4 3

Proje Grubu: EEEAG Sayfa Sayısı: 161 Proje No: 111E191 Proje Bitiş Tarihi: 01.12.2015 Metin Dili: Türkçe İndeks Tarihi: 03-04-2019

RSFQ Tabanlı Entegre Devre tasarım aracı ve Aritmetik Mantık Birimi Geliştirilmesi

Öz:
Hızlı tek akı kuvantumu (rapid single flux quantum - RSFQ) teknolojisi, sinyallerin anahtarlanmasında süperiletken malzemelerdeki kuvantum etkilere dayanan bir dijital ve analog elektronik devre teknolojisidir. RSFQ devreler, süperiletken malzemelere dayalı bir teknoloji olduğu için kriyojenik çalışma ortamlarında kullanılmaları gerekmektedir. CMOS eşleniklerine göre temel avantajları, yaklaşık 1 THz frekanslarına kadar anahtarlama yapabilmeleri ve çok düşük güç tüketimlerine sahip olmalarıdır. Ayrıca, RSFQ teknolojisi standart CMOS tasarım ve üretim sistemleri ile uyumludur ve üretilen devrelerin CMOS ve optik tabanlı devrelerle entegrasyonları da mümkündür. Hızlı tek akı kuvantumu tabanlı (RSFQ) VLSI devre tasarım ve üretim teknolojileri, son yıllarda büyük aşama kaydetmiş ve karmaşık devrelerin yapılabilmesi mümkün olmuştur.Bu proje kapsamında, state of the art kabul edilebilecek, SFQ analog devreler, sayısal devreler ve bellek devreleri için bir optimizasyon aracı geliştirilmiştir. Geliştirilen programların birbiri ile entegrasyonları ve grubumuz dışından araştırmacıların da kullanabileceği bir arayüz üzerinde çalışılmalar devam etmektedir. Analog optimizasyon aracı ile geliştirilen karşılaştırma devreleri, literatürde rapor edilen en düşük gri bölge genişliklerine sahiptir. Sayısal optimizasyon aracı ile geliştirilen kapıların tamamı düşük bit hata oranları ile çalışmıştır. Tasarlanan VTM tabanlı bellek modülü, rastgele devre parametreleri ile başlayarak literatürdeki rapor edilen ve tecrübeli bir araştırmacının uzun sürelerde tasarlayabildiği kutuplama marjinleri seviyesinde çalışmıştır. Tasarlanan ALU’nun alt modüllerinin tamamı çalışmıştır. Deney düzeneğimiz kapalı devre analog ve sayısal devrelerin hassas ölçümlerine uygun hale getirilmiştir. Kapalı devre soğutucu sistemde SFQ devrelerine sağlanabilecek kutuplama akımı 0.5 Amper’den 1.6 Amper’e çıkarılarak yaklaşık 10 katlık bir performans artışı sağlanmıştır. SFQ devreleri için kullanılan kapalı devre soğutucularda 1.6 A değeri bildiğimiz kadarıyla en yüksek kutuplama akımı değeridir. Geliştirilen bit paralel ALU devresinin modüllerini ayrı ayrı test etmemize rağmen, bütün ALU’nun ihtiyacı olan 2A akımı sağlayamadığımız için testleri tamamlanamamıştır. Verilog simülasyonlarında bütün giriş-çıkış kombinasyonları farklı kutuplama akımlarında denenmiş ve ±%20 marjinle çalıştığı gözlenmiştir. Soğutucu sistemin 2A mertebesindeki devreleri ölçebilmesi için çalışmalarımız diğer gruplarla işbirliği içerisinde devam etmektedir. Bit paralel ALU’nun ölçülememesinden sonra daha az ekleme sahip bir bit seri ALU tasarlanmış ve onun ölçülmesi planlanmıştır. Kısıtlı zamanda tasarlanan ve test edilen bu ALU devresi kısmi olarak çalışmış, test amacı ile en uzun hattan alınan CLK_OUT sinyali başarılı olarak gözlenmiş, toplama devresi çıktıları son bitteki açık pin problemi haricinde başarıyla alınmıştır.
Anahtar Kelime: PSO ALU RSFQ

Konular: Mühendislik, Elektrik ve Elektronik
Erişim Türü: Erişime Açık
  • K. Gaj, Q. P. Herr, V. Adler, A. Krasniewski, E. G. Friedman, and M. J. Feldman, “Tools for the computer-aided design of multigigahertz superconducting digital circuits,” Appl. Supercond. IEEE Trans. On, vol. 9, no. 1, pp. 18–38, 2002.
  • Optimization of Single Flux Quantum Circuit Based Comparators Using PSO (Bildiri),
  • H. Toepfer and T. Ortlepp, “Design infrastructure for Rapid Single Flux Quantum circuits,” Cryogenics, vol. 49, no. 11, pp. 643–647, 2009.
  • Analysis of delay, jitter and critical path of fundamental SFQ gates and circuit blocks (Bildiri),
  • S. Luryi, J. Xu, and A. Zaslavsky, Future trends in microelectronics: from nanophotonics to sensors to energy. Wiley-IEEE Press, 2010.
  • Development of an optimizer tool for SFQ digital cell library based on stochastic effects (Bildiri),
  • J. Q. You and F. Nori, “Atomic physics and quantum optics using superconducting circuits,” Nature, vol. 474, no. 7353, pp. 589–597, Jun. 2011.
  • Development of a PSO based circuit optimizer and critical path analyzer for RSFQ circuits (Bildiri),
  • B. Chesca, R. Kleiner, and D. Koelle, “SQUID Theory,” in The SQUID Handbook, J. Clarke and A. I. Braginski, Eds. Wiley-VCH Verlag GmbH & Co. KGaA, 2005, pp. 29–92.
