Proje Grubu: TÜBİTAK KBAG Proje Sayfa Sayısı: 41 Proje No: 113Z557 Proje Bitiş Tarihi: 01.12.2014 Metin Dili: Türkçe

Kanser hedefleme ve terapi için 2-deoksi-D-gilikoz (2-DG)-etiketli kobalt ferrit (CoFe2O4)manyetik nanoparçacıklar

Anahtar Kelime:

Erişim Türü: Erişime Açık
  • Amann T, Maegdefrau U, Hartmann A, Agaimy A, Marienhagen J, Weiss TS, 2009. GLUT1 expression is increased in hepatocellular carcinoma and promotes tumorigenesis. Am J Pathol. 174, 1544–52.
  • Auffan M, Roseb J, Wiesnera R M, Bottero Y. JM. 2009. Chemical stability of metallic nanoparticles: A parameter controlling their potential cellular toxicity in vitro. Environmental Pollution, 157,1127–1133.
  • Auffan M., Decome L., Rose J., Orsiere T., De Me. O, M., Briois, V., Chaneac, C., Olivi L., Berge-Lefranc, J.L., Botta A., Wiesner, M.R., Bottero J.Y., 2006. In Vitro Interactions between DMSA-Coated Maghemite Nanoparticles and Human Fibroblasts:  A Physicochemical and Cyto-Genotoxical Study Environmental Science and Technology. 40 (14), 4367–4373.
  • Bareford LM, Swaan PW, 2007. Endocytic mechanisms for targeted drug delivery Adv Drug Deliv Rev, 59, 748–758.
  • Baselt DR, Lee GU, Natesan M, Metzger SW, Sheehan PE, Colton RJ, 1998. A biosensor based on magnetoresistance technology. Biosens Bioelect, 13, 731.
  • Berger M, CastelinoJ, Huang R, Shah M, Austin RH, 2001. Design of a microfabricated magnetic cell separator. Electrophoresis 22, 3883.
  • Berry C.C, and Curtis ASG, 2003. Functionalisation of magnetic nanoparticles for applications in biomedicine. J. Phys. D: Appl. Phys. 36, 198-207.
  • Bhattarai SR, Kc RB, Kim SY, 2008. N-hexanoyl chitosan stabilized magnetic nanoparticles: Implication for cellular labeling and magnetic resonance imaging, J Nanobiotech, 6, 1-5.
  • Bradford, MM,1976. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem.72, 248–254.
  • Cao J, Cui S, Li S, 2013.Targeted Cancer Therapy with a 2-Deoxyglucose–Based Adriamycin Complex Cancer Res. 73;1362-1373.
  • Clement JH, Schwalbe M, Buske N, 2006. Differential interaction of magnetic nanoparticles with tumor cells and peripheral blood cells J Cancer Res Clin Oncol, 132, 5, 287-292.
  • Corot C, Petry KG, Trivedi R, Saleh A, Jonkmans C, Le-Bas JF, Blezer E, Raush M, Brochet B, Foster-Gareau P, Baleriaux D, Gaillard S, Dousset V, 2004. Macrophage Imaging in Central Nervous System and in Carotid Atherosclerotic Plaque Using Ultrasmall Superparamagnetic Iron Oxide in Magnetic Resonance ImagingInvest. Radiol., 39,10, 619-625.
  • De M, Ghosh P, Rotello V, 2008. Applications of Nanoparticles in Biology, Adv Mat, Volume 20, Issue 22, pages 4225–4241.
  • Duran JD, Arias JL, Gallardo V, Delgado AV, 2008. Magnetic colloids as drug vehicles, Pharm Sci, 97, 2948–2983.
  • Faraji AH, Wipf P., 2009. Nanoparticles in cellular drug delivery. Bioorg Med Chem., 17, 2950–2962.
  • Fenech M. 2007. Cytokinesis-block micronucleus cytome assay. Nat. Protoc, 2, 1084–1104.
  • Hoskins C., Wang L,Cheng W.P. and Cuschieri A.,2012. Dilemmas in the reliable estimation of the in-vitro ell viability in magnetic nanoparticle engineering: which tests and what protocols? Nanoscale Research Letters, 7,77.
  • Hu L, Mao Z, Gao C, 2009. Colloidal particles for cellular uptake and delivery,J Mater Chem, 19, 3108-3115.
