Farklı Ploidi Seviyelerine Sahip Türk Buğday Çeşitlerinde Kuraklık Stresi Altında mikroRNA’ ların Derinleme Dizilenmesi ve Hedef Genlerin Analizi

3 8

Proje Grubu: KBAG Sayfa Sayısı: 1 Proje No: 215Z354 Proje Bitiş Tarihi: 01.04.2018 Metin Dili: Türkçe İndeks Tarihi: 07-12-2018

Farklı Ploidi Seviyelerine Sahip Türk Buğday Çeşitlerinde Kuraklık Stresi Altında mikroRNA’ ların Derinleme Dizilenmesi ve Hedef Genlerin Analizi

Öz:
Buğday, insan beslenmesinde kullanılan dünyada ve ülkemizde ekim ve üretim bakımından ilk sıralarda yer alan, en önemli tahıl ürünlerindendir. Buğdayın atalarından olan Triticum urartu ve Aegilops tauschii ile buğdayın modern kültürlerinden biri olan Triticum aestivum genomlarına ait dizilerin açığa çıkarılması, buğday genetik çalışmaları için bir dönüm noktası oluşturmaktadır. mikroRNA’ların (miRNA) bitkilerde stres koşullarına uyumda, patojenlerle etkileşimde, gelişim, üreme ve metabolizmada rol alan birçok yolakta rol aldığı kanıtlanmıştır. Kuraklık, hem ekmeklik hem de makarnalık un üretiminde kullanılan buğdayın kalitesini ve verimini önemli ölçüde etkilemektedir. Projemizde, farklı ploidi seviyesine sahip ve kuraklığa karşı farklı tolerans özellikleri gösteren Türk buğday çeşitlerinden; buğdayın atası olarak bilinen Siyez (T. monococcum) ile buğdayın modern kültürleri olan ekmeklik buğday olarak bilinen T. aestivum cv. Yüreğir-89 ve makarnalık buğday olarak bilinen T.turgidum durum cv. Kızıltan-91 buğday çeşitlerine ait kök ve yaprak dokularında kuraklık stresi sonucunda miRNA’ ların ve hedef genlerinin tespit edilmesi ve bunların ifade analizlerinin yapılması amaçlanmaktadır. Ayrıca, bu çalışma ile farklı ploidi seviyesine sahip buğday türlerinde kuraklık stresi ile ilişkili, önceden tanımlanmamış yeni miRNA’ ların bulunması hedeflenmektedir. Dolayısıyla, farklı kromozom setlerine sahip olan buğday türlerinde kuraklık stresi sonucu hangi miRNA’ ların görev yaptığı ve ifade seviyelerindeki değişiklikler belirlenerek, miRNA’ ların orijinleri, evrimsel açıdan değerlendirilmiştir. Bununla birlikte, çalışılan buğday çeşitleri kuraklık stresine farklı cevap oluşturduğu bilinen farklı ploidi seviyesine sahip buğday çeşitleri olduğu için, tanımlanmış ve henüz tanımlanmamış yeni miRNA’ ların kuraklığa hassas ve dayanıklı bireylerdeki durumları, bu miRNA’ ların hangi buğday türünden köken aldıkları da ilk kez bu çalışma ile incelenmiştir. Ayrıca, belirlenen miRNA’ ların hedef genleri hem biyoinformatik yöntemeler hem de degradom kütüphaneleri yardımıyla kuraklığa farklı cevap veren buğday türlerinde tespit edilmiş ve bu hedef genlerin Gene Ontology, MapMan yolak analizleri yapılarak gen ifade analizleri Kantitatif Real-Time PCR ile kontrol edilmiştir. Bunlara ilaveten, kök ve yaprak dokularında miRNA ve hedef genlerinin kuraklığa vereceği cevapların incelenmiş olması, bu proje ile ilk defa farklı ploidi ve kuraklık toleransına sahip buğday çeşitlerinde farklı dokularda kuraklık stresinin miRNA seviyesinde analizi yapılmıştır. Daha önceden buğdaya ait miRNA’ lar belirlenmiş olsa da, farklı ploidi seviyelerindeki buğday türlerinde kuraklık stresi altında önceden tanımlanmış miRNA’ ların tespit edilmesi, tanımlanmamış yeni miRNA’ ların bulunması, bunların hedef genlerinin belirlenmesi ve ifade seviyelerinin incelenmesi hakkında literatürde bilgi eksikliği mevcuttur. Bu sebeple yapılan bu çalışma farklı kromozom setlerine sahip, kuraklığa karşı farklı tolerans özellikleri gösteren Türk buğday çeşitlerinde, kuraklık stresi ile ilgili moleküler mekanizmaların aydınlatılması ile ilgili verilerin ortaya çıkmasını sağlamıştır.
