILTON, R. L., and Crosser, O. K., Thermal Conductivity of Heterogeneous Two-Component Systems, Ind. Eng. Chem. Fund., 1(3), 187-191, (1962).
  • HAUSEN, H., Darstellung des Wärmeüberganges in Rohren durch verallgemeinerte Potenzbeziehungen, Z.VDI Beiheft Verfahrenstechnik, 4, 91-102, (1943).
  • HERIS, S. Z., Esfahany, M. N., and Etemad, S., Experimental Investigation of Convective Heat Transfer of Al2O3/ Water Nanofluid in Circular Tube, Int. J. Heat Fluid Fl., 28(2), 203-210, (2007-a).
  • HERIS, S. Z., Esfahany, M. N., and Etemad, G., Numerical Investigation of Nanofluid Laminar Convective Heat Transfer through a Circular Tube, Numer. Heat Tr. A-Appl., 52(11), 1043-1058, (2007-b).
  • HERIS, S. Z., Etemad, S., and Esfahany, M. N., Experimental Investigation of Oxide Nanofluids Laminar Flow Convective Heat Transfer, Int. Commun. Heat Mass, 33(4), 529-535, (2006).
  • HEYHAT M.M., et al., Effect of Particle Migration on Flow and Convective Heat Transfer of Nanofluids Flowing Through a Circular Pipe, J. Heat Transfer, 132, 062401 (2010).
  • HONG, K. S., Hong, T., and Yang, H., Thermal Conductivity of Fe Nanofluids Depending on the Cluster Size of Nanoparticles, Appl. Phys. Lett., 88(3), 031901-3, (2006).
  • HONG, T., Yang, H., and Choi, C. J., Study of the Enhanced Thermal Conductivity of Fe Nanofluids, J. Appl. Phys., 97(6), 064311-4, (2005).
  • HOSSEINI, M. S., Mohebbi, A., Ghader, S., Correlation of Shear Viscosity of Nanofluids Using the Local Composition Theory, Thermodynamics and Chemical Engineering, 18, No. 1, 102-107, (2010).
  • HWANG, K. S., Jang, S. P., and Choi, S. U. S., Flow and Convective Heat Transfer Characteristics of Water-Based Al2O3 Nanofluids in Fully Developed Laminar Flow Regime, Int. J. Heat Mass Tran., 52(1-2), 193-199, (2009).
  • JANG, S.P, CHOİ, S.U.S., Free Convection in a Rectangular Cavity (Benard Convection) with Nanofluids, In Proceedings of IMECE, 13–19. Anaheim, California, USA (2004).
  • JU, Y. S., Kim, J., and Hung, M., Experimental Study of Heat Conduction in Aqueous Suspensions of Aluminum Oxide Nanoparticles, J. Heat Transfer, 130(9), 092403-6, (2008).
  • KAKAÇ, S, Yener, Y., Convective Heat Transfer, second ed., CRC-Press, Boca Raton, (1995).
  • KAKAÇ, S., and Pramuanjaroenkij, A., Review of Convective Heat Transfer Enhancement with Nanofluids, Int. J. Heat Mass Tran., 52(13-14), 3187-3196, (2009).
  • KALTEH M., Abbassi A., Saffar-Avval M., Harting J., Eularian-Eularian Two-Phase Numerical Simulation of Nanofluid Laminar Forced Convection in a Microchannel,Int . J. Heat Fluid Flow, 32, 107-116, (2011).
  • KEBLINSKI, P., Phillpot, S. R., Choi, S. U. S., and Eastman, J. A., Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids), Int. J. Heat Mass Tran., 45(4), 855-863, (2002).
  • KIM, D., Kwon, Y., Cho, Y., Li, C., Cheong, S., Hwang, Y., Lee, J., Hong, D., and Moon, S., Convective Heat Transfer Characteristics of Nanofluids under Laminar and Turbulent Flow Conditions, Current Applied Physics, 9(2, Supplement 1), 119-123, (2009).
  • KOLE, M., Dey, T. K., Effect of Agregation on the Viscosity of Copper Oxide-Gear Oil Nanofluids, International Journal Of Thermal Sciences, 50, 1741-1747, (2011).
