Proje Grubu: TÜBİTAK MAG Proje Sayfa Sayısı: 95 Proje No: Proje Bitiş Tarihi: 15.11.2012 Metin Dili: Türkçe DOI: 111M460

Aminosilanlanan karbon nanotüplerin poliamid-6 kristallenme davranışına etkileri

Anahtar Kelime:

Erişim Türü: Erişime Açık
  • AJAYAN, P.M., Zhou, O.Z., Carbon nanotubes: synthesis, structure, properties, and applications, Springer-Verlag, Berlin, (2000).
  • AJAYAN, P.M., Schadler, L.S., Braun, P,V., Nanocomposite Science and Technology, Weinheim: Wiley-VCH, (2003) Pp: 77–80.
  • ANDREWS R., Jacques D., Minot M., Rantell T., Fabrication of Carbon Multiwall Nanotube/Polymer Composites By Shear Mixing, Macromolecular Materials and Engineering, 287, 395-403, (2002).
  • AVELLA M., Errico M.E., Gentile G., Nylon 6/Calcium Carbonate Nanocomposites: Characterization and Properties, Macromolecular Symposium, 234, 170-175, (2006).
  • AVILES F., Cauich-Rodriguez J.V., Moo-Tah L., Evaluation of Mild Acid Oxidation Treatments for MWCNT Functionalization, Carbon, 47, 2970–2975, (2009).
  • AWASTHI K., Srivastava A., Srivastava O.N., Synthesis of Carbon Nanotubes, J. Nanosci. Nanotechnol., 5, 1616-1636, (2005).
  • BALASUBRAMANIAN K., Burghard M., Chemically Functionalized Carbon Nanotubes, Small, 1, 180–92, (2005).
  • BENOIT J.M., Corraze B., Chauvet O., Localization, Coulomb Interactions, and Electrical Heating In Single-Wall Carbon Nanotubes/Polymer Composites, Physical Review B, 65, 241405, (2002).
  • BETHUNE D.S., Klang C.H., De Vries M.S., Cobalt-Catalysed Growth of Carbon Nanotubes With Single-Atomic-Layer Walls, Nature, 363, 605–7, (1993).
  • BEYER G., Flame Retardancy of Nanocomposites From Research to Technical Products, Journal of Fire Sciences, 23, 75-87, (2005).
  • BLEDZKI A.K., Gassan J., Composites Reinforced with Cellulose Based Fibres, Progress in Polymer Science, 24, 221, (1999).
  • BIN Y.Z, Kitanaka M., Zhu D., Matsuo M., Development of Highly Oriented Polyethylene Filled with Aligned Carbon Nanotubes by Gelation/Crystallization from Solutions, Macromolecules, 36(16), 6213–9, (2003).
  • BROSSE A.C., Tence-Girault S., Patrick M., Effect of Multi-Walled Carbon Nanotubes on the Lamellae Morphology of Polyamide-6, Polymer, 49, 4680-4686, (2008).
  • CADEK M., Coleman J.N., Barron V., Hedicke K., Blau W.J., Morphological and Mechanical Properties of Carbonnanotube-Reinforced Semicrystalline and Amorphous
  • CASHELL E.M., Cohey J.M.D., Wardell G.E., Mc Brierty V.J., Douglass D.C., Dc Electrical-Conduction In Carbon-Black Filled Cis-Polybutadiene, Journal of Applied Physics, 52, 1542-1547, (1981).
  • CELZARD A., McRae E., Furdin G., Mareche J.F., Conduction Mechanisms in Some Graphite-Polymer Composites: The Effect of a Direct-Current Electric Field, Journal of Physics-Condensed Matter, 9, 2225-2237, (1997).
  • CHAE D.W., Oh S.G., Kim B.C., Effect of Silver Nanoparticles on the Dynamic Crystallization Behavior of Nylon-6, Journal of Polymer Science Part B: Polymer Physics, 42B, 790, (2004).