Anahtar Kelime: Kantitatif Real-Time PCR Biyoinformatik Hedef Genler miRNA Kuraklık Stresi Ploidi Buğday

Konular: Genetik ve Kalıtım Gıda Bilimi ve Teknolojisi Ziraat, Toprak Bilimi

Farklı Ploidi Seviyelerine Sahip Türk Buğday Çeşitlerinde Kuraklık Stresi Altında mikroRNA’ ların Derinleme Dizilenmesi ve Hedef Genlerin Analizi

Öz:
Wheat, used in the human diet and placed in the first in terms of cultivation and production areas in the world and in our country, is the most important grain crops. Elucidating the sequences of genomes of wheat species including ancestors of Triticum urartu and Aegilops tauschii and modern culture of the wheat Triticum aestivum is a turning point for wheat genetic studies. microRNAs (miRNAs) in adaptation to stress conditions in plants, pathogens interaction, development, reproduction, and metabolism is implicated in proven to be involved in many pathways. Drought considerably affects the quality and yield of flour used in both bread and pasta production. In this project; it is aimed to determine miRNA’s and their target genes and perform their expression analysis after drought stress treatment in different ploidy levels and different drought tolerance characteristics of the Turkish wheat varieties including Siyez known as the ancestor of wheat (T. monococcum), T. aestivum cv. Yüreğir-89 known as the modern culture of the wheat bread and T. turgidum durum cv. Kızıltan-91 known as durum wheat. In addition, this study aims identification of previously unidentified novel miRNA’s associated with drought stress in root and leaf tissues of wheat species with different ploidy level. Therefore, it was determined that; as a result of drought stress which miRNA’s was served and how their expression levels were changed in wheat cultivars having different types of chromosome pairs. miRNA’s origins and phylogenetic distributions was also considered from an evolutionary perspective. In addition, wheat varieties to be studied are known to be the different response to drought stress conditions and different ploidy levels, defined and unidentified novel miRNA 's which was identified in this study have been also investigated in sensitive and resistant individuals. Origin of these miRNA's and which miRNAs arose from wheat cultivars was examined at the first time by this study. Besides, miRNA`s target genes was identified using both bioinformatics methods and degradome libraries in wheat varieties that respond to drought stress differently. Gene Ontology and MapMan pathway analyzes of these target genes was performed and gene expression analysis was controlled by Quantitative Real-Time PCR. Although wheat miRNA’s have been previously determined, there is a lack of knowledge in the literature about detection of defined, unidentified novel miRNA` s and their target genes in wheat varieties with different ploidy levels under drought stress and examination of their expression levels. Therefore, this study allowed the opening of new areas related to identification molecular mechanisms of drought stress in the Turkish wheat varieties showing different drought tolerance characteristics with different pairs of chromosomes.
Anahtar Kelime:

Konular: Genetik ve Kalıtım Gıda Bilimi ve Teknolojisi Ziraat, Toprak Bilimi
Erişim Türü: Erişime Açık
  • Achard, P., Herr, A., Baulcombe, D. C., Harberd, N. P. 2004. “Modulation of floral development by a gibberellin-regulated microRNA”, Development, 131(14), 3357–3365.
  • Adai, A., Johnson, C., Mlotshwa, S., Archer-Evans, S., Manocha, V., Vance, V., Sundaresan, V. 2005. “Computational prediction of miRNAs in Arabidopsis thaliana”, Genome Research, 15(1), 78–91.
  • Addo-Quaye, C., Miller, W., Axtell, M. J. 2009. “CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets”, Bioinformatics, 25, 130–131.
  • Allen, E., Xie, Z., Gustafson, A. M., Sung, G. H., Spatafora, J. W., Carrington, J. C. 2004. “Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana”, Nature Genetics, 36, 1282–1290.
  • Allen, E., Xie, Z., Gustafson, A. M., Sung, G. H., Spatafora, J. W., Carrington, J. C. 2004. “Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana”, Nature Genetics, 36, 1282–1290.
  • Alptekin, B., Langridge, P., & Budak, H. (2017). Abiotic stress miRNoms in the Triticeae. Functional & Integrative Genomics, 17(2), 145-170. doi: 10.1007/s10142-016-0525-9
  • Andersen C.L., Ledet-Jensen J., Ørntoft T.: Normalization of real-time quantitative RT-PCR data: a model based variance estimation approach to identify genes suited for normalization - applied to bladder- and colon-cancer data-sets. Cancer Research. 2004 (64): 5245-5250
  • Arshad, M., Feyissa, B. A., Amyot, L., Aung, B., & Hannoufa, A. (2017). MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa) by silencing SPL13. Plant Science, 258, 122-136. doi: https://doi.org/10.1016/j.plantsci.2017.01.018
  • Aung B., M.Y. Gruber, L. Amyot, K. Omari, A. Bertrand, A. Hannoufa MicroRNA156 as a promising tool for alfalfa improvement Plant Biotechnol. J., 13 (2015a), pp. 779-790
  • Aung B., M.Y. Gruber, L. Amyot, K. Omari, A. Bertrand, A. Hannoufa Ectopic expression of LjmiR156 delays flowering enhances shoot branching, and improves forage quality in alfalfa Plant Biotechnol. Rep., 9 (2015b), pp. 379-393
  • Axtell, M. J., Bartel, D. P. 2005. “Antiquity of microRNAs and their targets in land plants”, Plant Cell, 17, 1658–1673.
  • Baloglu MC, Inal B, Kavas M, Unver T (2014) Diverse expression pattern of wheat transcription factors against abiotic stresses in wheat species. Gene, 550 (1): 117-122. (SCI)
  • Baloglu MC, Kavas M, Aydin G, Öktem HA, Yücel M (2012) Antioxidative and physiological responses of two sunflower (Helianthus annuus) cultivars under PEG- mediated drought stress. Turkish Journal of Botany, 36: 707-714. (SCI-E)
  • Baloglu, M. C., Inal, B., Kavas, M., Unver, T. 2014. “Diverse expression pattern of wheat transcription factors against abiotic stresses in wheat species”, Gene, 550 (1), 117-122.