  • KOLE, M., Dey, T. K., Viscosity of Alumina Nanoparticles Dispersed in Car Engine Coolant, Experimental Thermal and Fluid Science, 34, 677-683, (2010).
  • KOO, J., and Kleinstreuer, C., A New Thermal Conductivity Model for Nanofluids, J. Nanopart. Res., 6(6), 577-588, (2004).
  • KRIEGER, I. M., Dougherty, T. J., A Mechanism for Non-Newtonian Flow in Suspensions of Rigid Spheres, Transactions of The Society of Rheology, 3, 137-152, (1959).
  • KULKARNI, D. P., Namburu, P. K., Ed Bargar, H., and Das, D. K., Convective Heat Transfer and Fluid Dynamic Characteristics of SiO2 Ethylene Glycol/Water Nanofluid, Heat Transfer Eng., 29(12), 1027-1035, (2008).
  • LAUNDER, B.E. and Spalding, D.B., The Numerical Computation of Turbulent Flows.Computer Methods in Applied Mechanics and Engineering, pp. 269-289, (1974).
  • LEE, J. and Mudawar, I., Assessment of the Effectiveness of Nanofluids for Single-Phase and Two-Phase Heat Transfer in Micro-Channels, Int. J. of Heat and Mass Transfer, Vol. 50, pp. 452-463 (2006).
  • LEE, J., and Mudawar, I., Assessment of the Effectiveness of Nanofluids for Single-Phase and Two-Phase Heat Transfer in Micro-Channels, Int. J. Heat Mass Tran., 50(3-4), 452-463, (2007).
  • LEE, J-H., Hwang, K. S., Jang, S. P., Lee, B. H., Kim, J. H., Choi, S. U. S., Choi, C. J., Effective Viscosities and Thermal Conductivities of Aqueous Nanofluids Containing Low Volume Concentrations of Al2O3 Nanoparticles, International Journal of Heat and Mass Transfer, 51, 2651-2656, (2008).
  • LEE, S. W., Park, S. D., Kang, S., Bang, I. C., Kim, J. H., Investigation of Viscosity and Thermal Conductivity of SiC Nanofluids for Heat Transfer Applications, International Journal of Heat and Mass Transfer, 54, 433-438, (2011).
  • LEE, S., Choi, S. U. S., Li, S., and Eastman, J. A., Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles, J. Heat Transfer, 121(2), 280-289, (1999).
  • LI, C. H., and Peterson, G. P., Experimental Investigation of Temperature and Volume Fraction Variations on the Effective Thermal Conductivity of Nanoparticle Suspensions (Nanofluids), J. Appl. Phys., 99(8), 084314, (2006).
  • LI, Q., Xuan, Y., Experimental Investigation on Transport Properties of Nanofluids, in: B. Wang (ed.), Heat Transfer Science and Technology, Higher Education Press, Beijing, 757-762, (2000).
  • LI, Q., and Xuan, Y., Convective Heat Transfer and Flow Characteristics of Cu-Water Nanofluid, Sci. China Ser. E, 45(4), 408-416, (2002).
  • LIPKIS, R.P., Heat Transfer to an Incompressible Fluid in Laminar Motion, (Yüksek lisans tezi), University of California, Los Angeles, CA, (1954).
  • LIU, M., Lin, M. C., Huang, I., and Wang, C., Enhancement of Thermal Conductivity with Carbon Nanotube for Nanofluids, Int. Commun. Heat Mass Trans., 32(9), 1202-1210, (2005).
  • LOTFI R., Saboohi Y., Rashidi A.M., Numerical Study of Forced Convective Heat Transfer of Nanofluids: Comparison of Different Approaches, Int. Commun. Heat Mass Trans., 37, 74-78, (2010).
  • LUNDGREN, T. S., Slow Flow Through Stationary Random Beds and Suspensions of Spheres, J. Fluid Mechanics, 51, 847-853, (1972).
  • MAIGA, S. E. B., Nguyen, C. T., Galanis, N., and Roy, G., Heat Transfer Behaviours of Nanofluids in a Uniformly Heated Tube, Superlattices and Microstructures, 35(3-6), 543-557, (2004).