  • Development of an Analog Circuit Optimizer and Jitter Analysis Tool for SFQ Circuits (Bildiri),
  • A. I. Braginski and J. Clarke, “Introduction,” in The SQUID Handbook, J. Clarke and A. I. Braginski, Eds. Wiley-VCH Verlag GmbH & Co. KGaA, 2005, pp. 1–28.
  • Optimization of Single Flux Quantum Circuit Based Comparators Using PSO (Makale/Kitap/Kitapta Bölüm),
  • A. Bozbey, “YBCO Edge Transtion Bolometers: Effect of Superconductivity Transition on the Phase and Magnitude of the Responce,” Yüksek Lisans Tezi, Bilkent Üniversitesi, Ankara, 2013.
  • Analysis of Delay and Jitter of Basic Single Flux Quantum Logic Gates (Makale/Kitap/Kitapta Bölüm),
  • A. Bozbey, S. Miyajima, T. Ortlepp, and A. Fujimaki, “Design and Circuit Analysis of Quasi-one Junction SQUID Comparators for Low Temperature Detector Array Readout,” J. Supercond. Nov. Magn., vol. 24, no. 1, pp. 1065–1069, 2011.
  • A Statistical Approach to Delay, Jitter and Timing of Signals of RSFQ Wiring Cells and Clocked Gates (Makale/Kitap/Kitapta Bölüm),
  • ITRS, “International Technology Roadmap for Semiconductors 2004 - Emerging Research Devices,” 2004.
  • Development of an Optimization Tool for RSFQ Digital Cell Library Using Particle Swarm (Makale/Kitap/Kitapta Bölüm)5- Development of an Optimization Tool for RSFQ Digital Cell Library Using Particle Swarm (Makale - İndeskli Makale),
  • NSA, “SUPERCONDUCTING TECHNOLOGY ASSESSMENT.” Amerikan Ulusal Güvenlik kurumu (NSA), 2005.
  • A Statistical Approach to Delay, Jitter and Timing of Signals of RSFQ Wiring Cells and Clocked Gates (Makale - İndeskli Makale),
  • T. V. Filippov, A. Sahu, A. F. Kirichenko, I. V. Vernik, M. Dorojevets, C. L. Ayala, and O. A. Mukhanov, “20 GHz Operation of an Asynchronous Wave-Pipelined RSFQ Arithmetic-Logic Unit,” Phys. Procedia, vol. 36, pp. 59–65, 2012.
  • Design of RSFQ wave pipelined Kogge-Stone Adder and developing custom compound gates (Makale - İndeskli Makale),
  • M. Dorojevets, A. K. Kasperek, N. Yoshikawa, and A. Fujimaki, “20-GHz 8 8-bit Parallel Carry-Save Pipelined RSFQ Multiplier,” IEEE Trans. Appl. Supercond., vol. 23, no. 3, p. 1300104, Jun. 2013.
  • Effects of anharmonicity of current-phase relation in Josephson junctions (Makale - İndeskli Makale),
  • M. Dorojevets, C. L. Ayala, N. Yoshikawa, and A. Fujimaki, “8-Bit Asynchronous Sparse-Tree Superconductor RSFQ Arithmetic-Logic Unit With a Rich Set of Operations,” IEEE Trans. Appl. Supercond., vol. 23, no. 3, p. 1700104, Jun. 2013.
  • Analysis of Delay and Jitter of Rapid Single Flux Quantum Wiring Cells (Makale - Diğer Hakemli Makale),
  • T. Filippov, M. Dorojevets, A. Sahu, A. Kirichenko, C. Ayala, and O. Mukhanov, “8Bit Asynchronous Wave-Pipelined RSFQ Arithmetic-Logic Unit,” IEEE Trans. Appl. Supercond., vol. 21, no. 3, pp. 847 –851, Jun. 2011.
  • Optimization of Single Flux Quantum Circuit Based Comparators Using PSO (Makale Diğer Hakemli Makale),
  • M. Dorojevets and P. Bunyk, “Architectural and implementation challenges in designing high-performance RSFQ processors: a FLUX-1 microprocessor and beyond,” IEEE Trans. Appl. Supercond., vol. 13, no. 2, pp. 446 – 449, Jun. 2003.
  • SFQ Analog and Digital Circuit Design: Circuit Optimization and Timing Analysis (Bildiri Uluslararası Konferans - Davetli Konuşmacı),
  • A. Fujimaki, M. Tanaka, T. Yamada, Y. Yamanashi, H. Park, and N. Yoshikawa, “BitSerial Single Flux Quantum Microprocessor CORE,” IEICE Trans. Electron., vol. E91–C, no. 3, pp. 342–349, Mar. 2008.
  • Stripline Design of Passive Transmission Lines for RSFQ Circuits (Bildiri - Uluslararası Bildiri - Poster Sunum),
  • P. Bunyk, M. Leung, J. Spargo, and M. Dorojevets, “Flux-1 RSFQ microprocessor: physical design and test results,” IEEE Trans. Appl. Supercond., vol. 13, no. 2, pp. 433 – 436, Jun. 2003.
  • Statistical Timing Analysis Tool for SFQ Cells (STATS) (Bildiri - Uluslararası Bildiri Poster Sunum),
  • W. Chen, A. V. Rylyakov, V. Patel, J. E. Lukens, and K. K. Likharev, “Rapid single flux quantum T-flip flop operating up to 770 GHz,” IEEE Trans. Appl. Supercond., vol. 9, no. 2, pp. 3212–3215, 1999.