  • Bartel, D. P. 2004. “MicroRNAs: genomics, biogenesis, mechanism, and function”, Cell, 116(2), 281–297.
  • Bonnet, E., Wuyts, J., Rouzé, P., Van de Peer, Y. 2004. “Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes”, Proceedings of the National Academy of Sciences of the United States of Am Dryanova a, 101(31), 11511–11516.
  • Brenner, J. L., Jasiewicz, K. L., Fahley, A. F., Kemp, B. J., Abbott, A. L. 2010. “Loss of Individual MicroRNAs Causes Mutant Phenotypes in Sensitized Genetic Backgrounds in C. elegans”, Current Biology, 20(14), 1321–1325.
  • Budak H., M. Kantar, R. Bulut, B.A. Akpinar Stress responsive miRNAs and isomiRs in cereals Plant Sci., 235 (2015a), pp. 1-13
  • Budak H., Z. Khan, M. Kantar History and current status of wheat miRNAs using nextgeneration sequencing and their roles in development and stress Brief. Funct. Genom., 14 (2015b), pp. 189-198
  • Budak, H., Khan, Z., Kantar, M. 2014. “History and current status of wheat miRNAs using next-generation sequencing and their roles in development and stress”, Briefings in Functional Genomics, doi:10.1093/bfgp/elu021.
  • Cardon G., S. Hohmann, J. Klein, K. Nettesheim, H. Saedler, P. Huijser, Molecular characterisation of the Arabidopsis SBP-box genes, Gene 237 (1999) 91–104.
  • Cayirlioglu, P., Kadow, I. G., Zhan, X., Okamura, K., Suh, G. S. B., Gunning, D., Lai, E. C., Zipursky, S. L. 2008. “Hybrid Neurons in a MicroRNA Mutant Are Putative Evolutionary Intermediates in Insect CO2 Sensory Systems”, Science, 319(5867), 1256–1260.
  • Chen C, Dana A. Ridzon, Adam J. Broomer, Zhaohui Zhou, Danny H. Lee, Julie T. Nguyen, Maura arbisin, Nan Lan Xu, Vikram R. Mahuvakar, Mark R. Andersen, Kai Qin Lao, Kenneth J. Livak and Karl J. Guegler. Real-time quantification of microRNAs by stem–loop RT–PCR. Nucleic Acids Research, 2005, Vol. 33, No. 20.
  • Chen, X. 2005. “MicroRNA biogenesis and function in plants”, FEBS Letter, 579(26), 5923– 5931.
  • Conesa, A., Götz, S., García-Gómez, J. M., Terol, J., Talón, M., Robles, M. 2005. “Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research”, Bioinformatics, 21(18), 3674-6.
  • Davey, M. W., Gudimella, R., Harikrishna, J. A., Sin, L. W., Khalid, N., Keulemans, J. 2013. “A draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter- and intra-specific Musa hybrids”, BMC Genomics, 14, 683.
  • development and phenotypic plasticity. Curr. Opin. Plant Biol. 2005, 8, 86–92.
  • Dryanova, A., Zakharov, A., & Gulick, P. J. (2008). Data mining for miRNAs and their targets in the Triticeae. Genome, 51(6), 433-443. doi: 10.1139/G08-025
  • Duan H., X. Lu, C. Lian, Y. An, X. Xia, W. Yin Genome-wide analysis of microRNA responses to the phytohormone abscisic acid in Populus euphratica Front. Plant Sci., 7 (2016) Dubos, C., Stracke, R., Grotewold, E., Weisshaar, B., Martin, C., Lepiniec, L., 2010. MYB transcription factors in Arabidopsis. Trends Plant Sci., 15, 573-581.
  • Fahlgren, N., Howell, M. D., Kasschau, K. D., Chapman, E. J., Sullivan, C. M., Cumbie, J. S., Givan, S. A., Law, T. S., Grant, S. R., Dangl, J. L., Carrington, J. C. 2007. “Highthroughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes”, PLoS One, 2(2), e219.
  • Fan G., L. Yang, M. Deng, S. Niu, Z. Zhao, Y. Dong, Y. Li Comparative analysis of microRNAs and putative target genes in hybrid clone Paulownia ‘yuza1’ under drought stress Acta Physiol. Plant., 38 (2016) Feng, H., Zhang, Q., Li, H., Wang, X., Wang, X., Duan, X., . . . Kang, Z. (2013). vsiRNAs derived from the miRNA-generating sites of pri-tae-miR159a based on the BSMV system play positive roles in the wheat response to Puccinia striiformis f. sp. tritici through the regulation of taMyb3 expression. Plant Physiology and Biochemistry, 68, 90-95. doi: https://doi.org/10.1016/j.plaphy.2013.04.008
  • German, M. A., Luo, S. J., Schroth, G., Meyers, B. C., Green, P. J. 2009. “Construction of Parallel Analysis of RNA Ends (PARE) libraries for the study of cleaved miRNA targets and the RNA degradome”, Nat Protocols, 4, 356–362.