  • MAIGA, S.E.B., Nguyen, C.T., Galanis, N., Roy, G., Mare,T., and Coqueux, M., Heat Transfer Enhancement in Turbulent Tube Flow using Al2O3 Nanoparticle Suspension, Int. J. of Numerical Methods for Heat and Fluid Flow, Vol. 16, No. 3, pp. 275–292, (2006).
  • MANNINEN, M., Taivassalo, V., Kallio, S., On the mixture model for multiphase flow, VTT Publications 288, Technical Research Centre of Finland, (1996).
  • MANSOUR, R. B., Galanis, N., and Nguyen, C. T., Effect of Uncertainties in Physical Properties on Forced Convection Heat Transfer with Nanofluids, Appl. Therm. Eng., 27(1), 240-249, (2007).
  • MASOUMI, N., Sohrabi, N., Behzadmehr, A., A New Model for Calculating The Effective Viscosity of Nanofluids, J. Phys. D: Appl. Phys, 42, 055501, 1-6, (2009).
  • MASUDA, H., Ebata, A., Teramae, K., and Hishinuma, N., Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles (Dispersion of γ-Al2O3, SiO2, and TiO2Ultra-Fine Particles), Netsu Bussei, 4(4), 227-233, (1993).
  • MAXWELL, J.C., A Treatise on Electricity and Magnetism, Clarendon Press, Oxford, (1873).
  • MINTSA, H. A., Roy, G., Nguyen, C. T., and Doucet, D., New Temperature Dependent Thermal Conductivity Data for Water-Based Nanofluids, Int. J. Therm. Sci., 48(2), 363-371, (2009).
  • MIRMASOUMI S., Behzadmehr A., Numerical Study of Laminar Mixed Convection of a Nanofluid in a Horizontal Tube using Two-Phase Mixture Model, Int. J. Heat Fluid Flow, 29, 557-566, (2008).
  • MURSHED, S., Leong, K., and Yang, C., Enhanced Thermal Conductivity of TiO2 -Water Based Nanofluids, Int. J. Therm. Sci., 44(4), 367-373, (2005).
  • MURSHED, S., Leong, K., and Yang, C., Thermophysical and Electrokinetic Properties of Nanofluids - A Critical Review, Appl. Therm. Eng., 28(17-18), 2109-2125, (2008).
  • NAIK, M. T., Janardhana, G. R., Reddy, K. V. K., Reddy, B. S., Experimental Investigation ınto Rheological Property of Copper Oxide Nanoparticles Suspended in Propylene Glycol-Water Based Fluids, ARPN Journal of Engineering and Applied Sciences, 5, No. 6, 29-34, (2010).
  • NAMBURU, P. K., Kulkarni, D. P., Misra, D., Das, D. K., Viscosity of Copper Oxide Nanoparticles Dispersed in Ethylene Glycol and Water Mixture, Experimental Thermal and Fluid Science, 32, 397-402, (2007).
  • NAMBURU, P.K., Das, D.K., Tanguturi, K.M., and Vajjha, R.S., Numerical Study of TurbulentFlow and Heat Transfer Characteristics of Nanofluids Considering Variable Properties, Int. J. of Thermal Sciences, Vol. 48(2), pp. 290–302, (2009).
  • NASIRI M., Etemad S.G., Bagheri R., Experimental Heat Transfer of Nanofluid Through an Annular Duct, Int . Comm. Heat Mass Trans., 38, 958–963, (2011).
  • NGUYEN, C. T., Desgranges, F., Roy, G., Galanis, N., Maré, T., Boucher, S., Angue Mintsa, H., Temperature and Particle-Size Dependent Viscosity Data for Water-Based Nanofluids – Hysteresis Phenomenon, International Journal of Heat and Fluid Flow, 28, 1492-1506, (2007).
  • ÖZERİNÇ, S., Heat Transfer Enhancement with Nanofluids, (Yüksek Lisans Tezi), ODTÜ Makine Mühendisliği Bölümü, (2010-a).
  • ÖZERİNÇ, S., Kakaç, S., and Yazıcıoğlu, A. G., Enhanced Thermal Conductivity of Nanofluids: A State-of-the-Art Review, Microfluid. Nanofluid., 8(2), 145-170, (2010-b).