  • Optimization of Single Flux Quantum Circuit Based Comparators Using PSO (Bildiri Uluslararası Bildiri - Poster Sunum),
  • W. Chen, A. V. Rylyakov, V. Patel, J. E. Lukens, and K. K. Likharev, “Superconductor digital frequency divider operating up to 750 GHz,” Appl. Phys. Lett., vol. 73, no. 19, pp. 2817–2819, Nov. 1998.
  • Extraction of the Timing Parameters of RSFQ Cells for Potential New Generation Simulation Tools (Bildiri - Uluslararası Bildiri - Poster Sunum),
  • M. Tanaka, A. Kitayama, T. Koketsu, M. Ito, and A. Fujimaki, “Low-Energy Consumption RSFQ Circuits Driven by Low Voltages,” IEEE Trans. Appl. Supercond., vol. 23, no. 3, pp. 1701104–1701104, 2013.
  • Optimization of Front-end of the SFQ Readout Circuits for Superconducting Strip-line Detectors (Bildiri - Uluslararası Bildiri - Poster Sunum),
  • J. Kennedy and R. Eberhart, “Particle swarm optimization,” in , IEEE International Conference on Neural Networks, 1995. Proceedings, 1995, vol. 4, pp. 1942–1948 vol.4.
  • Development of an optimizer tool for SFQ digital cell library based on stochastic effects (Bildiri - Uluslararası Bildiri - Poster Sunum),
  • R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization,” Swarm Intell., vol. 1, no. 1, pp. 33–57, Jun. 2007.
  • Design of RSFQ Asynchronous Pipelined Kogge-Stone Adder using Custom Compound Gates (Bildiri - Uluslararası Bildiri - Poster Sunum),
  • Y. Shi and R. C. Eberhart, “Parameter selection in particle swarm optimization,” in Evolutionary Programming VII, V. W. Porto, N. Saravanan, D. Waagen, and A. E. Eiben, Eds. Springer Berlin Heidelberg, 1998, pp. 591–600.
  • Automatic characterization and measurement of custom designed RSFQ chips (Bildiri Uluslararası Bildiri - Poster Sunum),
  • Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on, 1998, pp. 69 –73.
  • Analysis of Delay and Jitter of Basic Single Flux Quantum Logic Gates (Bildiri Uluslararası Bildiri - Poster Sunum),
  • R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in Micro Machine and Human Science, 1995. MHS ’95., Proceedings of the Sixth International Symposium on, 1995, pp. 39 –43.
  • Representation of an 8-bit, 20GHz Pipelined RSFQ ALU as a DSP Coprocessor (Bildiri Uluslararası Bildiri - Poster Sunum),
  • Y. Shi and R. C. Eberhart, “Empirical study of particle swarm optimization,” in Proceedings of the 1999 Congress on Evolutionary Computation, 1999. CEC 99, 1999, vol. 3, p. -1950 Vol. 3.
  • Design of an RSFQ based Kogge-Stone adder by using custom optimized gates and wiring (Bildiri - Uluslararası Bildiri - Poster Sunum),
  • J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Trans. Antennas Propag., vol. 52, no. 2, pp. 397–407, 2004. [
  • Cell Based Automated Timing Analysis and Parameter Extraction Tool for SFQ Circuits (Bildiri - Uluslararası Bildiri - Poster Sunum),
  • U. Olgun, C. A. Tunc, D. Aktas, V. B. Ertürk, and A. Altintas, “Particle swarm optimization of dipole arrays for superior MIMO capacity,” Microw. Opt. Technol. Lett., vol. 51, no. 2, pp. 333–337, 2009.
  • Analysis of delay, jitter and critical path of fundamental SFQ gates and circuit blocks (Bildiri - Uluslararası Bildiri - Poster Sunum),
  • R. C. Eberhart and Y. Shi, “Particle swarm optimization: developments, applications and resources,” in Proceedings of the 2001 Congress on Evolutionary Computation, 2001, 2001, vol. 1, pp. 81–86 vol. 1.
  • Development of an Analog Circuit Optimizer and Jitter Analysis Tool for SFQ Circuits (Bildiri - Uluslararası Bildiri - Sözlü Sunum),
  • I. C. Trelea, “The particle swarm optimization algorithm: convergence analysis and parameter selection,” Inf. Process. Lett., vol. 85, no. 6, pp. 317–325, Mar. 2003.
  • Fully Automated SFQ Chip Measurement Setup for Evaluation of Operating Condition and Bias Margins (Bildiri - Uluslararası Bildiri - Sözlü Sunum),
  • E. S. Fang and T. Van Duzer, “A Josephson integrated circuit simulator (JSIM) for superconductive electronics application,” Ext Abstr 2nd ISEC Tokyo Jpn., pp. 407–410, 1989.
  • Development of a PSO based circuit optimizer and critical path analyzer for RSFQ circuits (Bildiri - Uluslararası Bildiri - Sözlü Sunum),
  • T. L. Quarles, “Analysis of Performance and Convergence Issues for Circuit Simulation,” EECS Department, University of California, Berkeley, 1989.
  • Development of Design Tools for Superconducting Integrated Circuits for Large Scale
  • E. S. Fang and T. V. Duzer, “JSIM Preliminary Version User’s Guide.” .
  • S. Nagasawa and M. Hidaka, “Design instruction for AIST standard process (AISTSTP2).” National Institute of Advanced Industrial Science and Technology (AIST), 08-Jul-2013.
  • “Niobium Process | Proven Foundry Results | Niobium IC Fabrication Process | Hypres Inc.” [Online]. Available: http://www.hypres.com/foundry/niobium-process/. [Accessed: 17-Dec-2013].