  • Griffiths-Jones, S., Moxon, S., Marshall, M., Khanna, A., Eddy, S. R., Bateman, A. 2005. “Rfam; Annotating non-coding RNAs in complete genomes”, Nucleic Acids Research, 33, 121-124.
  • Hackenberg M., P. Gustafson, P. Langridge, B.J. Shi Differential expression of microRNAs and other small RNAs in barley between water and drought conditions Plant Biotechnol. J., 13 (2015), pp. 2-13
  • Hackenberg, M., Gustafson, P., Langridge, P., Shi, B. J. 2015. “Differential expression of microRNAs and other small RNAs in barley between water and drought conditions”, Plant Biotechnology Journal, 13, 2–13.
  • Han, J., Kong, M. L., Xie, H., Sun, Q. P., Nan, Z. J., Zhang, Q.Z., Pan, J. B. 2013. “Identification of miRNAs and their targets in wheat (Triticum aestivum L.) by EST analysis”, Genetics and Molecular Research, 12(3), 3793-805.
  • Han, R., Jian, C., Lv, J., Yan, Y., Chi, Q., Li, Z., . . . Zhao, H. (2014). Identification and characterization of microRNAs in the flag leaf and developing seed of wheat (Triticum aestivum L.). BMC Genomics, 15(1), 289. doi: 10.1186/1471-2164-15-289
  • Han, Y., Luan, F., Zhu, H., Shao, Y., Chen, A., Lu, C., Luo, Y., Zhu, B. 2009. “Computational identification of microRNAs and their targets in wheat (Triticum aestivum L.)”, Science in China Series C: Life Sciences, 52(11), 1091–1100.
  • He X., W. Zheng, F. Cao, F. Wu Identification and comparative analysis of the microRNA transcriptome in roots of two contrasting tobacco genotypes in response to cadmium stress Sci. Rep., 6 (2016)
  • Hoagland, D. R., Arnon D. I. 1950. “The water-culture method for growing plants without soil”, California Agricultural Experiment Station Circular, 347, 1-32.
  • Höck J, Meister G. The Argonaute protein family. Genome Biology. 2008;9(2):210. doi:10.1186/gb-2008-9-2-210.
  • Huang, S. Q., Xiang, A. L., Che, L. L., Chen, S., Li, H., Song, J. B., Yang, Z. M. 2010. “A set of miRNAs from Brassica napus in response to sulphate deficiency and cadmium stress”, Plant Biotechnology Journal, 8(8), 887–899.
  • Huang, S. Q., Xiang, A. L., Che, L. L., Chen, S., Li, H., Song, J. B., & Yang, Z. M. (2010). A set of miRNAs from Brassica napus in response to sulphate deficiency and cadmium stress. Plant Biotechnology Journal, 8(8), 887-899. doi: 10.1111/j.1467- 7652.2010.00517.x
  • IWGSC. 2014. “A chromosome-based draft sequence of the hexaploid bread wheat genome”, Science, 345, 6194.
  • Jia, J., et al. 2013. “Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation”, Nature, 496, 91–95.
  • Jiang J, Chen Z, Ban L, et al. P-HYDROXYPHENYLPYRUVATE DIOXYGENASE from Medicago sativa is involved in vitamin E biosynthesis and abscisic acid-mediated seed germination. Scientific Reports. 2017;7:40625. doi:10.1038/srep40625.
  • Kantar, M., Akpınar, B. A., Valárik, M., Lucas, S. J., Doležel, J., Hernández, P., Budak, H.; International Wheat Genome Sequencing Consortium. 2012. “Subgenomic analysis of microRNAs in polyploid wheat”, Functional Integrative Genomics, 12(3), 465-79.
  • Kantar, M., Lucas, S. J., Budak, H. 2011. “miRNA expression patterns of Triticum dicoccoides in response to shock drought stress”, Planta, 233(3), 471–484.
  • Kantar, M., Unver, T., Budak, H. 2010. “Regulation of barley miRNAs upon dehydration stress correlated with target gene expression”, Functional Integrative Genomics, 10(4), 493–507.
  • Kavas M, Baloglu MC, Akça O, Köse FS, Gökçay D (2013) Effect of drought stress on oxidative damage and antioxidant enzyme activity in melon seedlings. Turkish Journal of Biology, 37: 491-498. (SCI-E)
  • Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. NAR 2014 42: D68-D73
  • Kurtoglu, K. Y., Kantar, M., Budak, H. 2014. “New wheat microRNA using whole-genome sequence”, Functional Integrative Genomics, 14(2), 363-79.
  • Laufs, P., Peaucelle, A., Morin, H., Traas, J. 2004. “MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems”, Development, 131(17), 4311–4322.
  • Lee Rosalind, C., Ambros, V. 2001. “An Extensive Class of Small RNAs in Caenorhabditis elegans”, Science, 294(5543), 862–864.
  • Lee, R. C., Feinbaum, R. L., Ambros, V. 1993. “The C. elegans heterochronic gene lin -4 encodes small RNAs with antisense complementarity to lin-14”, Cell, 75(5), 843–854.
  • Lee, Y., Kim, M., Han, J., Yeom, K. H., Lee, S., Baek, S. H., Kim, V. N. 2004. “MicroRNA genes are transcribed by RNA polymerase II”, The EMBO journal, 23(20), 4051–60.
