1 4

Proje Grubu: TBAG Sayfa Sayısı: 22 Proje No: 112T240 Proje Bitiş Tarihi: 01.12.2014 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Peridinamik uygulamaları için çözücüler

Öz:
-
Anahtar Kelime:

Erişim Türü: Erişime Açık
  • [1] B. Aksoylu, H. R. Beyer, and F. Celiker, Incorporating local boundary con-ditions into nonlocal theories. Submitted to Archive for Rational Mechanics and Analysis, 2014.
  • [2] B. Aksoylu and M. L. Parks, Variational theory and domain decomposition for nonlocal problems, Applied Mathematics and Computation, 217 (2011), pp. 6498– 6515.
  • [3] B. Aksoylu and Z. Unlu, Conditioning analysis of nonlocal integral operators in fractional Sobolev spaces, SIAM J. Numer. Anal., 52 (2014), pp. 653–677.
  • [4] B. Aksoylu and Z. Unlu,, Robust preconditioners for the high-contrast Stokes equation, Journal of Com-putational and Applied Mathematics, 259 (2014), pp. 944–954.
  • [5] G. Alberti and G. Bellettini, A nonlocal anisotropic model for phase transition. asymptotic behaviour of rescaled, European J. Appl. Math., 9 (1998), pp. 261–284.
  • [6] G. Alberti and G. Bellettini, , A nonlocal anisotropic model for phase transition. Part I: the optimal profile problem, Math. Ann., 310 (1998), pp. 527–560.
  • [7] F. Andreu-Vaillo, J. M. Mazon, J. D. Rossi, and J. Toledo-Melero, Non-local Diffusion Problems, vol. 165 of Mathematical Surveys and Monographs, Amer-ican Mathematical Society and Real Socied Matematica Espanola, 2010.
  • [8] E. Askari, F. Bobaru, R. B. Lehoucq, M. L. Parks, S. A. Silling, and O. Weckner, Peridynamics for multiscale materials modeling, Journal of Physics: Conference Series, 125 (2008), p. (012078). SciDAC 2008, Seattle, Washington, July 13-17, 2008.
  • [9] H. Beyer and S. Kempfle, Definition of physically consistent damping laws with fractional derivatives, ZAMM-Journal of Applied Mathematics and Mechanics, (1995).
  • [10] H. R. Beyer, B. Aksoylu, and F. Celiker, On a class of nonlocal wave equations from applications. Submitted to SIAM Journal on Functional Analysis, 2014.
  • [11] M. Bodnar and J. J. L. Velazquez, An integro-differential equation arising as a limit of individual cell-based models, J. Differential Equations, 222 (2006), pp. 341– 380.
  • [12] C. Carrillo and P. Fife, Spatial effects in discrete generation population models, J. Math. Biol., 50 (2005), pp. 161–188.
  • [13] E. Celik, I. Guven, and E. Madenci, Simulations of nanowire bend tests for extracting mechanical properties, Theoretical and Applied Fracture Mechanics, 55 (2011), pp. 185–191.
  • [14] Q. Du, M. Gunzburger, R. B. Lehoucq, and K. Zhou, Analysis and approxi-mation of nonlocal diffusion problems with volume constraints, SIAM Rev., 54 (2012), pp. 667–696.
  • [15] Q. Du and R. Lipton, Peridynamics, Fracture, and Nonlocal Continuum Models. SIAM News, Volume 47, Number 3, April 2014.
  • [16] F. Erden, The role of subdomain size in the condition number. Master thesis, Department of Mathematics, TOBB University of Economics and Technology, 2014.
  • [17] N. Fournier and P. Laurnecot, Well-posedness of smoluchowski’s coagulation equation for a class of homogeneous kernels, J. Funct. Anal., 233 (2006), pp. 351–379.
  • [18] G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Multiscale Modeling and Simulation, 7 (2008), pp. 1005–1028.