  • “FLUXONICS Foundry - The Foundry of the European FLUXONICS Network : www.ipht-jena.de.” [Online]. Available: http://www.ipht-jena.de/en/researchunits/research-departments/quantum-detection/fluxonics-foundry-the-foundry-of-theeuropean-fluxonics-network/adressen/hans-georg-meyer.html. [Accessed: 17-Dec2013].
  • M. Hidaka, S. Nagasawa, K. Hinode, and T. Satoh, “Improvements in Fabrication Process for Nb-Based Single Flux Quantum Circuits in Japan,” IEICE Trans. Electron., vol. E91–C, no. 3, pp. 318–324, Mar. 2008.
  • T. Imamura and S. Hasuo, “Evaluation of AlOx barrier thickness in Nb Josephson junctions using anodization profiles,” Appl. Phys. Lett., vol. 55, no. 24, pp. 2550–2552, Dec. 1989.
  • S. Polonsky, P. Shevchenko, A. Kirichenko, D. Zinoviev, and A. Rylyakov, “PSCAN’96: new software for simulation and optimization of complex RSFQ circuits,” IEEE Trans. Appl. Supercond., vol. 7, no. 2, pp. 2685–2689, 1997.
  • F. G. Ortmann, A. van der Merwe, H. R. Gerber, and C. J. Fourie, “A Comparison of Multi-Criteria Evaluation Methods for RSFQ Circuit Optimization,” IEEE Trans. Appl. Supercond., vol. 21, no. 3, pp. 801–804, 2011.
  • N. Mori, A. Akahori, T. Sato, N. Takeuchi, A. Fujimaki, and H. Hayakawa, “A new optimization procedure for single flux quantum circuits,” Phys. C Supercond., vol. 357–360, Part 2, pp. 1557–1560, Aug. 2001.
  • S. Yorozu, Y. Kameda, H. Terai, A. Fujimaki, T. Yamada, and S. Tahara, “A single flux quantum standard logic cell library,” Phys. C Supercond., vol. 378–381, Part 2, pp. 1471–1474, Oct. 2002.
  • C. J. Fourie and W. J. Perold, “Comparison of genetic algorithms to other optimization techniques for raising circuit yield in superconducting digital circuits,” IEEE Trans. Appl. Supercond., vol. 13, no. 2, pp. 511–514, 2003.
  • T. Harnisch, J. Kunert, H. Toepfer, and H. F. Uhlmann, “Design centering methods for yield optimization of cryoelectronic circuits,” IEEE Trans. Appl. Supercond., vol. 7, no. 2, pp. 3434–3437, 1997.
  • H. Myoren, Y. Wakimizu, and S. Takada, “Design of single-flux-quantum universal gates with a wide operating margin,” Supercond. Sci. Technol., vol. 16, no. 12, p. 1447, Dec. 2003.
  • S. V. Polonsky, V. K. Semenov, P. I. Bunyk, A. F. Kirichenko, A. Y. KidiyarovShevchenko, O. A. Mukhanov, P. N. Shevchenko, D. F. Schneider, D. Y. Zinoviev, and K. K. Likharev, “New RSFQ circuits (Josephson junction digital devices),” IEEE Trans. Appl. Supercond., vol. 3, no. 1, pp. 2566–2577, 1993.
  • S. Xu and Y. Rahmat-Samii, “Boundary Conditions in Particle Swarm Optimization Revisited,” Antennas Propag. IEEE Trans. On, vol. 55, no. 3, pp. 760 –765, Mar. 2007.
  • Y. Tukel, A. Bozbey, and C. A. Tunc, “Optimization of Single Flux Quantum Circuit Based Comparators Using PSO,” J. Supercond. Nov. Magn., vol. 26, no. 5, pp. 1837– 1841, May 2013.
  • Y. Tukel, A. Bozbey, and C. A. Tunc, “Development of an Optimization Tool for RSFQ Digital Cell Library Using Particle Swarm,” IEEE Trans. Appl. Supercond., vol. 23, no. 3, pp. 1700805–1700805, 2013.
  • H. Terai, S. Miki, T. Yamashita, K. Makise, and Z. Wang, “Demonstration of singleflux-quantum readout operation for superconducting single-photon detectors,” Appl. Phys. Lett., vol. 97, no. 11, pp. 112510–112510–3, Sep. 2010.
  • D. K. Brock, S. S. Martinet, M. F. Bocko, and J. X. Przybysz, “Design and testing of QOS comparators for an RSFQ based analog to digital converter,” IEEE Trans. Appl. Supercond., vol. 5, no. 2, pp. 2244– 2247, Jun. 1995.
  • P. Bradley and H. Dang, “Design and testing of quasi-one junction SQUID-based comparators at low and high speed for superconductive flash A/D convertors,” IEEE Trans. Appl. Supercond., vol. 1, no. 3, pp. 134–139, 1991.
  • A. Bozbey, S. Miyajima, H. Akaike, and A. Fujimaki, “Single-Flux-Quantum Circuit Based Readout System for Detector Arrays by Using Time to Digital Conversion,” IEEE Trans. Appl. Supercond., vol. 19, no. 3, pp. 509–513, 2009.
  • Akira Fujimaki, “Vortex Transitional Memory Developed with Nb 4-Layer, 10-kA/cm2 Fabrication Process,” presented at the ISEC 2015, Nagoya, Japan, 2015.
  • S. Nagasawa, S. Tahara, H. Numata, and S. Tsuchida, “A miniaturized vortex transitional memory cell for a Josephson high-speed RAM,” in Electron Devices Meeting, 1992. IEDM ’92. Technical Digest., International, 1992, pp. 793–796.
  • S. Nagasawa, S. Tahara, H. Numata, and S. Tsuchida, “Miniaturized vortex transitional Josephson memory cell by a vertically integrated device structure,” IEEE Trans. Appl. Supercond., vol. 4, no. 1, pp. 19–24, Mar. 1994.