  • ÖZIŞIK, M.N., Finite Difference Methods in Heat Transfer, CRC-Press, Boca Raton, (1994).
  • PAK, B. C., and Cho, Y. I., Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles, Exp. Heat Transfer, 11(2), 151-170, (1998).
  • PASTORIZA-GALLEGO, M. J., Casanova, C., Legido, J. L., Piñeiro M. M., CuO in Water Nanofluid: Influence of Particle Size and Polydispersity on Volumetric Behaviour and Viscosity, Fluid Phase Equilibria, 300, 188-196, (2011).
  • PATANKAR, Numerical Heat Transfer and Fluid Flow, Taylor & Francis, 102-103, (1980).
  • PATHIPAKKA, G. and Sivashanmugam, P., Heat Transfer Behavior Of Nanofluids in a Uniformly Heated Circular Tube Fitted With Helical Inserts in Laminar Flow, Superlattices and Microstructures, 47, pp 349-360, (2010)
  • PRASHER, R., Song, D., Wang, J., Phelan, P., Measurements of Nanofluid Viscosity and Its Implications for Thermal Applications, Applied Physics Letters, 89, 133108, 1-3, (2006).
  • PUTNAM, S. A., Cahill, D. G., Braun, P. V., Ge, Z., and Shimmin, R. G., Thermal Conductivity of Nanoparticle Suspensions, J. Appl. Phys., 99(8), 084308-6, (2006).
  • PUTRA, N., Roetzel, W., Das, S.K., Natural Convection of Nanofluids, Heat and Mass Transfer, 39, 775-784, (2003).
  • RAHIMI-ESBO, M., Ranjbar, A.A., Ramiar, A., Rahgoshay, M., and Arya, A., Numerical Study of the Turbulent Forced Convection Jet Flow of Nanofluid in a Converging Duct, Numerical Heat Transfer A, Vol. 62, No. 1, pp. 60–79, (2012)
  • REA U., McKrell T., Hu L., Buongiorno J., Laminar Convective Heat Transfer and Viscous Pressure Loss of Alumina–Water and Zirconia–Water Nanofluids, , Int. J. Heat Mass Tran., 52, 2042-2048, (2009).
  • ROMANO, J. M., Parker, J. C., and Ford, Q. B., Application Opportunities for Nanoparticles Made from the Condensation of Physical Vapors, Adv. Pm. Part., 12-13, (1997).
  • ROSTAMANI M., Hosseinizadeh S.F., Gorji M., Khodadadi J.M., Numerical Study of Turbulent Forced Convection Flow of Nanofluids in a Long Horizontal Duct Considering Variable Properties, Int. Commun. Heat Mass Trans., 37, 1426–1431, (2010).
  • SANTRA, A.P., Sen, S., Chakraborty, N., Study of Heat Transfer due to Laminar Flow of Copper-Water Nanofluid through Two Isothermally Heated Parallel Plate, Int. J. Thermal Sci., 48, 391-400, (2009).
  • SHIH, T.H., Liou, W.W., Shabbir, A., Yang, Z. and Zhu, J., A New εk− Eddy-Viscosity Model for High Reynolds Number Turbulent Flow. Computers and Fluids, Vol. 24 (3), pp. 227-238, (1995).
  • SIEGEL, R., Sparrow, E.M., Hallman, T.M., Steady Laminar Heat Transfer in a Circular Tube with Prescribed Wall Heat Flux, Appl. Sci. Res,7A, 386-392, (1958).
  • SITPRASERT, C., Dechaumphai, P., Juntasaro, V., A Thermal Conductivity Model for Nanofluids Including Effect of the Temperature-Dependent Interfacial Layer, J Nanopart Res, 11(6), 1465–1476, (2009).
  • TAVMAN, I., Turgut, A., An investigation on thermal conductivity and viscosity of water based nanofluids, Microfluidics Based Microsystems NATO Science for Peace and Security Series A: Chemistry and Biology, 0, 139-162, (2010).
  • TIMOFEEVA, E. V., Routbort, J. L., Singh, D., Particle Shape Effects on Thermophysical Properties of Alumina Nanofluids, Journal of Applied Physics, 106, 014304, 1-10, (2009).