  • Hussain S.M.,Hess K.L., Gearhart J.M.,Geiss K.T, Schlager J.J, 2005. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicology in Vitro, 19, 975-983.
  • Jain SK, and Levine SN, 1995. Elevated lipid peroxidation and Vitamin E quinine levels in heart ventricles of streptozoticin-treated diabetic rats. Free Radic. Biol. Med., 18, 337-341
  • Jun Y-W, Seo J-W, Cheon J, 2008. Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Accounts Of Chemical Research, 41, 179-182.
  • Li J.J, Hartono D, Ong C.N,Bay B.H,Lin-Yue L.Yung, 2010. Autophagy and oxidative stress associated with gold nanoparticles Biomaterials, 31, 5996-6003.
  • Li Ji, Chaudhary A, Chmura Steven J, Pelizzari C, Rajh T, Wietholt C, Kurtoglu M, Aydogan, 2010. Phys. Med. Biol. 55,4389–4397.
  • Lowry, MB., Duchemin, AM., Robinson, JM., Anderson, CL., 1998. Functional separation of pseudopod extension and particle internalization during Fc gamma receptor-mediated phagocytosis’’, J Exp Med., 187, 161–76.
  • Mankoff D A, Specht J M. Eubank W B, Kessler L ,2012. [18F]Fluorodeoxyglucose Positron Emission Tomography–Computed Tomography in Breast Cancer: When and When Not? Journal of Clinical Oncology, 30, 201-211.
  • Meyer MIL Stehr M, Bhuju S, 2007. Magnetic biosensor for the detection of Yersinia pestis. J Microbiol Methods, 68, 218-222.
  • Na HB, Song IC, Hyeon T, 2009. Inorganic nanoparticles for MRI contrast agents. Adv Mat, 21, 2133.
  • Oberdörster G, Stone V.,Donaldson K. 2007. Toxicology of nanoparticles: A historical perspective. Nanotoxicology, 1(1), 225-228.
  • Omidkhoda A.,Hossein M.,Movasaghpoora A, Fatholaha A., 2007. Study of apoptosis in labeled mesenchymal stem cells with superparamagnetic iron oxide using neutral comet assay Toxicology in Vitro, 21, 1191-1195.
  • Pisanic, T.R, Blackwell, J.D., Shubayev, V.I., Finones, R.R., Jin, S., 2007. Nanotoxicity of iron oxide nanoparticle internalization in growing neurons Biomaterials, 28, 16, 2572–2581.
  • Ramchand CN, Pande P, Kopcansky P, 2001. Application of magnetic fluids in medicine and biotechnology Ind J of Pure Applied Physics, 39, 683.
  • Roger J, Pons J, Massart R, Some biomedical applications of ferrofluids, 1999. Euro Phys J Applied Physics, , 5, 321-324.
  • Ruan G1, Agrawal A, Marcus AI,Nie S J. 2007. Imaging and tracking of tat peptide-conjugated quantum dots in living cells: new insights into nanoparticle uptake, intracellular transport, and vesicle shedding. Am Chem Soc. 28;129(47):14759-66.
  • Sahra B, Laurent K, Giuliano S, Larbret F, Ponzio G, Gounon P, Le Marchand-Brustel Y, Giorgetti-Peraldi S, Cormont M, Bertolotto C, Deckert M, Auberger P, Tanti J, and Bost F, 2010. Targeting cancer cell metabolism: the combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cells. Cancer Res; 70(6);2465–75. Sawant RM, Sawant RR, Gultepe E, Nagesha D, Brigitte PS, Sridhar S, Torchilin VP, 2009. Nanosized cancer cell-targeted polymeric immunomicelles loaded with superparamagnetic iron oxide nanoparticles. J Nanopart Res, 11, 1777.
  • Schanen, BC, Karakoti,AS, Seal, S, Drake WL, Self WT., 2009. Exposure to Titanium Dioxide Nanomaterials Provokes Inflammation of an in Vitro Human Immune ConstructACS Nano, 3 (9), 2523–2532.
  • Schladt, TD, Schneider, K, Schild, H and Tremel, N., 2011. Synthesis and biofunctionalization of magnetic nanoparticles for medical diagnosis and treatment, Dalton Transactions, 40, 6315-6343.
  • Singh, NP, McCoy MT, Tice RR and Schneider EL. 1998. A simple technique for quantitation of low levels of DNA damage in individual cells. Experimental Cell Research 175(1): 184-191.