  • CHEN X.H., Chen C.S., Chen Q., Nondestructive Purification of Multi-Walled Carbon Nanotubes Produced by Catalyzed CVD, Mater Lett, 57, 734, (2005).
  • CHEN G.X., Kim H.S., Park B.H., Yoon J.S., Multi-Walled Carbon Nanotubes Reinforced Nylon 6 Composite, Polymer, 47, 4760–7, (2006).
  • CHEN E.C., Wu T.M., Isothermal and Nonisothermal Crystallization Kinetics of Nylon 6/Functionalized Multi-Walled Carbon Nanotube Composites, Journal of Polymer Science Part B-Polymer Physics, 46, 158–169, (2008).
  • COLEMAN J.N., Khan U., Gunko Y.K., Mechanical Reinforcement of Polymers Using Carbon Nanotubes, Adv Mater, 18, 689–706, (2006).
  • DALTON A.B., Collins S., Munoz E., Razal J.M., Ebron V.H., Ferraris J.P., Super-Tough Carbon-Nanotube Fibres—These Extraordinary Composite Fibres Can Be Woven İnto Electronic Textiles, Nature, 423, 703–13, (2003).
  • DATSYUK V., Kalyva M., Papagelis K., Parthenios J., Tasis D., Siokou A., Chemical Oxidation of Multiwalled Carbon Nanotubes, Carbon, 46, 833–40, (2008).
  • DRESSELHAUS M.S., Dresselhaus G., Saito R., Physics of carbon nanotubes, Carbon 33, 883–91, (1995).
  • DUFRESNE A., Paillet M., Putaux J.L., Canet R., Carmona F., Delhaes P., Cui S., Processing and Characterization of Carbon Nanotube/Poly(Styrene-Co-Butyl Acrylate) Nanocomposites, Journal of Materials Science, 37, 3915–3923, (2002).
  • FORNES T.D., Paul D.R., Crystallization Behavior of Nylon 6 Nanocomposites, Polymer, 44, 3945, (2003).
  • FILES B.S., Mayeaux B.M., Carbon Nanotubes, Advanced Materials and Processes, 156, 47- 49, (1999).
  • GAO J., Zhao B., Itkis M.E., Bekyarova E., Hu H., Kranak V., Chemical Engineering of the Single-Walled Carbon Nanotube-Nylon 6 Interface, Journal of the American Chemical Society, 128, 7492–6, (2006).
  • GEORGAKİLAS V., Kordatos K., Prato M., Guldi D.M., Holzingger M., Hirsch A., Organic Functionalization of Carbon Nanotubes, Journal of American Chemical Society, 124, 760–1, (2002).
  • GONG X.Y., Liu J., Baskaran S., Voise R.D., Young J.S., Surfactant-Assisted Processing of Carbon Nanotube/Polymer Composites, Chemistry of Materials, 12, 1049–52, (2000).
  • GROSSIORD N., Loos J., Regev O., Toolbox for Dispersing Carbon Nanotubes into Polymers to Get Conductive Nanocomposites, Chem Mater, 18, 1089–1099, (2006). HE X.J., Du J.H., Ying Z., Cheng H.M., He X.J., Positive Temperature Coefficient Effect In Multiwalled Carbon Nanotube/High-Density Polyethylene Composites, Applied Physics Letters, 86, 062112, (2005).
  • HIRSCH A. Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed 41, 1853–9, (2002).
  • HIRSCH A., Vostrowsky O., Functionalization of Carbon Nanotubes. Top Curr Chem 245, 93–237, (2005).
  • IIJIMA S., Helical Microtubules of Graphitic Carbon, Nature, 354, 56-58, (1991).
  • JEZIORNY A., Parameters Characterizing Kinetics of Nonisothermal Crystallization of Poly(Ethylene-Terephthalate) Determined by DSC, Polymer, 19(10), 1142, (1978).