  • [19] B. Kilic, A. Agwai, and E. Madenci, Peridynamic theory for progressive damage prediction in centre-cracked composite laminates, Composite Structures, 90 (2009), pp. 141–151.
  • [20] B. Kilic and E. Madenci, Coupling of peridynamic theory and finite element method, Journal of Mechanics of Materials and Structures, 5 (2010), pp. 707––733.
  • [21] S. Kindermann, S. Osher, and P. W. Jones, Deblurring and denoising of images by nonlocal functionals, Multiscale Model. Simul., 4 (2005), pp. 1091–1115.
  • [22] R. B. Lehoucq and S. Silling, Peridynamic theory of solid mechanics, Advances in Applied Mechanics, 44 (2010), pp. 73–168.
  • [23] E. Madenci and E. Oterkus, Peridynamic Theory and Its Applications, Springer, 2014.
  • [24] A. Mogilner and Leah Edelstein-Keshet, A non-local model for a swarm, J. Math. Biol., 38 (1999), pp. 534–570.
  • [25] E. Oterkus and E. Madenci, Peridynamic theory for damage initiation and growth in composite laminate, Key Engineering Materials, 488–489 (2012), pp. 355– 358.
  • [26] E. Oterkus, E. Madenci, O. Weckner, S. S. Silling, P. Bogert, and A. Tessler, Combined finite element and peridynamic analyses for predicting failure in a stiffened composite curved panel with a central slot, Composite Structures, 94 (2012), pp. 839–850.
  • [27] P. Seleson, M. Gunzburger, and M. L. Parks, Interface problems in nonlo-cal diffusion and sharp transitions between local and nonlocal domains, Computer Methods in Applied Mechanics and Engineering, 266 (2013), pp. 185–204.
  • [28] P. Seleson, M. Gunzburger, and M. L. Parks, , Peridynamic state-based models and the embedded-atom model, Communica-tions in Computational Physics, 15 (2014), pp. 179–205.
  • [29] P. Seleson, M. L. Parks, M. Gunzburger, and R. B. Lehoucq, Peridynamics as an upscaling of molecular dynamics, Multiscale Model. Simul., 8 (2009), pp. 204– 227.
  • [30] S. Silling, Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids, 48 (2000), pp. 175–209.
APA AKSOYLU B, ERDEN F, KAYA A (2014). Peridinamik uygulamaları için çözücüler. , 1 - 22.
Chicago AKSOYLU Burak,ERDEN Furkan,KAYA ADEM Peridinamik uygulamaları için çözücüler. (2014): 1 - 22.
MLA AKSOYLU Burak,ERDEN Furkan,KAYA ADEM Peridinamik uygulamaları için çözücüler. , 2014, ss.1 - 22.
AMA AKSOYLU B,ERDEN F,KAYA A Peridinamik uygulamaları için çözücüler. . 2014; 1 - 22.
Vancouver AKSOYLU B,ERDEN F,KAYA A Peridinamik uygulamaları için çözücüler. . 2014; 1 - 22.
IEEE AKSOYLU B,ERDEN F,KAYA A "Peridinamik uygulamaları için çözücüler." , ss.1 - 22, 2014.
ISNAD AKSOYLU, Burak vd. "Peridinamik uygulamaları için çözücüler". (2014), 1-22.
APA AKSOYLU B, ERDEN F, KAYA A (2014). Peridinamik uygulamaları için çözücüler. , 1 - 22.
Chicago AKSOYLU Burak,ERDEN Furkan,KAYA ADEM Peridinamik uygulamaları için çözücüler. (2014): 1 - 22.
MLA AKSOYLU Burak,ERDEN Furkan,KAYA ADEM Peridinamik uygulamaları için çözücüler. , 2014, ss.1 - 22.
AMA AKSOYLU B,ERDEN F,KAYA A Peridinamik uygulamaları için çözücüler. . 2014; 1 - 22.
Vancouver AKSOYLU B,ERDEN F,KAYA A Peridinamik uygulamaları için çözücüler. . 2014; 1 - 22.
IEEE AKSOYLU B,ERDEN F,KAYA A "Peridinamik uygulamaları için çözücüler." , ss.1 - 22, 2014.
ISNAD AKSOYLU, Burak vd. "Peridinamik uygulamaları için çözücüler". (2014), 1-22.