  • Yoshikawa, N., presented at the Workshop on 4 K Random Access Memory, Berkeley, USA, 2012.
  • Herr, A. et al, presented at the ASC 2014, Charlotte, USA, 2014.
  • S. Nagasawa, T. Satoh, K. Hinode, Y. Kitagawa, and M. Hidaka, “Yield Evaluation of 10-kA/cm 2 Nb Multi-Layer Fabrication Process Using Conventional Superconducting RAMs,” IEEE Trans. Appl. Supercond., vol. 17, no. 2, pp. 177–180, Jun. 2007.
  • N. Mori, A. Akahori, T. Sato, N. Takeuchi, A. Fujimaki, and H. Hayakawa, “A new optimization procedure for single flux quantum circuits,” Phys. C Supercond., vol. 357–360, Part 2, pp. 1557–1560, Aug. 2001.
  • Q. P. Kerr and M. J. Feldman, “Multiparameter optimization of RSFQ circuits using the method of inscribed hyperspheres,” Appl. Supercond. IEEE Trans. On, vol. 5, no. 2, pp. 3337–3340, 1995.
  • Y. Tukel, A. Bozbey, and C. A. Tunc, “Optimization of Single Flux Quantum Circuit Based Comparators Using PSO,” J. Supercond. Nov. Magn., Accepted for publication.
  • Y. Tukel, A. Bozbey, and C. A. Tunc, “Development of an Optimization Tool for RSFQ Digital Cell Library Using Particle Swarm,” IEEE Trans. Appl. Supercond., vol. 23, no. 3, p. 1700805, Jun. 2013.
  • S. Tahara and Y. Wada, “A Vortex Transitional NDRO Josephson Memory Cell,” Jpn. J. Appl. Phys., vol. 26, no. 9R, p. 1463, Sep. 1987.
  • J. Kennedy and R. Eberhart, “Particle swarm optimization,” presented at the Proceedings., IEEE International Conference on Neural Networks, 1995, vol. 4, pp. 1942 –1948 vol.4.
  • M. Hidaka, S. Nagasawa, T. Satoh, K. Hinode, and Y. Kitagawa, “Current status and future prospect of the Nb-based fabrication process for single flux quantum circuits,” Supercond. Sci. Technol., vol. 19, p. S138, 2006.
  • S. Nagasawa, T. Satoh, K. Hinode, Y. Kitagawa, M. Hidaka, H. Akaike, A. Fujimaki, K. Takagi, N. Takagi, and N. Yoshikawa, “New Nb multi-layer fabrication process for large-scale SFQ circuits,” Phys. C Supercond., vol. 469, no. 15–20, pp. 1578–1584, Oct. 2009.
  • M. Dorojevets, P. Bunyk, and D. Zinoviev, “FLUX chip: design of a 20-GHz 16-bit ultrapipelined RSFQ processor prototype based on 1.75- mu;m LTS technology,” IEEE Trans. Appl. Supercond., vol. 11, no. 1, pp. 326 –332, Mar. 2001.
  • P. Bunyk, M. Leung, J. Spargo, and M. Dorojevets, “Flux-1 RSFQ microprocessor: physical design and test results,” Appl. Supercond. IEEE Trans. On, vol. 13, no. 2, pp. 433 – 436, Jun. 2003.
  • M. Dorojevets, P. Bunyk, D. Zinoviev, and K. Likharev, “COOL-0: Design of an RSFQ subsystem for petaflops computing,” IEEE Trans. Appl. Supercond., vol. 9, no. 2, pp. 3606 –3614, Haziran 1999.
  • N. Miyaho, A. Yamazaki, T. Sakurai, and K. Miyahara, “Next generation IP Router architecture using SFQ technolN. Miyaho, A. Yamazaki, T. Sakurai, and K. Miyahara, “Next generation IP Router architecture using SFQ technology,” in Asia-Pacific Conference on Communications, 2006. APCC ’06, 2006, pp. 1 –5. ogy,” in Asia-Pacific Conference on Communications, 2006. APCC ’06, 2006, pp. 1 –5.
  • D. Y. Zinoviev, “Design issues in ultra-fast ultra-low-power superconductor Batcherbanyan switching fabric based on RSFQ logic/memory family,” Appl. Supercond., vol. 5, no. 7–12, pp. 235–239, Jul. 1997.
  • O. A. Mukhanov, V. K. Semenov, W. Li, T. V. Filippov, D. Gupta, A. M. Kadin, D. K. Brock, A. F. Kirichenko, Y. A. Polyakov, and I. V. Vernik, “A superconductor highresolution ADC,” IEEE Trans. Appl. Supercond., vol. 11, no. 1, pp. 601 –606, Mar. 2001.
  • J. C. Lin, V. K. Semenov, and K. K. Likharev, “Design of SFQ-counting analog-todigital converter,” IEEE Trans. Appl. Supercond., vol. 5, no. 2, pp. 2252–2259, 1995.
  • E. B. Wikborg, V. K. Semenov, and K. K. Likharev, “RSFQ front-end for a software radio receiver,” IEEE Trans. Appl. Supercond., vol. 9, no. 2, pp. 3615 –3618, Jun. 1999.
  • V. Semenov, Y. Polyakov, and D. Schneider, “Preliminary results on the analog-todigital converter based on RSFQ logic,” in 1996 Conference on Precision Electromagnetic Measurements Digest, 1996, pp. SUPL15 –SUPL16.
  • A. V. Rylyakov and K. K. Likharev, “Pulse jitter and timing errors in RSFQ circuits,” Appl. Supercond. IEEE Trans. On, vol. 9, no. 2, pp. 3539–3544, 1999.
