0 0

Proje Grubu: MAG Sayfa Sayısı: 166 Proje No: 110M539 Proje Bitiş Tarihi: 01.05.2013 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Sesüstü kavitelerde lazer enerjisi yardımıyla akış modellemesi ve kontrolü

Öz:
-
Anahtar Kelime:

Erişim Türü: Erişime Açık
  • Adelgren, R., Elliot, G., Knight, D., Laser Energy Deposition in Transverse Wall Jets and Intersecting Shocks, Second Workshop on Thermochemical Process in Plasma Aerodynamics, St. Petersburg, Russia, (2001.a).
  • Adelgren, R., Elliott, G., Knight, D., Zheltovodov, A., and Buetner, T., Energy Deposition in Supersonic Flows, 39th Aerospace Sciences Meeting and Exhibit, Reno,-Nevada, AIAA Paper No. 2001-0885, (2001. b).
  • Adelgren, R., Elliott, G., Knight, D., Zheltovodov, A. and Buetner. T., Localized Flow Control in Supersonic Flows by Pulsed Laser Energy Deposition, In V.Bityurin, editor, Third Workshop on Magneto-Plasma-Aerodynamics in Aerospace Applications, Moscow, (2001.c), pp. 216.
  • Adelgren, R., Yan, H., Elliott, G., Knight, D., Beutner, T., Zheltovodov, A., Control of Edney IV Interaction by Pulsed Laser Energy Deposition, AIAA Journal, 43(2), 256-269, (2005).
  • Ahlman, D., Söderlund, F., Jackson, J., Kurdila, A., Shyy, W., Proper Orthogonal Decomposition for Time Dependent Lid Driven Cavity Flows, Numerical Heat Transfer Part B: Fundamentals, 42(4), 285-306, (2002).
  • Ahuja, K.K., Mendoza, J., Effects of Cavity Dimensions, Boundary Layer and Temperature on Cavity Noise with Emphasis on Benchmark Data to Validate Computational Aero acoustics Codes, NASA Contractor Rep. 4653, U.S.A., (1995).
  • Akın, P., Yapay Sinir Ağları ile Akış Kontrolü için Sayısal Yöntemlerin Geliştirilmesi, Yüksek Lisans Tezi, TOBB Ekonomi ve Teknoloji Üniversitesi, (2011).
  • Apaçoglu, B., Silindir Üzerindeki Laminer Ve Türbülansli Akişin Kontrolsüz Ve Kontrollü Had Analizleri, Yüksek Lisans Tezi, TOBB ETÜ, Türkiye (2010).
  • Aradag, S., Knight, D., Simulation of Supersonic Cavity Flow Using 3D RANS Equations, 22nd Applied Aerodynamics Conference and Exhibit, Rhode Island, AIAA Paper No. 2004-4966, (2004).
  • Aradag, S., Knight, D., Simulation of Supersonic Flow Over a Cavity, 43rd AIAA Aerospace Sciences Meeting, Reno-Nevada, AIAA 2005-0848, (2005).
  • Aradag, S., A Critical Evaluation of Numerical Algorithms and Flow Physics in Complex Supersonic Flows, Doktora Tezi, Rutgers University, New Jersey, USA, (2006).
  • Aradag, S., Yan, H., Knight, D., The Effects of Laser Energy Deposition on Supersonic Cavity Flow, J. of Thermal Science and Technology, 29(2), 67-73, (2009).
  • Ashcroft, G., Zhang, X., A Computational Investigation of the Noise Radiated by Flow Induced Cavity Oscillations, 39th AIAA Aerospace Sciences Meeting and Exhibit, RenoNV, AIAA Paper No. 2001-0512, (2001).
  • Barakos, G.N., Lawson, S.J., Stejil R. and Nayyar P., Numerical Simulations of High-Speed Turbulent Cavity Flows, Flow Turbulence Combust, 83(4), 569-585, (2009).
  • Badcock, K.J., Richards, B.E., Woodgate, M.A., Elements Of Computational Fluid Dynamics On Block Structured Grids Using İmplicit Solvers, Progress in Aerospace Engineering, 36, 351-392, (2000).
  • Basu D., Hamed, A., Das, K., DES, Hybrid RANS/LES and PANS Models For Unsteady Separated Turbulent Flow Simulations, Proceedings of FEDSM, ASME, Texas-U.S.A., (2005), pp.683-688.
  • Berkooz, G., Holmes, P., Lumley, J. L., The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows, Annual Reviews of Fluid Mechanics, 25, 539-575, (1993).