  • Li, R., Yu, C., Li, Y., Lam, T. W., Yiu, S. M., Kristiansen, K., Wang, J. 2009. “SOAP2; an improved ultrafast tool for short read alignment”, Bioinformatics, 25(15), 1966–1967.
  • Li, S.-B., Xie, Z.-Z., Hu, C.-G., & Zhang, J.-Z. (2016). A Review of Auxin Response Factors (ARFs) in Plants. Frontiers in Plant Science, 7, 47. http://doi.org/10.3389/fpls.2016.00047
  • Li, Y., Li, C., Xia, J., Jin, Y. 2011. “Domestication of transposable elements into MicroRNA genes in plants”. PLoS One, 6, e19212.
  • Liang, C., Zhang, X., Zou, J., Xu, D., Su, F., Ye, N. 2010. “Identification of miRNA from Porphyra yezoensis by high-throughput sequencing and bioinformatics analysis”, PLoS One, 5, e10698.
  • Lindquist, S.; Jarosz, D.F. Hsp90 and environmental stress transform the adaptive value of natural genetic variation. Science 2010, 330, 1820–1824.
  • Ling, H. Q., et al., 2013. “Draft genome of the wheat A-genome progenitor Triticum urartu”, Nature, 496, 87–90.
  • Lucas, S. J., Budak, H. 2012. “Sorting the wheat from the chaff: identifying miRNAs in genomic survey sequences of Triticum aestivum chromosome 1AL”, PloS One 7(7), e40859.
  • Lv, D., Ge, Y., Jia, B., Bai, X., Bao, P., Cai, H., . . . Zhu, Y. (2012). miR167c is induced by high alkaline stress and inhibits two auxin response factors in Glycine soja. Journal of Plant Biology, 55(5), 373-380. doi: 10.1007/s12374-011-0350-6
  • Ma, X., Xin, Z., Wang, Z., Yang, Q., Guo, S., Guo, X., Cao, L., Lin, T. 2015. “Identification and comparative analysis of differentially expressed miRNAs in leaves of two wheat (Triticum aestivum L.) genotypes during dehydration stress”, BMC Plant Biology, 15(1), 21.
  • Maher, C., Stein, L., Ware, D. 2006. “Evolution of Arabidopsis microRNA families through duplication events”, Genome Research, 16, 510–519.
  • Mallory, A. C., Dugas, D. V, Bartel, D. P., Bartel, B. 2004. “MicroRNA Regulation of NACDomain Targets Is Required for Proper Formation and Separation of Adjacent Embryonic, Vegetative, and Floral Organs”, Current Biology, 14(12), 1035–1046.
  • Manickavelu, A., et al., 2012. “Comprehensive functional analyses of expressed sequence tags in common wheat (Triticum aestivum)”, DNA Research, 19, 165–177.
  • Matts, J., Jagadeeswaran, G., Roe, B. A., Sunkar, R. 2010. “Identification of microRNAs and their targets in switchgrass, a model biofuel plant species”, Journal of Plant Physiology, 167(11), 896–904.
  • Mica, E., Piccolo, V., Delledonne, M., Ferrarini, A., Pezzotti, M., Casati, C., Horner, D. S. 2009. “High throughput approaches reveal splicing of primary microRNA transcripts and tissue specific expression of mature microRNAs in Vitis vinifera”, BMC Genomics, 10, 558.
  • Michael W. Pfaffl, Aleš Tichopád, Christian Prgomet, Tanja P. Neuvians. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper – Excel-based tool using pair-wise correlations. Biotechnology Letters 26: 509-515 (2004)
  • Modde K, Timm S, Florian A, Michl K, Fernie AR, Bauwe H. High serine:glyoxylate aminotransferase activity lowers leaf daytime serine levels, inducing the phosphoserine pathway in Arabidopsis. Journal of Experimental Botany. 2017;68(3):643-656. doi:10.1093/jxb/erw467.
  • Modde K, Timm S, Florian A, Michl K, Fernie AR, Bauwe H. High serine:glyoxylate aminotransferase activity lowers leaf daytime serine levels, inducing the phosphoserine pathway in Arabidopsis. Journal of Experimental Botany. 2017;68(3):643-656. doi:10.1093/jxb/erw467.
  • Mulekar J.J, Enamul Huq; Expanding roles of protein kinase CK2 in regulating plant growth and development, Journal of Experimental Botany, Volume 65, Issue 11, 1 June 2014, Pages 2883–2893, https://doi.org/10.1093/jxb/ert401
  • Navarro, B., Pantaleo, V., Gisel, A., Moxon, S., Dalmay, T., Bisztray, G., Serio F. D., Burgyan, J. 2009. “Deep sequencing of viroid-derived small RNAs from grapevine provides new insights on the role of RNA silencing in plant-viroid interaction”, PLoS One, 4(11), e7686.
  • Nawrocki P., Sarah W. Burge, et al. Rfam 12.0: updates to the RNA families database. Nucleic Acids Research (2014)
  • Nguyen, P. D. T., Pike, S., Wang, J., Nepal Poudel, A., Heinz, R., Schultz, J. C., Koo, A. J., Mitchum, M. G., Appel, H. M. and Gassmann, W. (2016), The Arabidopsis immune regulator SRFR1 dampens defences against herbivory by Spodoptera exigua and parasitism by Heterodera schachtii. Molecular Plant Pathology, 17: 588–600. doi:10.1111/mpp.12304
  • Nicol, J. M., Elekçioğlu, I. H., Bolat, N., Rivoal, R. 2007. “The global importance of the cereal cyst nematode (Heterodera spp) on wheat and international approaches to its control”, Communications in Agricultural and Applied Biological Sciences, 72, 677-686.