  • P. Bunyk and D. Zinoviev, “Experimental characterization of bit error rate and pulse jitter in RSFQ circuits,” Appl. Supercond. IEEE Trans. On, vol. 11, no. 1, pp. 529–532, 2001.
  • I. Kataeva, H. Akaike, A. Fujimaki, N. Yoshikawa, S. Nagasawa, and N. Takagi, “Clock Line Considerations for an SFQ Large Scale Reconfigurable Data Paths Processor,” IEEE Trans. Appl. Supercond., vol. 21, no. 3, pp. 809–813, Jun. 2011.
  • M. Terabe, A. Sekiya, T. Yamada, and A. Fujimaki, “Timing Jitter Measurement in Single-Flux-Quantum Circuits Based on Time-to-Digital Converters With High TimeResolution,” IEEE Trans. Appl. Supercond., vol. 17, no. 2, pp. 552–555, Jun. 2007.
  • A. M. Herr, M. J. Feldman, and M. F. Bocko, “Timing jitter and bit errors in a 64-bit circular shift register,” Appl. Supercond. IEEE Trans. On, vol. 9, no. 2, pp. 3721–3724, 1999.
  • M. Jeffery, P. Y. Xie, S. R. Whiteley, and T. Van Duzer, “Monte Carlo and thermal noise analysis of ultra-high-speed high temperature superconductor digital circuits,” Appl. Supercond. IEEE Trans. On, vol. 9, no. 2, pp. 4095 –4098, Jun. 1999.
  • V. Kaplunenko, “Noise consideration in RSFQ circuits,” Phys. C Supercond., vol. 372– 376, Part 1, pp. 119–123, Aug. 2002.
  • V. Kaplunenko and V. Borzenets, “Time jitter measurement in a circular Josephson transmission line,” Appl. Supercond. IEEE Trans. On, vol. 11, no. 1, pp. 288–291, 2001.
  • O. Wetzstein, M. Mueller, T. Ortlepp, H. Toepfer, W. Fengler, and H.-G. Meyer, “Consideration of jitter effects in high level simulations of RSFQ circuits,” presented at the Superconductivity Centennial Conference 2011, Hague, Netherlands, 2011.
  • A. H. Silver and Q. P. Herr, “A new concept for ultra-low power and ultra-high clock rate circuits,” Appl. Supercond. IEEE Trans. On, vol. 11, no. 1, pp. 333 –336, Mar. 2001.
  • A. Kitayama, M. Tanaka, M. Ito, T. Kouketsu, and A. Fujimaki, “Nano-watt demonstration of rapid-single-flux-quantum circuits at 20 GHz,” presented at the Superconductivity Centennial Conference 2011, Hague, Netherlands, 2011.
  • E. S. Fang and T. Van Duzer, “A Josephson integrated circuit simulator (JSIM) for superconductive electronics application,” Ext Abstr 2nd ISEC Tokyo Jpn., pp. 407–410, 1989.
  • S. Polonsky, P. Shevchenko, A. Kirichenko, D. Zinoviev, and A. Rylyakov, “PSCAN’96: new software for simulation and optimization of complex RSFQ circuits,” IEEE Trans. Appl. Supercond., vol. 7, no. 2, pp. 2685–2689, 1997.
  • V. Adler, C.-H. Cheah, K. Gaj, D. K. Brock, and E. G. Friedman, “A Cadence-based design environment for single flux quantum circuits,” IEEE Trans. Appl. Supercond., vol. 7, no. 2, pp. 3294–3297, 1997.
  • T. Ortlepp and F. H. Uhlmann, “Noise Induced Timing Jitter: A General Restriction for High Speed RSFQ Devices,” IEEE Trans. Appiled Supercond., vol. 15, no. 2, pp. 344– 347, Jun. 2005.
  • M. Terabe, A. Sekiya, T. Yamada, and A. Fujimaki, “Timing Jitter Measurement in Single-Flux-Quantum Circuits Based on Time-to-Digital Converters With High TimeResolution,” IEEE Trans. Appl. Supercond., vol. 17, no. 2, pp. 552–555, Jun. 2007.
  • M. E. Çelik and A. Bozbey, “Analysis of Delay and Jitter of Rapid Single Flux Quantum Wiring Cells,” J. Supercond. Nov. Magn., pp. 1–9. [
  • V. Mladenov, V. Todorov, B. Dimov, Th. Ortlepp, and F. H. Uhlmann, “Statistical Description and Optimization of the Time-Domain Parameters of Asynchronous RSFQ Digital Circuits.pdf,” 2006.
  • C. J. Fourie and M. H. Volkmann, “Status of Superconductor Electronic Circuit Design Software,” IEEE Trans. Appl. Supercond., vol. 23, no. 3, pp. 1300205–1300205, 2013.
  • Y. Tukel, A. Bozbey, and C. A. Tunc, “Development of an Optimization Tool for RSFQ Digital Cell Library Using Particle Swarm,” IEEE Trans. Appl. Supercond., vol. 23, no. 3, p. 1700805, Jun. 2013.
  • V. K. Semenov, Y. A. Polyakov, and W. Chao, “Extraction of impacts of fabrication spread and thermal noise on operation of superconducting digital circuits,” Appl. Supercond. IEEE Trans. On, vol. 9, no. 2, pp. 4030–4033, 1999.
  • T. Ortlepp and F. H. Uhlmann, “Technology related timing jitter in superconducting electronics,” Appl. Supercond. IEEE Trans. On, vol. 17, no. 2, pp. 534–537, 2007.
  • P. M. Kogge and H. S. Stone, “A Parallel Algorithm for the Efficient Solution of a General Class of Recurrence Equations,” IEEE Trans. Comput., vol. C–22, no. 8, pp. 786 –793, Aug. 1973.