  • Bres, G.A., Colonius, T., Direct Numerical Simulations of Three Dimensional Cavity Flows, 28th AIAA Aeroacoustics Conference, Rome-Italy, AIAA Paper No. 2007-3405, (2007).
  • Bueno, P.C., Unalmis, Ö.H., Clemens, N.T., Dolling, D.S., The Effects of Upstream Mass Injection on a Mach 2 Cavity Flow, 40th Aerospace Sciences Meeting and Exhibit, Reno, Nevada, (2002).
  • Chan, S., Zhang, X., and Gabriel, S., Attenuation of Low-Speed Flow-Induced Cavity Tones Using Plasma Actuators, AIAA Journal, 45(7), 1525–1538, (2007).
  • Chatterjee, A., An Introduction to the Proper Orthogonal Decomposition, Current Science, 78(7), 808-817, (2000).
  • Chung, K. M., Characteristics of Compressible Rectangular Cavity Flows, Journal of Aircraft, 37(3), 463-468, (2000).
  • Cohen K., Siegel, S., McLaughlin, T., A Heuristic Approach to Effective Sensör Placement for Modeling of a Cylinder Wake, Computers and Fluids, 35, 103-120, (2006).
  • Deane, A. E., Kevrekidis, I. G., Karniadakis, G. E., Orszag, S. A., Low Dimensional Models for Complex Geometry Flows Application to Grooved Channels and Circular Cylinders, Physics of Fluids, 3, 2337-2354, (1991).
  • Disimile, P.J., Toy, N., Acoustical Properties of A Long Rectangular Cavity of A Constant Cross-Section Immersed In A Thick Boundary Layer, Journal of Mechanical Science, 44, 1827-1844, (2004).
  • Dolling, D. S., Perng, S. W., Leu, Y. L., An Experimental Study of Passive Control of Hypersonic Cavity Flow Oscillations, Final Report Grant F49620-95-1-0001, The University of Texas, Austin, (1997).
  • Dover, J.R.J. et al., Aerodynamics and Aero-Acoustics of Rectangular Planform Cavities, Part I: Time-Averaged Flow, Datasheet, Engineering Science Data Unit 02008, (2005).
  • Driver, D. M., Seegmiller, H. M., Features of a Reattaching Turbulent Shear Layer in Divergent Channel Flow, AIAA Journal, 23(2), 163-171, (1985).
  • Faure, T.M., Adrianos, P., Lusseyran, F., Pastur, L., Visualizations of the Flow Inside an Open Cavity at Medium Range Reynolds Number, Experiments in Fluids, 42, 169-184, (2007).
  • Feeny, B. F., Kappagantu R., On the physical interpretation of proper orthogonal modes in vibrations, Journal of Sound and Vibration, 211, 607-616, (1998).
  • Fluent v12.0, Theory Guide, Ocak (2009)
  • Fluent v12.0, User’s Guide, Ocak (2009)
  • Garner H.C et al., Drag of a rectangular platform Cavity in a Flat Plate with a Turbulent Boundary Layer for Mach Numbers Up to 3. Part II: Open and Transitional Flows, Technical Report, Engineering Science Data Unit 00007, (2000).
  • Ghosh, S., Manesh, K., Numerical Simulation of the Fluid Dynamic Effects of Laser Energy Deposition in Air, J. Fluid Mech., 605, 329-354, (2008).
  • Glumac, N., Elliot, G., The Effect Of Ambient Pressure On Laser-Induced Plasmas In Air, Optics and Laser in Engineering, 45, 27-35, (2007).
  • Golyatin, V., Kuranov, A., Kuchinsky,A., Sukhomlinov, V., The Mechanism of Influence of Low-Temperature Plasma on Aerodynamic Streamlining, 32nd AIAA Plasmadynamics and Lasers Conference, Anahem-CA, AIAA Paper No. 2001-3055, (2001).
  • Graph Version 4.3 erişim adresi: http://www.padowan.dk/graph/, erişim adresi: 15 Mayıs (2012).
  • Hamed, A., Basu, D., Das, K., Numerical Simulation of Transonic Flow Acoustic Resonance in Cavity, Proceedings of ICFDP7, Cairo, Egypt, (2001).
  • Hamed, A., Basu, D., Das, K., Effect of Reynolds Number On the Unsteady Flow and Acoustic Fields Of Supersonic Cavity, 4th ASME_JSME Joint Fluids Engineering Conference, Hawaii-U.S.A., FEDSM2003-45473, (2003).