  • Palatnik, J. F., Allen, E., Wu, X., Schommer, C., Schwab, R., Carrington, J. C., Weigel, D. 2003. “Control of leaf morphogenesis by microRNAs”, Nature, 425(6955), 257–263.
  • Pandey, B., Gupta, O. P., Pandey, D. M., Sharma, I., Sharma, P. 2013. “Identification of new microRNA and their targets in wheat using computational approach”, Plant Signal Behavior, 8, e23932.
  • Piriyapongsa, J., Jordan, I. K. 2008. “Dual coding of siRNAs and miRNAs by plant transposable elements”, RNA, 14, 814–821.
  • Rahaie, M., Gomarian, M., Alizadeh, H., Malboobi, M. A., Naghavi, M.R., 2011. The expression analysis of transcription factors under long term salt stress in tolerant and susceptible wheat (Triticum aestivum L.) genotypes using Reverse Northern Blot. Iranian J. Crop Sci,
  • Ramalingam P, Palanichamy JK, Singh A, et al. Biogenesis of intronic miRNAs located in clusters by independent transcription and alternative splicing. RNA. 2014;20(1):76-87. doi:10.1261/rna.041814.113.
  • Riera M., M. Figueras, C. Lopez, A. Goday, M. Pages Protein kinase CK2 modulates developmental functions of the abscisic acid responsive protein Rab17 from maize Proc. Natl. Acad. Sci. USA, 101 (2004), pp. 9879-9884
  • Rizhsky, L.; Liang, H.; Mittler, R. The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol. 2002, 130, 1143–1151.
  • Ruan, M. B., Zhao, Y. T., Meng, Z. H., Wang, X. J., Yang, W. C. 2009. “Conserved miRNA analysis in Gossypium hirsutum through small RNA sequencing”, Genomics, 94(4), 263– 268.
  • Sangster, T.A.; Queitsch, C. The HSP90 chaperone complex, an emerging force in plant
  • Schertl P, DanneL, Braun H.P. (2017). 3-Hydroxyisobutyrate Dehydrogenase Is Involved in Both, Valine and Isoleucine Degradation in Arabidopsis thaliana Plant Physiology, 175 (1) 51-61; DOI: 10.1104/pp.17.00649
  • Schmittgen, T. D., Livak, K. J. 2008. “Analyzing real-time PCR data by the comparative C(T) method”, Nature Protocols, 3, 1101–1108.
  • Seifert, F., Bössow, S., Kumlehn, J., Gnad, H., & Scholten, S. (2016). Analysis of wheat microspore embryogenesis induction by transcriptome and small RNA sequencing using the highly responsive cultivar “Svilena”. BMC plant biology, 16, 97. doi: 10.1186/s12870 - 016-0782-8
  • Siddiqi SA, Mahan J, Siddiqi S, Gorelick FS, Mansbach CM. Vesicle-associated membrane protein 7 is expressed in intestinal ER. Journal of cell science. 2006;119(Pt 5):943-950. doi:10.1242/jcs.02803.
  • Su, C., Yang, X., Gao, S., Tang, Y., Zhao, C., Li, L. 2014. “Identification and characterization of a subset of microRNAs in wheat (Triticum aestivum L.)”, Genomics, 103(4), 298-307.
  • Sun, F., Guo, G., Du, J., Guo, W., Peng, H., Ni, Z., Sun, Q., Yao, Y. 2014. “Whole-genome discovery of miRNAs and their targets in wheat (Triticum aestivum L.)”, BMC Plant Biology, 22, 14, 142.
  • Sunkar, R., Jagadeeswaran, G. 2008. “In silico identification of conserved microRNAs in large number of diverse plant species”, BMC Plant Biology, 8, 37.
  • Tang, Z., Zhang, L., Xu, C., et al. 2012. “Uncovering small RNA mediated responses to cold stress in a wheat thermos sensitive genic male-sterile line by deep sequencing”, Plant Physiology, 159, 721–38.
  • Tovar Méndez, A. , Miernyk, J. A. and Randall, D. D. (2003), Regulation of pyruvate dehydrogenase complex activity in plant cells. European Journal of Biochemistry, 270: 1043-1049. doi:10.1046/j.1432-1033.2003.03469.x
  • Uauy, C., Distelfeld, A., Fahima, T., Blechl, A., Dubcovsky, J. 2006. “A NAC Gene regulating senescence improves grain protein, zinc, and iron content in wheat”, Science, 314, 1298–1301.
  • Van Ooijen G., Gabriele Mayr, Mobien M. A. Kasiem, Mario Albrecht, Ben J. C. Cornelissen, Frank L. W. Takken; Structure–function analysis of the NB-ARC domain of plant disease resistance proteins, Journal of Experimental Botany, Volume 59, Issue 6, 1 April 2008, Pages 1383–1397, https://doi.org/10.1093/jxb/ern045
  • Vitulo, N., Albiero, A., Forcato, C., Campagna, D., Dal Pero, F., Bagnaresi, P., Colaiacovo, M., Faccioli, P., Lamontanara, A., Simkova, H., Kubalakova, M., Perrotta, G., Facella, P., Lopez, L., Pietrella, M., Gianese, G., Dolezel, J., Giuliano, G., Cattivelli, L., Valle, G., Stanca, A. M. 2011. “First survey of the wheat chromosome 5A composition through a next generation sequencing approach”, PloS One, 6(10), e26421.