  • TRISAKSRI, V., Wongwises, S., Critical review of heat transfer characteristics of nanofluids. Renewable and Sustainable Energy Reviews, 11(3), 512-523, (2005).
  • TSENG, W. J., Lin, K-C., Rheology and Colloidal Structure of Aqueous TiO2 Nanoparticle Suspensions, Materials Science and Engineering A, 355, 186-192, (2003).
  • TURGUT, A., Tavman, I., Chirtoc, M., Schuchmann, H., Sauter, C., and Tavman, S., Thermal Conductivity and Viscosity Measurements of Water-Based TiO2 Nanofluids, Int. J. Thermophys., 30(4), 1213-1226, (2009).
  • TURGUT, A., Tavman, I., Cetin, L., Chirtoc, M., Fudym, O., Preperation and Characterization of Nanofluids Containing Alumina Nanoparticles, www.ichmt.org/tmnn-2011/images/summaries/46.pdf, (2011).
  • TURGUT, A., Tavman, I., Chirtoc, M., Schuchmann, H. P., Sauter, C., Tavman, S., Thermal Conductivity and Viscosity Measurements of Water-Based TiO2 Nanofluids, Int J Thermophys, 30, 1213-1226, (2009).
  • VAKILI-NEZHAAD, G., Dorany, A., Effect of Single-Walled Carbon Nanotube on the Viscosity of Lubricants, Energy Procedia, 14, 512-517, (2012).
  • WANG, X., and Mujumdar, A., A Review on Nanofluids - Part I: Theoretical and Numerical Investigations, Braz. J. Chem. Eng., 25(4), 613-630, (2008).
  • WANG, B., Zhou, L., and Peng, X., A Fractal Model for Predicting the Effective Thermal Conductivity of Liquid with Suspension of Nanoparticles, Int. J. Heat Mass Tran., 46(14), 2665-2672, (2003).
  • WANG, X., and Mujumdar, A. S., Heat Transfer Characteristics of Nanofluids: A Review, Int. J. Therm. Sci., 46(1), 1-19, (2007).
  • WANG, X., Choi, S. U. S., and Xu, X., Thermal Conductivity of Nanoparticle - Fluid Mixture, J. Thermophys. Heat Tran., 13(4), 474-480, (1999).
  • WEN, D., and Ding, Y., Experimental Investigation into Convective Heat Transfer of Nanofluids at the Entrance Region under Laminar Flow Conditions, Int. J. Heat Mass Tran., 47(24), 5181-5188, (2004).
  • WEN, D., Lin, G., Vafaei, S., and Zhang, K., Review of Nanofluids for Heat Transfer Applications, Particology, 7(2), 141-150, (2009).
  • WILLIAMS W., Buongiorno J., Hu L. W., Experimental Investigation of Turbulent Convective Heat Transfer and Pressure Loss of Alumina/Water and Zirconia/Water Nanoparticle Colloids: Nanofluid in Horizontal Tubes, J. Heat Trans., 130 (4), 042412, (2008).
  • XIE, H., Wang, J., Xi, T., and Liu, Y., Thermal Conductivity of Suspensions Containing Nanosized SiC Particles, Int. J. Thermophys., 23(2), 571-580, (2002-a).
  • XIE, H., Wang, J., Xi, T., Liu, Y., and Ai, F., Dependence of the Thermal Conductivity of Nanoparticle-Fluid Mixture on the Base Fluid, J. Mater. Sci. Lett., 21(19), 1469-1471, (2002-b).
  • XUAN, Y., and Roetzel, W., Conceptions for Heat Transfer Correlation of Nanofluids, Int. J. Heat Mass Tran., 43(19), 3701-3707, (2000).
  • YU, C-J, Richter, A.G., Datta, A., Durbin, M.K., Dutta, P., Observation of Molecular Layering in Thin Liquid Films Using X-Ray Reflectivity, Phys Rev Lett, 82(2–11), 2326–2329, (1999).
  • YU, W., Choi, S.U.S., The Role of Interfacial Layers in The Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model, J Nanopart Res, 5(1–2), 167–171, (2003).