  • Hamed A.,Das K., Basu D., Numerical Simulations of Fluidic Control forTransonic-Cavity Flows, 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno-NV, AIAA Paper No. 2004-0429, (2004).
  • Heigermoser, C., Scarno, F., Onorato, M., Torino, P., Delft, T. U., Investigation of The Flow in the Rectangular Cavity Using Tomographic and Time Resolved PIV, 26th International Congress of the Aeronautical Sciences, Alaska-USA, (2008).
  • Heller, H., Holmes, H., Covert, E. E., Flow Induced Pressure Oscillations in Shallow Cavities, Journal of Sound and Vibration, 18(4), 545-545, (1970).
  • Heller, H.H., Bliss D.B., The physical mechanism of flow-induced pressure fluctuations in cavities and concepts for their suppression, 2nd Aeroacoustics Conference, Hampton, U.S.A., AIAA Paper No.1975-0491, (1975).
  • Hinze, J.O., Turbulence, McGraw-Hill, New York, (1975).
  • Holmes, P., Lumley, J. L., Berkooz, G., Turbulence and Coherent Structures, Dynamical Systems and Symmetry, Cambridge University Press, Cambridge, UK, (1996).
  • Kappagantu, R., Fenny, B. F., An “optimal” modal reduction of a system with frictional excitation, Journal of Sound and Vibration, 224, 863-877, (1999).
  • Kaufman, L. G., Maciulaitis A., Clark, R. L., Mach 0.6 To 3.0 Flows Over Rectangular Cavities, Air Force Wright Aeronautical Labs., AFWAL-TR-82-3112, New York, U.S.A., (1993).
  • Kegerise, M. A., An Experimental Investigation of Flow-Induced Cavity Oscillations, Doktora Tezi, Syracuse University, U.S.A, (1999).
  • Khotyanovsky, D. V., Kudryavtsev, N. A., Knight, D. D., Ivanov, M. K., Control of Shock Wane Interaction by Impulse Laser Energy Deposition, European Congress on Computational Methods in Applied Sciences and Engineering, Jyväskylä-Finlandiya (2004).
  • Kim, H., Aradag, S., Knight, D., Two and Three Dimensional Simulations of Supersonic Cavity Flow, 12th AIAA Aeroacoustics Conference, Cambridge, Massachusetts, AIAA Paper No. 2006-2431, (2006).
  • Knight, D., Kuchinskiy, V., Kuranov, A., Sheikin, E., Aerodynamic Flow Control at High Speed Using Energy Deposition, Fourth Workshop on Magneto- and Plasma Aerodynamics for Aerospace Applications, IVTAN, Moscow-Russia, (2002).
  • Knight, D., Kolesnichenko, Y., Brovkin, V. and Khmara, D., High Speed Flow Control Using Microwave Energy Deposition, 46th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper No. 2008-1354, (2008).
  • Kolmogorov, A.N., Equations of Turbulent Motion of an Incompressible Fluid, Izvestia Academy of Sciences, USSR; Physics, 6, 56-58, (1942).
  • Kral, D. L., Actıve Flow Control Technology, ASME Fluids Engineering Division Technical Brief, (1999).
  • Lai, H., Luo, K, H., Large Eddy Sımulatıon and Control Of Cavıty Aeroacoustıc, Conference on Turbulence and Interactions, (2006).
  • Launder, B. E., Spalding, D. B., Mathematical Models of Turbulence, Academic Press, 25(4), 169-172, (1972).
  • Lazar, E., Elliot, G., Glumac, N., Control of the Shear Layer Above a Supersonic Cavity Using Energy Deposition, AIAA Journal, 46(12), 2987-2997, (2008).
  • Levin, V. And Terent’eva L., Supersonic Flow Over a Cone with Heat Release in the Neighborhood of the Apex, Mikhanika Zhidkosti i Gaza, 110-114, (1993).
  • Liang, Y. C., Lee, H. P., Lim, S. P., Lin, W. Z., Lee, K. H., Wu, C. G., Proper orthogonal decomposition and its applications-Part I: Theory, J. Sound and Vibration, 252(3), 527- 544, (2002).
  • Ly, H. V., Tran, H. T., Modeling and Control of Physical Processes Using Proper Orthogonal Decomposition, Mathematical and Computer Modeling, 33, 223-236, (2001).
  • Matlab Tutorial Manual, The MathWorks, Inc., 3 Apple Hill Drive Natick, Massachusetts 01760 USA, (2009).