  • M. Ozer, Y. Tukel, M. E. Çelik, and A. Bozbey, “Design of RSFQ Asynchronous Pipelined Kogge-Stone Adder and Developing Custom Compound Gates.”
  • “Spartan-3AN FPGA Family Data Sheet (DS557) - ds557.pdf.” [Online]. Available: http://www.xilinx.com/support/documentation/data_sheets/ds557.pdf. [Accessed: 25Mar-2015].
  • “DAC9881 | Precision DAC (=<10MSPS) | Digital to Analog Converter | Description & parametrics.” [Online]. Available: http://www.ti.com/product/dac9881. [Accessed: 25Mar-2015].
  • “AD7660 | datasheet and product info 16-Bit 100 kSPS CMOS Successive Approximation PulSAR® ADC with No Missing Codes | Analog Devices.” [Online]. Available: http://www.analog.com/en/products/analog-to-digital-converters/adconverters/ad7660.html#product-overview. [Accessed: 25-Mar-2015].
  • “PH02S/D Series.pdf.” [Online]. Available: http://www.deltaww.com/filecenter/Products/download/01/0102/datasheet/DS_PH02S &D.pdf. [Accessed: 26-Mar-2015].
  • “Si864x Data Sheet - Si864x.pdf.” [Online]. Available: https://www.silabs.com/Support%20Documents/TechnicalDocs/Si864x.pdf. [Accessed: 27-Mar-2015].
  • “Model CB3-CB3LV Clock Oscillators.pdf.” [Online]. Available: http://www.ctscorp.com/components/Datasheets/008-0256-0.pdf. [Accessed: 26-Mar2015].
  • “FT230X - DS_FT230X.pdf.” [Online]. Available: http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT230X.pdf. [Accessed: 27-Mar-2015].
  • Keithley Instruments, “Model 6220 DC Current Source and Model 6221 AC and DC Current Source Datasheet.” [Online]. Available: http://www.keithley.com/data?asset=15911.
  • S. Linzen, T. L. Robertson, T. Hime, B. L. T. Plourde, P. A. Reichardt, and J. Clarke, “Low-noise computer-controlled current source for quantum coherence experiments,” Rev. Sci. Instrum., vol. 75, no. 8, pp. 2541–2544, Aug. 2004.
  • “AN-104 Noise Specs Confusing (Rev. C) - snva515c.pdf.” [Online]. Available: http://www.ti.com/lit/an/snva515c/snva515c.pdf. [Accessed: 21-Mar-2015].
  • “Noise Analysis In Operational Amplifier Circuits (Rev. B - slva043b.pdf.” [Online]. Available: http://www.ti.com/lit/an/slva043b/slva043b.pdf. [Accessed: 23-Mar-2015].
  • “AN1560: Making Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to 0.1Hz - an1560.pdf.” [Online]. Available: http://www.intersil.com/content/dam/Intersil/documents/an15/an1560.pdf. [Accessed: 23-Mar-2015].
  • A. Beaumont-Smith and C.-C. Lim, “Parallel prefix adder design,” in 15th IEEE Symposium on Computer Arithmetic, 2001. Proceedings, 2001, pp. 218–225.
  • Y. Tukel, A. Bozbey, and C. A. Tunc, “Development of an Optimization Tool for RSFQ Digital Cell Library Using Particle Swarm,” IEEE Trans. Appl. Supercond., vol. 23, no. 3, p. 1700805, Jun. 2013.
  • C. J. Fourie and W. J. Perold, “Simulated inductance variations in RSFQ circuit structures,” IEEE Trans. Appl. Supercond., vol. 15, no. 2, pp. 300–303, Jun. 2005.
  • Valery Todorov, Anton Andonov, and Valeri Mladenov, “Long-Distance On-Chip SFQ Pulse Transmission via Passive Transmission Lines,” Adv. Asp. Theor. Electr. Eng. Sozopol, no. 7, pp. 139–145, 2009.
  • S. Yorozu, Y. Kameda, H. Terai, A. Fujimaki, T. Yamada, and S. Tahara, “A single flux quantum standard logic cell library,” Phys. C Supercond., vol. 378–381, Part 2, pp. 1471–1474, Oct. 2002.
  • M. Dorojevets, C. L. Ayala, N. Yoshikawa, and A. Fujimaki, “16-Bit Wave-Pipelined Sparse-Tree RSFQ Adder,” IEEE Trans. Appl. Supercond., vol. 23, no. 3, pp. 1700605– 1700605, 2013.
  • T. V. Filippov, A. Sahu, A. F. Kirichenko, I. V. Vernik, M. Dorojevets, C. L. Ayala, and O. A. Mukhanov, “20 GHz Operation of an Asynchronous Wave-Pipelined RSFQ Arithmetic-Logic Unit,” Phys. Procedia, vol. 36, pp. 59–65, 2012.
  • M. Dorojevets, C. L. Ayala, N. Yoshikawa, and A. Fujimaki, “8-Bit Asynchronous Sparse-Tree Superconductor RSFQ Arithmetic-Logic Unit With a Rich Set of Operations,” IEEE Trans. Appl. Supercond., vol. 23, no. 3, pp. 1700104–1700104, 2013.
  • T. Filippov, M. Dorojevets, A. Sahu, A. Kirichenko, C. Ayala, and O. Mukhanov, “8Bit Asynchronous Wave-Pipelined RSFQ Arithmetic-Logic Unit,” IEEE Trans. Appl. Supercond., vol. 21, no. 3, pp. 847 –851, Jun. 2011.