  • JIANG H.X., Ni Q.Q., and Natsuki T., Design and Evaluation of the Interface Between Carbon Nanotubes and Natural Rubber, Polymer Composites, 32(2), 236-242, (2011).
  • JIN Z.X., Pramoda K.P., Goh S.H., Xu G.Q., Poly(vinylidenefluoride)-Assisted Melt-Blending of Multi-Walled Carbon Nanotube/Poly(Methyl Methacrylate) Composites, Materials Research Bulletin, 37, 271–8, (2002).
  • JONES R.G., Ando W., Chojnouski J., Silicon-Containing Polymer, Kluwer, New York, (2000).
  • JOSE M.V., Steinert B.W., Thomas V., Dean D.R., Abdalla M.A., Price G., Morphology and Mechanical Properties of Nylon 6/MWNT Nanofibers, Polymer, 48, 1096, (2007).
  • KASHIWAGI T., Grulke E., Hilding J., Groth K., Harris R., Butler K., Shields J., Kharchenko S., Douglas J., Thermal and Flammability Properties of Polypropylene/Carbon Nanotube Nanocomposites, Polymer, 45, 4227-4239, (2004).
  • KATHI J., Rhee K.Y., Surface Modification of Multi-Walled Carbon Nanotubes Using 3- Aminopropyltriethoxysilane, Journal of Materials Science, 43, 33-37, (2008).
  • KEARNS J.C., Shambaugh R.L., Polypropylene Fibers Reinforced With Carbon Nanotubes, Journal of Applied Polymer Science, 86, 2079-2084, (2002).
  • KIM M.T., Rhee K.Y., Park S.J., Effects of Silane-Modified Carbon Nanotubeson Flexural and Fracture Behaviors of Carbon Nanotube-Modified Epoxy/Basalt Composites, Composites Part B-Engineering, 43(5), 2298-2302, (2012).
  • KUMAR S., Dang T.D., Arnold F.E., Bhattacharyya A.R., Min B.G., Zhang X., Synthesis, Structure, and Properties of PBO/SWNT Composites, Macromolecules, 35(24), 9039–43, (2002).
  • KUZNETSOVA A., Mawhinney D.B., Naumenko V., Enhancement of Adsorption Inside of Single-Walled Nanotubes: Opening the Entry Ports, Chem Phys Lett, 321, 292–296, (2000).
  • LAU K.T., Hui D., Effectiveness of Using Carbon Nanotubes as Nano-Reinforcements for Advanced Composite Structures, Carbon, 40, 1605-1606, (2002).
  • LEE J.H., Rhee K.Y., Park S.J., Silane Modification of Carbon Nanotubes and Its Effects on the Material Properties of Carbon/CNT/Epoxy Three-Phase Composites, Composites Part AApplied Science and Manufacturing, 42(5), 478-483, (2011).
  • LI Y., Goddard W.A., Nylon 6 Crystal Structures, Folds and Lamellae From Theory, Macromolecules, 35, 8440 – 8455, (2002).
  • LI J., Fang Z., Tong L., Gu A., Liu F., Effect of Multi-Walled Carbon Nanotubes on NonIsothermal Crystallization Kinetics of Polyamide 6, European Polymer Journal, 42, 3230–5, (2006).
  • LI J., Fang Z., Tong L., Gu A., Liu F., Polymorphism of Nylon-6 in Multiwalled Carbon Nanotubes/Nylon-6 Composites, Journal of Polymer Science, Part B: Polymer Physics 44, 1499–512, (2006).
  • LI J., Fang Z., Zhu Y., Isothermal Crystallization Kinetics and Melting Behavior of Multiwalled Carbon Nanotubes/Polyamide-6 Composites, Journal of Applied Polymer Science, 105, 3531-3542, (2007).
  • LINCON D.M., Vaia R.A., Krishnamurti R., Isothermal Crystallization of Nylon6/Montmorillonite Nanocomposites, Macromolecules, 37, 4554, (2004).