  • Menter, F. R., Two Equation Eddy Viscosity Turbulence Models for Engineering Applications, AIAA Journal , 32(8), 1598-1605, (1994).
  • Meyerand, R., Haught, A., Gas break down at optical frequencies, Physical Review Letter, 11(9), 401–403, (1963).
  • Miles R. B., Flow Control by Energy Addition into High-Speed Air, Fluids 2000 Conference and Exhibit, Denver-CO, AIAA Paper No. 2000-2324, (2000).
  • Newman, A. J., Model Reduction via the Karhunen-Loéve Expansion Part II: Some Elementary Examples, Institute for Systems Research, Technical Report No. 9633, (1996.a).
  • Newman, A. J., Model Reduction via the Karhunen-Loéve Expansion Part I: An Exposition, Institute for Systems Research, Technical Report No. 9632, (1996.b).
  • Özsoy, E., Numerical Simulation Of Incompressible Flow Over a Three Dimensional Rectangular Cavity, Doktora Tezi, İstanbul Teknik Üniversitesi, İstanbul, Türkiye, (2010).
  • Peng S. H., Simulation of Turbulent Flow Past a Rectangular Open Cavity Using DES and Unsteady RANS, 24th AIAA Applied Aerodynamics Conference, (2006).
  • Perng, S. W., Passive Control of Pressure Oscillations in Hypersonic Cavity Flow, Doktora Tezi, University of Texas at Austin, Dept. of Aerospace Engineering and Engineering Mechanics, Austin, Texas, USA, (1996).
  • Perng, S. W., Dolling, D. S., Suppression of Pressure Oscillations in High Mach Number Turbulent Cavity Flow, Journal of Aircraft, 38(2), 248-256, (2001).
  • Plentovich, E. B., Three Dimensional Cavity Flow Fields at Subsonic and Transonic Speeds, NASA Technical Memorandum 4209, Hampton, USA, (1990).
  • Poggie, J., Gaitonde, D., Computational Studies of Magnetic Control in Hypersonic Flow, 39th Aerospace Sciences Meeting and Exhibit, Reno-NV, AIAA Paper No. 2001-0196, (2001).
  • Ravindra, B., Comments on ''On the physical interpretation of proper orthogonal modes in vibrations'', Journal of Sound and Vibration, 219, 189-192, (1999).
  • Rizzetta, D. P., Numerical Simulation of Supersonic Flow Over a Three Dimensional Cavity, AIAA Journal, 26(7), 799-807, (1988).
  • Rizzetta, D. P., Visbal, M. R., Comperative Numerical Study of Two Turbulence Models for Airfoil Static and Dynamic Stall, AIAA Journal, 31(4), 784-786, (1993).
  • Rizetta, D. P., Visbal, M. R., Large Eddy Simulation of Supersonic Cavity Flowfields Including Flow Control, AIAA Journal, 41(8), 1452-1462, (2003).
  • Rockwell. D., Naudascher. E., Review- Self-sustaining Oscillations of Flow Past Cavities, Journal of Fluids Engineering, 100(2), 152-165, (1978).
  • Ross, J. A., Cavity Acoustic Measurements at High Speeds, Technical Report DERA/MSS/MSFC2/TR000173, UK, (2000).
  • Rossiter, J., A Preliminary Investigation into Armament Bay Buffet at Subsonic and Transonic Speeds, Technical Memorandum AERO.679, Royal Aircraft Establishment, UK, (1960).
  • Rossiter, J., The Effects Of Cavities On The Buffeting Of Aircraft, Technical Memorandum AERO.754, Royal Aircraft Establishment, UK, (1962).
  • Rossiter, J., Kurn, A., A Wind Tunnel Measurements Of The Unsteady Pressures In And Behind A Bomb Bay, Technical Note AERO.2677, Royal Aircraft Establishment,UK, (1963).
  • Rossiter, J., Wind Tunnel Experiments on the Flow over Rectangular Cavities at Subsonic and Transonic Speeds, Technical Report 64037: Royal Aircraft Establishment, UK, (1964).
  • Samimy, M., Adamovich. I., Webb, B., Kastner, J., Hileman, J., Keshav, S., Palm, P., Development and characterization of plasma actuators for high-speed jet control, Experiments in Fluids, 37(4), 577-588, (2004).
  • Samimy, M., Kim, H. J., Kastner, J., Adamovich, I., Utkin, Y., Active Control of a Mach 0.9 Jet for Noise Mitigation Using Plasma Actuators, AIAA Journal, 45(4), 890-901, (2007).