  • M. Dorojevets, P. Bunyk, and D. Zinoviev, “FLUX chip: design of a 20-GHz 16-bit ultrapipelined RSFQ processor prototype based on 1.75- mu;m LTS technology,” IEEE Trans. Appl. Supercond., vol. 11, no. 1, pp. 326 –332, Mar. 2001.
  • P. Bunyk, M. Leung, J. Spargo, and M. Dorojevets, “Flux-1 RSFQ microprocessor: physical design and test results,” Appl. Supercond. IEEE Trans. On, vol. 13, no. 2, pp. 433 – 436, Jun. 2003.
  • H. Matsutani, M. Koibuchi, and H. Amano, “Performance, Cost, and Energy Evaluation of Fat H-Tree: A Cost-Efficient Tree-Based On-Chip Network,” in Parallel and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE International, 2007, pp. 1–10.
  • M. E. Celik and A. Bozbey, “Statistical timing analysis tool for SFQ cells (STATS),” in Superconductive Electronics Conference (ISEC), 2013 IEEE 14th International, 2013, pp. 1–3.
APA BOZBEY A, ASKERBEYLİ İ, ERGİN O, TUNÇ C, ÇELİK M, özer m, ÜŞENMEZ K, TÜKEL Y (2015). RSFQ Tabanlı Entegre Devre tasarım aracı ve Aritmetik Mantık Birimi Geliştirilmesi. , 1 - 161.
Chicago BOZBEY Ali,ASKERBEYLİ İman,ERGİN Oğuz,TUNÇ Celal Alp,ÇELİK M. Eren,özer murat,ÜŞENMEZ Kübra,TÜKEL Yiğit RSFQ Tabanlı Entegre Devre tasarım aracı ve Aritmetik Mantık Birimi Geliştirilmesi. (2015): 1 - 161.
MLA BOZBEY Ali,ASKERBEYLİ İman,ERGİN Oğuz,TUNÇ Celal Alp,ÇELİK M. Eren,özer murat,ÜŞENMEZ Kübra,TÜKEL Yiğit RSFQ Tabanlı Entegre Devre tasarım aracı ve Aritmetik Mantık Birimi Geliştirilmesi. , 2015, ss.1 - 161.
AMA BOZBEY A,ASKERBEYLİ İ,ERGİN O,TUNÇ C,ÇELİK M,özer m,ÜŞENMEZ K,TÜKEL Y RSFQ Tabanlı Entegre Devre tasarım aracı ve Aritmetik Mantık Birimi Geliştirilmesi. . 2015; 1 - 161.
Vancouver BOZBEY A,ASKERBEYLİ İ,ERGİN O,TUNÇ C,ÇELİK M,özer m,ÜŞENMEZ K,TÜKEL Y RSFQ Tabanlı Entegre Devre tasarım aracı ve Aritmetik Mantık Birimi Geliştirilmesi. . 2015; 1 - 161.
IEEE BOZBEY A,ASKERBEYLİ İ,ERGİN O,TUNÇ C,ÇELİK M,özer m,ÜŞENMEZ K,TÜKEL Y "RSFQ Tabanlı Entegre Devre tasarım aracı ve Aritmetik Mantık Birimi Geliştirilmesi." , ss.1 - 161, 2015.
ISNAD BOZBEY, Ali vd. "RSFQ Tabanlı Entegre Devre tasarım aracı ve Aritmetik Mantık Birimi Geliştirilmesi". (2015), 1-161.
APA BOZBEY A, ASKERBEYLİ İ, ERGİN O, TUNÇ C, ÇELİK M, özer m, ÜŞENMEZ K, TÜKEL Y (2015). RSFQ Tabanlı Entegre Devre tasarım aracı ve Aritmetik Mantık Birimi Geliştirilmesi. , 1 - 161.
Chicago BOZBEY Ali,ASKERBEYLİ İman,ERGİN Oğuz,TUNÇ Celal Alp,ÇELİK M. Eren,özer murat,ÜŞENMEZ Kübra,TÜKEL Yiğit RSFQ Tabanlı Entegre Devre tasarım aracı ve Aritmetik Mantık Birimi Geliştirilmesi. (2015): 1 - 161.
MLA BOZBEY Ali,ASKERBEYLİ İman,ERGİN Oğuz,TUNÇ Celal Alp,ÇELİK M. Eren,özer murat,ÜŞENMEZ Kübra,TÜKEL Yiğit RSFQ Tabanlı Entegre Devre tasarım aracı ve Aritmetik Mantık Birimi Geliştirilmesi. , 2015, ss.1 - 161.
AMA BOZBEY A,ASKERBEYLİ İ,ERGİN O,TUNÇ C,ÇELİK M,özer m,ÜŞENMEZ K,TÜKEL Y RSFQ Tabanlı Entegre Devre tasarım aracı ve Aritmetik Mantık Birimi Geliştirilmesi. . 2015; 1 - 161.
Vancouver BOZBEY A,ASKERBEYLİ İ,ERGİN O,TUNÇ C,ÇELİK M,özer m,ÜŞENMEZ K,TÜKEL Y RSFQ Tabanlı Entegre Devre tasarım aracı ve Aritmetik Mantık Birimi Geliştirilmesi. . 2015; 1 - 161.
IEEE BOZBEY A,ASKERBEYLİ İ,ERGİN O,TUNÇ C,ÇELİK M,özer m,ÜŞENMEZ K,TÜKEL Y "RSFQ Tabanlı Entegre Devre tasarım aracı ve Aritmetik Mantık Birimi Geliştirilmesi." , ss.1 - 161, 2015.
ISNAD BOZBEY, Ali vd. "RSFQ Tabanlı Entegre Devre tasarım aracı ve Aritmetik Mantık Birimi Geliştirilmesi". (2015), 1-161.