  • Sun T,Yan Y,Zhao Y,Guo F,Jiang C., Copper Oxide Nanoparticles Induce Autophagic Cell Death in A549 Cells, 2012. PloS ONE 7(8): e43442.
  • Villanueva A, Canete M, Roca A, Calero M, Veintemillas-Verdaguer S, Sema CJ, Morales Mdel P, Miranda R, 2009. The influence of surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells Nanotechnology, 20, 11-15.
  • Wang Q, Liang B, Shirwany NA, Zou M-H ., 2011. 2-Deoxy-D-Glucose Treatment of Endothelial Cells Induces Autophagy by Reactive Oxygen Species- Mediated Activation of the AMP-Activated Protein Kinase. PLoS ONE 6(2): e17234.
  • Warheit DB, Sayes CM, Reed KL, Swain KA, 2008. Health effects related to nanoparticle exposures: environmental, health and safety considerations for assessing hazards and risks. Pharmacol Ther 120:35–42.
  • Yan S, Zhang D, Gu N, Zheng J, Ding A, Wang Z, Xing B, Ma M, Zhang Y, 2005. Therapeutic effect of Fe2O3 nanoparticles combined with magenetic fluid hyperthermia on cultured liver cancers. J NanosciNanotechnol, 2005, 5, 1185-88.
  • Yu S. 2006. Review of 18F-FDG Synthesis and Quality Control. Biomed Imaging, Biomed Imaging Interv J; 2(4): 57-65.
  • Zhang X.D., Deslandes E.Villedieu M.,Poulain L.,Duval M.,Gauduchon P.,Schwartz L.,Icardı P., 2006. Effect of 2-Deoxy-D-glucose on Various Malignant Cell Lines In Vitro, Anticancer Research 26: 3561-3566.
  • Zhang Y, Hu L, Yu D, Gao C, 2010. Influence of silica particle internalization on adhesion and migration of human dermal fibroblasts Biomaterials, 31, 32, 8465–8474.
  • Zhang Y, Zhang J, 2005. Surface modification of monodisperse magnetite nanoparticles for improved intracellular uptake to breast cancer cells. Colloid Interface Sci, 283, 2, 352–35.
  • Zhang, Y., Kohler, N., and Zhang, M., 2002. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake, Biomaterials., 23, (7), 1553–1561.
APA GÜRAY N, VOLKAN M, IŞIK E (2014). Kanser hedefleme ve terapi için 2-deoksi-D-gilikoz (2-DG)-etiketli kobalt ferrit (CoFe2O4)manyetik nanoparçacıklar. , 1 - 41. 113Z557
Chicago GÜRAY Nülüfer Tülün,VOLKAN Mürvet,IŞIK Elif Kanser hedefleme ve terapi için 2-deoksi-D-gilikoz (2-DG)-etiketli kobalt ferrit (CoFe2O4)manyetik nanoparçacıklar. (2014): 1 - 41. 113Z557
MLA GÜRAY Nülüfer Tülün,VOLKAN Mürvet,IŞIK Elif Kanser hedefleme ve terapi için 2-deoksi-D-gilikoz (2-DG)-etiketli kobalt ferrit (CoFe2O4)manyetik nanoparçacıklar. , 2014, ss.1 - 41. 113Z557
AMA GÜRAY N,VOLKAN M,IŞIK E Kanser hedefleme ve terapi için 2-deoksi-D-gilikoz (2-DG)-etiketli kobalt ferrit (CoFe2O4)manyetik nanoparçacıklar. . 2014; 1 - 41. 113Z557
Vancouver GÜRAY N,VOLKAN M,IŞIK E Kanser hedefleme ve terapi için 2-deoksi-D-gilikoz (2-DG)-etiketli kobalt ferrit (CoFe2O4)manyetik nanoparçacıklar. . 2014; 1 - 41. 113Z557
IEEE GÜRAY N,VOLKAN M,IŞIK E "Kanser hedefleme ve terapi için 2-deoksi-D-gilikoz (2-DG)-etiketli kobalt ferrit (CoFe2O4)manyetik nanoparçacıklar." , ss.1 - 41, 2014. 113Z557
ISNAD GÜRAY, Nülüfer Tülün vd. "Kanser hedefleme ve terapi için 2-deoksi-D-gilikoz (2-DG)-etiketli kobalt ferrit (CoFe2O4)manyetik nanoparçacıklar". (2014), 1-41.