  • Sanghi, S., Hasan, N., Proper Orthogonal Decomposition and Its Applications, Asia Pacific Journal of Chemical Engineering, 6, 120-128, (2011).
  • Schülein, E., Zheltovodov, A.A., Loginov, S.M., Pimonov, A. E., Experimental and Numerical Study of Shock Wave Transformation by Laser- Induced Energy Deposition, International Conference on Methods of Aerophysical Research, ICMAR, Russia, (2008).
  • Seidel, J., Cohen, K., Aradag, ., Siegel, ., McLaughlin, T., Reduced Order Modeling of a Turbulent Three Dimensional Cylinder Wake, 37th American Institute of Aeronautics and Astronautics Fluid Dynamics Conference and Exhibit, Miami, Florida, USA, (2007).
  • Shieh, M. C., Morris, P., Comparison of Two and Three Dimensional Turbulent Cavity Flows, 39th AIAA Aerospace Sciences Meeting and Exhibit, , Reno, NV, AIAA Paper No. 2001-0511, (2001).
  • Shih, S. H., Hamed, A., Yeuan, J. J., Unsteady Supersonic Cavity Flow Simulations Using Coupled k-epsilon and Navier-Stokes Equations, AIAA Journal, 32(10), 2015-2021, (1994).
  • Sirovich, L., Turbulence and the Dynamics of Coherent Structures Part 1 Coherent Structures, Quarterly Applied Mathematics, 45(3), 561-571, (1987).
  • Smith, T.R., Moehlis, J., Holmes, P., Low Dimensional Modeling of Turbulence Using the Proper Orthogonal Decomposition: A Tutorial, Nonlinear Dynamics, 41, 275-307, (2005).
  • Spalart P. R., Jou, W. H., Strelets, M., Allmaras S. R., Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach, First AFOSR International Conference on DNS/LES, Ruston, USA, (1997).
  • Stallings, R. L., Store Separations from Cavities at Supersonic Flight Speeds, J. Spacecraft and Rockets, 20(2), 129-132, (1983).
  • Stanek, M. J., Visbal, R. M., Rizetta, D.P., Rubin, S. G., Khosla, P. K., On a Mechanism of Stabilizing Turbulent Free Shear Layers in a Cavity Flow, Computers& Fluids, 36, 1621- 1637, (2007).
  • Syed, A., Detached Eddy Simulation of Turbulent Flow Over an Open Cavity With and Without Cover Plates, Yüksek Lisans Tezi, Wichita State University, Department of Aerospace Engineering, USA, (2012). Tecplot 360 Scripting Guide, (2011).
  • Tennekes, H., and Lumley,, J. L., A First Course in Turbulence, MIT Press, (1983)
  • Unalmıs, Ö. H., Clemens, N. T., Dolling, D. S., Experimental Study of Shear Layer/ Acoustics Coupling in Mach 5 Cavity Flow, AIAA Journal, 30(2), 242-252, (2001).
  • Unalmıs, Ö. H., Clemens, N. T., Dolling D. S., Cavity Oscillation Mechanisms in HighSpeed Flows, AIAA Journal, 42(10), 2035-2041, (2004).
  • Volkwein, S., Proper orthogonal decomposition and singular value decomposition, Spezialforschungsbereich F003 Optimierung und Kontrolle, Projektbereich Kontinuierliche Optimierung und Kontrolle, Bericht Nr. 153, Graz, (1999).
  • Wilcox, D. C., Turbulence Modeling For CFD, DCW Industries Inc., La Canada, (1993).
  • Wolfshtein, M., Some Commentson Turbulence Modelling, International Journal of Heat and Mass Transfer, 52, 4103-4107, (2009).
  • Yan, H., Adelgren, R., Elliott, G., Knight, D., Beutner, T., Ivanov, M., Kudryavtsev, A., Khotyanovsky, D., Laser Energy Deposition in Quiescent Air and Intersecting Shocks, Fourth Workshop on Magneto- and Plasma Aerodynamics for Aerospace Applications, IVTAN, Moscow, Russia, (2002).
  • Yan, H., Adelgren, R., Elliott, G., Knight, D., Ivanov, M., Khotyanovsky, D., and Beutner, T.,Control of Mach Reflection-Regular Reflection Transition in Dual Solution Domain by Laser Energy Deposition, Fifth Workshop on Magneto- and Plasma Aerodynamics for Aerospace Applications, IVTAN, Moscow, Russia, (2003).