  • LIU J., Rinzler A.G., Dai H., Hafner J.H., Bradley R.K., Boul P.J., Fullerene Pipes, Science, 280, 1253–6, (1998).
  • LIU X.H., Wu Q.J., Non-Isothermal Crystallization Behaviors of Polyamide 6/Clay Nanocomposites, European Polymer Journal, 38, 1383, (2002).
  • LIU T., Phang I.Y., Shen L., Chow S.Y., Zhang W.D., Morphology and Mechanical Properties of Multiwalled Carbon Nanotubes Reinforced Nylon-6 Composites, Macromolecules, 37, 7214-22, (2004).
  • LOGAKIS E., Pandis C., Peoglos V., Pissis P., Stergiou C., Pionteck J., J Polym Sci B Polym Phys, 47, 764, (2009).
  • LORDI V., Yao N., Molecular Mechanics of Binding in Carbon-Nanotube-Polymer Composites, Journal of Materials Research, 15, 2770-2779, (2000).
  • MA C.C, Kuo C.T., Kuan H.C., Chiang C.L., Effects of Swelling Agents on the Crystallization Behavior and Mechanical Properties of Polyamide 6/Clay Nanocomposites, Journal of Applied Polymer Science, 88, 1686, (2003).
  • MA P.C., Siddiqui N.A., Marom G., Dispersion and Functionalization of Carbon Nanotubes for Polymer-Based Nanocomposites: A Review, Composites Part A-Applied Science and Manufacturing, 41, 1345-1367, (2010).
  • MIYASAKA K., Ishikawa K.J., Effects of Temperature and Water on the Gamma-Alpha Crystalline Transition of Nylon 6 Caused by Stretchıng in Chain Direction, Journal of Polymer Science Part A-2-Polymer Physics, 6, 1317, (1968).
  • MUKHERJEE M., Nayak G., Bose S., Improvement of the Properties ofPC/LCP/MWCNT with or without Silane Coupling Agents, Polymer-Plastics Technology andEngineering, 48(11), 1107-1112, (2009).
  • MURTHY N.S., Metastable Crystalline Phases in Nylon-6, Polymer Communications, 32, 301-5, (1991).
  • PALMER, R. J., Polyamides-Plastics, Kirk-Othmer Encyclopedia of Chemical Technology, .John Wiley & Sons Inc., (2005).
  • PARK H., Zhao J., Lu J.P., Effects of Sidewall Functionalization on Conducting Properties of Single Wall Carbon Nanotubes, Nano Letters, 6, 916–9, (2006).
  • PHANG I.Y., Ma J., Shen L., Liu T., Zhang W.D., Crystallization and Melting Behavior of Multi-Walled Carbon Nanotube-Reinforced Nylon-6 Composites, Polymer International, 55, 71–9, (2006).
  • POTSCHKE P., Bhattacharyya A.R., Janke A., Eur Polym J, 40(1), 137–48, (2004).
  • POTSCHKE P., Fornes T.D., Paul D.R., Rheological Behavior of Multiwalled Carbon Nanotube/Polycarbonate Composites, Polymer, 43, 3247-3255, (2002).
  • QIAN D., Wagner G.J., Liu W.K., Yu M.F., Ruoff R.S., Mechanics of Carbon Nanotubes, Appl Mech Rev, 55, 495–533, (2002).
  • RAMANATHAN T., Fisher F.T., Ruoff R.S., Aminofunctionalized Carbon Nanotubes for Binding to Polymers and Biological Systems, Chem Mater, 17, 1290–1295, (2005).
  • RUAN S.L., Gao P., Yang X.G., Yu T.X., Toughening High Performance Ultrahigh Molecular Weight Polyethylene Using Multiwalled Carbon Nanotubes, Polymer, 44(19), 5643–54, (2003).
  • REICH, S., Thomsen, C., Maultzsch, J., Carbon nanotubes: Basic Concepts and Physical Properties, Wiley-VCH, New York, (2004). Pp: 31–40.