  • YU, W., France, D. M., Routbort, J. L., and Choi, S. U. S., Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements, Heat Transfer Eng., 29(5), 432-460, (2008).
  • YU, W., Xie, H., A Review on Nanofluids: Preperation, Stability Mechanisms and Applications, Journal of Nanomaterials, 2012, 1-17, (2012).
  • YU, W., Xie, H., Li, Y., Chen, L., Experimental Investigation on Thermal Conductivity and Viscosity of Aluminum Nitride Nanofluid, Particuology, 9, 187-191, (2011).
  • ZEINALI Heris, S., Nasr Esfahany, M., Etemad, S.Gh., Experimental Investigation of Convective Heat Transfer of Al2O3-Water Nanofluid in Circular Tube, Int. J. of Heat and Fluid Flow, 28, 203-210, (2007).
  • ZHAO, J-F., Luo, Z-Y., Ni, M-J., Cen, K-F., Dependence of Nanofluid Viscosity on Particle Size and pH Value, Chin. Phys. Lett., 26, No. 6, 066202, 1-3, (2009).
  • ZHU, H. T., Zhang, C. Y., Tang, Y. M., and Wang, J. X., Novel Synthesis and Thermal Conductivity of CuO Nanofluid, J. Phys. Chem. C, 111(4), 1646-1650, (2007).
APA Kakaç S, UZOL N, YAZICIOĞLU A (2013). Nanoakışkanlarla zorlanmış taşınımla ısı transferinin sayısal analizi. , 1 - 160.
Chicago Kakaç Sadık,UZOL Nilay Sezer,YAZICIOĞLU Almıla Güvenç Nanoakışkanlarla zorlanmış taşınımla ısı transferinin sayısal analizi. (2013): 1 - 160.
MLA Kakaç Sadık,UZOL Nilay Sezer,YAZICIOĞLU Almıla Güvenç Nanoakışkanlarla zorlanmış taşınımla ısı transferinin sayısal analizi. , 2013, ss.1 - 160.
AMA Kakaç S,UZOL N,YAZICIOĞLU A Nanoakışkanlarla zorlanmış taşınımla ısı transferinin sayısal analizi. . 2013; 1 - 160.
Vancouver Kakaç S,UZOL N,YAZICIOĞLU A Nanoakışkanlarla zorlanmış taşınımla ısı transferinin sayısal analizi. . 2013; 1 - 160.
IEEE Kakaç S,UZOL N,YAZICIOĞLU A "Nanoakışkanlarla zorlanmış taşınımla ısı transferinin sayısal analizi." , ss.1 - 160, 2013.
ISNAD Kakaç, Sadık vd. "Nanoakışkanlarla zorlanmış taşınımla ısı transferinin sayısal analizi". (2013), 1-160.
APA Kakaç S, UZOL N, YAZICIOĞLU A (2013). Nanoakışkanlarla zorlanmış taşınımla ısı transferinin sayısal analizi. , 1 - 160.
Chicago Kakaç Sadık,UZOL Nilay Sezer,YAZICIOĞLU Almıla Güvenç Nanoakışkanlarla zorlanmış taşınımla ısı transferinin sayısal analizi. (2013): 1 - 160.
MLA Kakaç Sadık,UZOL Nilay Sezer,YAZICIOĞLU Almıla Güvenç Nanoakışkanlarla zorlanmış taşınımla ısı transferinin sayısal analizi. , 2013, ss.1 - 160.
AMA Kakaç S,UZOL N,YAZICIOĞLU A Nanoakışkanlarla zorlanmış taşınımla ısı transferinin sayısal analizi. . 2013; 1 - 160.
Vancouver Kakaç S,UZOL N,YAZICIOĞLU A Nanoakışkanlarla zorlanmış taşınımla ısı transferinin sayısal analizi. . 2013; 1 - 160.
IEEE Kakaç S,UZOL N,YAZICIOĞLU A "Nanoakışkanlarla zorlanmış taşınımla ısı transferinin sayısal analizi." , ss.1 - 160, 2013.
ISNAD Kakaç, Sadık vd. "Nanoakışkanlarla zorlanmış taşınımla ısı transferinin sayısal analizi". (2013), 1-160.