  • Yuriev, A., Korzh, S., Pirogv, S., Savischenko, N., Leonov,S., Ryizhov, E., Transonic Streamlining of Profile at Energy Addition in Local Supersonic Zone, Third Workshop on Magneto-Plasma-Aerodynamics in Aerospace Applications, Moscow, (2001).
  • Zaidi H. S., Shneider N. M., Manusfield K. D., Ionikh Y. Z., Miles R. B., Influence of Upstream Pulsed Energy Deposition On a Shockwave Structure ın Supersonic Flow, 22nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference, St. Louis-USA, AIAA Paper No. 2002-2703, (2002).
  • Zhang, X., Edwards, J. A., Computational analysis of unsteady cavity flows driven by thick shear layers, The Aeronautical Journal, 92(919), 350-373, (1988).
  • Zhang, X., Edwards, J. A., Analysis Of Unsteady Supersonic Cavity Flow Employing An Adaptive Meshing Algorithm, Computers & Fluids, 25(4), 373–393, (1996).
  • Zhuang, N., Alvi, F., Alkislar, M. B., Shih, C., Sahoo, D., and Annaswamy, A. M., Aeroacoustic Properties of Supersonic Cavity Flows and Their Control, 9th AIAA/CEAS Aeroacoustics Conference and Exhibit, South Carolina-USA, AIAA Paper No. 2003- 3101, (2003).
  • Zhuang, N., Alvi, S. F., Shih, C., Another Look at Supersonic Cavity Flows and Their Control, 11th AIAA/CEAS Aeroacoustics Conference, California-USA, AIAA Paper No. 2005-2803, (2005).
APA ARADAG S, AYLI E, Yılmaz İ (2013). Sesüstü kavitelerde lazer enerjisi yardımıyla akış modellemesi ve kontrolü. , 1 - 166.
Chicago ARADAG Selin,AYLI Ece,Yılmaz İbrahim Sesüstü kavitelerde lazer enerjisi yardımıyla akış modellemesi ve kontrolü. (2013): 1 - 166.
MLA ARADAG Selin,AYLI Ece,Yılmaz İbrahim Sesüstü kavitelerde lazer enerjisi yardımıyla akış modellemesi ve kontrolü. , 2013, ss.1 - 166.
AMA ARADAG S,AYLI E,Yılmaz İ Sesüstü kavitelerde lazer enerjisi yardımıyla akış modellemesi ve kontrolü. . 2013; 1 - 166.
Vancouver ARADAG S,AYLI E,Yılmaz İ Sesüstü kavitelerde lazer enerjisi yardımıyla akış modellemesi ve kontrolü. . 2013; 1 - 166.
IEEE ARADAG S,AYLI E,Yılmaz İ "Sesüstü kavitelerde lazer enerjisi yardımıyla akış modellemesi ve kontrolü." , ss.1 - 166, 2013.
ISNAD ARADAG, Selin vd. "Sesüstü kavitelerde lazer enerjisi yardımıyla akış modellemesi ve kontrolü". (2013), 1-166.
APA ARADAG S, AYLI E, Yılmaz İ (2013). Sesüstü kavitelerde lazer enerjisi yardımıyla akış modellemesi ve kontrolü. , 1 - 166.
Chicago ARADAG Selin,AYLI Ece,Yılmaz İbrahim Sesüstü kavitelerde lazer enerjisi yardımıyla akış modellemesi ve kontrolü. (2013): 1 - 166.
MLA ARADAG Selin,AYLI Ece,Yılmaz İbrahim Sesüstü kavitelerde lazer enerjisi yardımıyla akış modellemesi ve kontrolü. , 2013, ss.1 - 166.
AMA ARADAG S,AYLI E,Yılmaz İ Sesüstü kavitelerde lazer enerjisi yardımıyla akış modellemesi ve kontrolü. . 2013; 1 - 166.
Vancouver ARADAG S,AYLI E,Yılmaz İ Sesüstü kavitelerde lazer enerjisi yardımıyla akış modellemesi ve kontrolü. . 2013; 1 - 166.
IEEE ARADAG S,AYLI E,Yılmaz İ "Sesüstü kavitelerde lazer enerjisi yardımıyla akış modellemesi ve kontrolü." , ss.1 - 166, 2013.
ISNAD ARADAG, Selin vd. "Sesüstü kavitelerde lazer enerjisi yardımıyla akış modellemesi ve kontrolü". (2013), 1-166.