  • Wang B, Sun YF, Song N, Wang XJ, Feng H, Huang LL, Kang ZS Genet Mol Res. 2013 Oct 7; 12(4):4213-21.
  • Wang, X. J., Reyes, J., Chua, N. H., Gaasterland, T. 2004. “Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets”, Genome Biology, 5(9), R65.
  • Wei S., B. Yu, M.Y. Gruber, G.G. Khachatourians, D.D. Hegedus, A. Hannoufa Enhanced seed carotenoid levels and branching in transgenic Brassica napus expressing the Arabidopsis miR156b gene J. Agric. Food Chem., 58 (2010), pp. 9572-9578
  • Woodger, F. J., Millar, A., Murray, F., Jacobsen, J. V., & Gubler, F. (2003). The Role of GAMYB Transcription Factors in GA-Regulated Gene Expression. Journal of Plant Growth Regulation, 22(2), 176-184. doi: 10.1007/s00344-003-0025-8
  • Wu MF, Tian Q, Reed JW (2006) Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development 133:4211-4218
  • Xie, F., Xiao, P., Chen, D., Xu, L., Zhang, B., 2012. “miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs”, Plant Molecular Biology, 80, 75-84.
  • Xie, F., Zhang, B. 2015. “microRNA evolution and expression analysis in polyploidized cotton genome”, Plant Biotechnology Journal, doi: 10.1111/pbi.12295.
  • Xin, M., Wang, Y., Yao, Y., et al. 2010. “Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.)”, BMC Plant Biology, 10, 123.
  • Xuemei, C. 2009. “Small RNAs and Their Roles in Plant Development”, Annual Review of Cell and Developmental Biology, 25(1), 21–44.
  • Yakovlev, I. A., Fossdal, C. G., Johnsen, O. 2010. “MicroRNAs, the epigenetic memory and climatic adaptation in Norway spruce”, New Phytology, 187(4), 1154–1169.
  • Yao, Y., Guo, G., Ni, Z., Sunkar, R., Du, J., Zhu, J. K., Sun, Q. 2007. “Cloning and characterization of microRNAs from wheat (Triticum aestivum L.), Genome Biology, 8(6), R96.
  • Yao, Y., Ni, Z., Peng, H., et al. 2010. “Non-coding small RNAs responsive to abiotic stress in wheat (Triticum aestivum L.)”, Functional Integrative Genomics, 10, 187–90.
  • Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012;13:134. doi:10.1186/1471-2105-13-134.
  • Yer EN, Baloglu MC, Tanman Ziplar U, Ayan S, Ünver T (2016) Drought-Responsive Hsp70 Gene Analysis in Populus at Genome-Wide Level Plant Molecular Biology Reporter, 34:483–500, DOI:10.1007/s11105-015-0933-3 (SCI-E)
  • Yer Esra Nurten, (2017). Kastamonu Üniversitesi, Fen Bilimleri Enstitüsü Doktora Tez adı: Isı Şoku Protein Genlerinin (Hsp) Bazı Populus Taksonlarında Fonksiyonel Genom Analizi ve Abiyotik Stres Koşullarında Hsp Genlerinin İfade Seviyelerinin Belirlenmesi.
  • Yu N., Q.W. Niu, K.H. Ng, N.H. Chua The role of miR156/SPLs modules in Arabidopsis lateral root development Plant J., 83 (2015), pp. 673-685
  • Zhang C., B. Zhang, R. Ma, M. Yu, S. Guo, L. Guo, N.K. Korir Identification of known and novel microRNAs and their targets in peach (Prunus persica) Fruit by high-throughput sequencing PLoS One, 11 (2016)
  • Zhang, B. H., Pan, X. P., Cannon, C. H., Cobb, G. P., Anderson, T. A. 2006a. “Conservation and divergence of plant microRNA genes”, Plant Journal, 46, 243–259.
  • Zhang, B., Pan, X., Cobb, G. P., Anderson, T. A. 2006b. “Plant microRNA: a small regulatory molecule with big impact”, Development Biology, 289(1), 3–16.
  • Zhang, B., Wang, Q., Wang, K., Pan, X., Liu, F., Guo, T., Cobb, G. P., Anderson, T. A. 2007. “Identification of cotton microRNAs and their targets”, Gene, 397(1-2), 26–37.
  • Zhang, J., Zeng, R., Chen, J., Liu, X., Liao, Q. 2008. “Identification of conserved microRNAs and their targets from Solanum lycopersicum Mill”, Gene, 423(1), 1–7.
  • Zhang, W., Luo, Y., Gong, X., Zeng, W., Li, S. 2009. “Computational identification of 48 potato microRNAs and their targets”, Computational Biology and Chemistry, 33(1), 84–93.
  • Zhang, Y., Jiang, W. K., Gao, L. Z. 2011. “Evolution of microRNA genes in Oryza sativa and Arabidopsis thaliana: an update of the inverted duplication model”, PLoS One, 6, e28073.