  • SANDLER J., Shaffer M.S.P., Prasse T., Bauhofer W., Schulte K., Windle A.H., Development of a Dispersion Process For Carbon Nanotubes in an Epoxy Matrix and The Resulting Electrical Properties, Polymer, 40, 5967-5971, (1999).
  • SAFADI B., Andrews R., Grulke E.A., Multiwalled Carbon Nanotube Polymer Composites: Synthesis and Characterization of Thin Films, Journal of Applied Polymer Science, 84, 2660–2669, (2002).
  • SAHOO N.G., Rana S., Cho J.W., Polymer Nanocomposites Based on Functionalized Carbon Nanotubes, Progress in Polymer Science, 35, 837-867, (2010).
  • SAITO, R., Dresselhaus, G., Dresselhaus, M.S., Physical Properties of Carbon Nanotubes, Imperial College Press, London, (1999).
  • SARNO M., Gorrasi G., Sannino D., Sorrentino A., Ciambelli P., Vittoria V., Polymorphism and Thermal Behaviour of Syndiotactic Poly (Propylene)/Carbon Nanotube Composites, Macromolecular Rapid Communications, 25, 1963-1967, (2004).
  • SATYANARAYANA N., Xie X.G., Rambabu B., Sol-Gel Synthesis and Characterization of The Ag2O-SiO2 System, Mat Sci Eng B-Solid, 72, 7–12, (2000).
  • SENNETT M., Welsh E., Wright J.B., Li W.Z., Wen J.G., Ren Z.F., Dispersion and Alignment of Carbon Nanotubes in Polycarbonate, Appl Phys A, 76, 111–3, (2003).
  • SHAFFER M.S.P., Windle A.H., Fabrication and Characterization of Carbon Nanotube/Poly(Vinyl Alcohol) Composites, Adv Mater, 11, 937–41, (1999).
  • TASIS D., Tagmatarchis N., Bianco A., Prato M., Chemistry of Carbon Nanotubes, Chem Rev, 106, 1105–36, (2006).
  • THOSTENSON E.T., Ren Z.F., Chou T.W., Advances in the Science and Technology of CNTs and Their Composites: A Review, Compos Sci Technol, 61, 1899–912, (2001).
  • VELASCO-SANTOS C., Martinez-Hernandez A.L., Fisher F.T., Ruoff R., Improvement of Thermal and Mechanical Properties of Carbon Nanotube Composites Through Chemical Functionalization, Chem Mater, 15(23), 4470–5, (2003).
  • VINKEN, E., Polyamides: Hydrogen Bonding, the Brill Transition, and Superheated Water, (Doktora Tezi), Eindhoven University of Technology, (2008).
  • WAGNER H.D., Nanotube–Polymer Adhesion: A Mechanics Approach, Chemical Physics Letter, 361, 57–61, (2002).
  • WANG Y.P., Cheng R.L., Liang L.L., Wang Y.M., Study on the Preparation and Characterization of Ultra-High Molecular Weight Polyethylene-Carbon Nanotubes Composite Fiber, Composites Science and Technology, 65, 793-797, (2005).
  • WATTS P.C.P., Fearon P.K., Hsu W.K., Billingham N.C., Kroto H.W., Walton D.R.M., Carbon Nanotubes as Polymer Antioxidants, Journal of Materials Chemistry, 13, 491-495, (2003).
  • WENG W., Chen G., Wu D., Crystallization Kinetics and Melting Behaviors of Nylon 6/Foliated Graphite Nanocomposites, Polymer, 44, 8119 – 8132, (2003).
  • WOOD J.R., Zhao Q., Wagner H.D., Orientation of Carbon Nanotubes In Polymers and Its Detection By Raman Spectroscopy, Composites Part A-Applied Science and Manufacturing, 32, 391-399, (2001).
  • WU S.Y., Yuen S.M., Ma C.C.M., Preparation, Morphology, and Properties of SilaneModified MWCNT/Epoxy Composites, Journal of Applied Polymer Science, 115(6), 3481- 3488, (2010).
  • XIA H. S., Wang Q., Qiu G.H., Chem Mater, 15, 3879, (2003).
  • XIN T., Chang L., Cheng H.M., Zhao H.C., Feng Y., Zhang X.Q., Surface Modification of Single-Walled Carbon Nanotubes with Polyethylene via in Situ Ziegler-Natta Polymerization, Journal of Applied Polymer Science, 92, 3697-3700, (2004).
  • XU X.J., Thwe M.M., Shearwood C., Liao K., Mechanical Properties and Interfacial Characteristics of Carbon-Nanotube Reinforced Epoxy Thin Films, Applied Physics Letters, 81, 2833–5, (2002).
  • YAKOBSON B.I., Avouris P., Mechanical Properties of Carbon Nanotubes, Top Appl Phys 80, 287–327, (2001).
  • YANG F., Ou Y., Yu Z., Polyamide 6/Silica Nanocomposites Prepared By in Situ Polymerization, Journal of Applied Polymer Science, 69, 355, (1998).
  • YUEN S.M., Ma C.C.M., Chiang C.L., Morphology and Properties ofAminosilane Grafted MWCNT/Polyimide Nanocomposites, Journal of Nanomaterials,Article Number: 786405 DOI: 10.1155/2008/786405, (2008).
  • ZHANG W.D., Shen L., Phang I., Liu T., Carbon Nanotubes Reinforced Nylon-6 Composite Prepared By Simple Melt-Compounding, Macromolecules, 37, 256, (2004).
  • ZHANG X., Sreekumar T.V., Liu T., Kumar S., Properties and Structure of Nitric Acid Oxidized Single Wall Carbon Nanotube Films, Journal of Physics Chemical B, 108, 16435– 40, (2004).
  • ZHENG J., Siegel R.W., Toney C.G., Polymer Crystalline Structure and Morphology Changes in Nylon-6/ZnO Nanocomposites, Journal of Polymer Science Part B: Polymer Physics, 41B, 1033, (2003).
  • ZHOU Z., Wang S., Lu L., Functionalization of Multi-Wall Carbon Nanotubeswith Silane and Its Reinforcement on Polypropylene Composites, Composites Science andTechnology, 68(7-8), 1727-1733, (2008).
  • ZOU Y., Feng Y., Wang L., Liu X., Processing and Properties of MWNT/HDPE Composites, Carbon, 42(2), 271–7, (2004).
APA KAYNAK C, ŞANKAL S (2012). Aminosilanlanan karbon nanotüplerin poliamid-6 kristallenme davranışına etkileri. , 1 - 95. 111M460
Chicago KAYNAK Cevdet,ŞANKAL Seçil Aminosilanlanan karbon nanotüplerin poliamid-6 kristallenme davranışına etkileri. (2012): 1 - 95. 111M460
MLA KAYNAK Cevdet,ŞANKAL Seçil Aminosilanlanan karbon nanotüplerin poliamid-6 kristallenme davranışına etkileri. , 2012, ss.1 - 95. 111M460
AMA KAYNAK C,ŞANKAL S Aminosilanlanan karbon nanotüplerin poliamid-6 kristallenme davranışına etkileri. . 2012; 1 - 95. 111M460
Vancouver KAYNAK C,ŞANKAL S Aminosilanlanan karbon nanotüplerin poliamid-6 kristallenme davranışına etkileri. . 2012; 1 - 95. 111M460
IEEE KAYNAK C,ŞANKAL S "Aminosilanlanan karbon nanotüplerin poliamid-6 kristallenme davranışına etkileri." , ss.1 - 95, 2012. 111M460
ISNAD KAYNAK, Cevdet - ŞANKAL, Seçil. "Aminosilanlanan karbon nanotüplerin poliamid-6 kristallenme davranışına etkileri". (2012), 1-95.