  • Zhao, C. Z., Xia, H., Frazier, T. P., Yao, Y. Y., Bi, Y. P., Li, A. Q., Li, M. J., Li, C. S., Zhang, B. H., Wang, X. J. 2010. “Deep sequencing identifies novel and conserved microRNAs in peanuts (Arachis hypogaea L.)”, BMC Plant Biology, 10, 3.
  • Zhao, T., Li, G., Mi, S., Li, S., Hannon, G. J., Wang, X. J., Qi, Y. 2007. “A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii”, Genes Development, 21, 1190–1203.
  • Zhou, L., Liu, Y., Liu, Z., Kong, D., Duan, M., & Luo, L. (2010). Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. Journal of Experimental Botany, 61(15), 4157-4168. doi: 10.1093/jxb/erq237
  • Zuker, M. 2003. “Mfold web server for nucleic acid folding and hybridization prediction”, Nucleic Acids Research, 31(13), 3406
APA BALOĞLU M, İNAL B (2018). Farklı Ploidi Seviyelerine Sahip Türk Buğday Çeşitlerinde Kuraklık Stresi Altında mikroRNA’ ların Derinleme Dizilenmesi ve Hedef Genlerin Analizi. , 0 - 1.
Chicago BALOĞLU Mehmet Cengiz,İNAL BEHCET Farklı Ploidi Seviyelerine Sahip Türk Buğday Çeşitlerinde Kuraklık Stresi Altında mikroRNA’ ların Derinleme Dizilenmesi ve Hedef Genlerin Analizi. (2018): 0 - 1.
MLA BALOĞLU Mehmet Cengiz,İNAL BEHCET Farklı Ploidi Seviyelerine Sahip Türk Buğday Çeşitlerinde Kuraklık Stresi Altında mikroRNA’ ların Derinleme Dizilenmesi ve Hedef Genlerin Analizi. , 2018, ss.0 - 1.
AMA BALOĞLU M,İNAL B Farklı Ploidi Seviyelerine Sahip Türk Buğday Çeşitlerinde Kuraklık Stresi Altında mikroRNA’ ların Derinleme Dizilenmesi ve Hedef Genlerin Analizi. . 2018; 0 - 1.
Vancouver BALOĞLU M,İNAL B Farklı Ploidi Seviyelerine Sahip Türk Buğday Çeşitlerinde Kuraklık Stresi Altında mikroRNA’ ların Derinleme Dizilenmesi ve Hedef Genlerin Analizi. . 2018; 0 - 1.
IEEE BALOĞLU M,İNAL B "Farklı Ploidi Seviyelerine Sahip Türk Buğday Çeşitlerinde Kuraklık Stresi Altında mikroRNA’ ların Derinleme Dizilenmesi ve Hedef Genlerin Analizi." , ss.0 - 1, 2018.
ISNAD BALOĞLU, Mehmet Cengiz - İNAL, BEHCET. "Farklı Ploidi Seviyelerine Sahip Türk Buğday Çeşitlerinde Kuraklık Stresi Altında mikroRNA’ ların Derinleme Dizilenmesi ve Hedef Genlerin Analizi". (2018), 0-1.
APA BALOĞLU M, İNAL B (2018). Farklı Ploidi Seviyelerine Sahip Türk Buğday Çeşitlerinde Kuraklık Stresi Altında mikroRNA’ ların Derinleme Dizilenmesi ve Hedef Genlerin Analizi. , 0 - 1.
Chicago BALOĞLU Mehmet Cengiz,İNAL BEHCET Farklı Ploidi Seviyelerine Sahip Türk Buğday Çeşitlerinde Kuraklık Stresi Altında mikroRNA’ ların Derinleme Dizilenmesi ve Hedef Genlerin Analizi. (2018): 0 - 1.
MLA BALOĞLU Mehmet Cengiz,İNAL BEHCET Farklı Ploidi Seviyelerine Sahip Türk Buğday Çeşitlerinde Kuraklık Stresi Altında mikroRNA’ ların Derinleme Dizilenmesi ve Hedef Genlerin Analizi. , 2018, ss.0 - 1.
AMA BALOĞLU M,İNAL B Farklı Ploidi Seviyelerine Sahip Türk Buğday Çeşitlerinde Kuraklık Stresi Altında mikroRNA’ ların Derinleme Dizilenmesi ve Hedef Genlerin Analizi. . 2018; 0 - 1.
Vancouver BALOĞLU M,İNAL B Farklı Ploidi Seviyelerine Sahip Türk Buğday Çeşitlerinde Kuraklık Stresi Altında mikroRNA’ ların Derinleme Dizilenmesi ve Hedef Genlerin Analizi. . 2018; 0 - 1.
IEEE BALOĞLU M,İNAL B "Farklı Ploidi Seviyelerine Sahip Türk Buğday Çeşitlerinde Kuraklık Stresi Altında mikroRNA’ ların Derinleme Dizilenmesi ve Hedef Genlerin Analizi." , ss.0 - 1, 2018.
ISNAD BALOĞLU, Mehmet Cengiz - İNAL, BEHCET. "Farklı Ploidi Seviyelerine Sahip Türk Buğday Çeşitlerinde Kuraklık Stresi Altında mikroRNA’ ların Derinleme Dizilenmesi ve Hedef Genlerin Analizi". (2018), 0-1.