13 6

Proje Grubu: EEEAG Sayfa Sayısı: 155 Proje No: 113E307 Proje Bitiş Tarihi: 01.11.2016 Metin Dili: Türkçe İndeks Tarihi: 17-04-2019

MIMO-OFDM Tabanlı Görünür Işıkla Haberleşme

Öz:
Optik Kablosuz Haberleşme (Optical Wireless Communications (OWC)) sistemleri ve bunun olası bir uygulaması olan Görünür Işıkla Haberleşme (Visible Light Comunications (VLC)), uygulamalarda çok önemli teknik ve operasyonel üstünlükler sağlamaktadır. Sahip olduğu çok yüksek frekans band genişliği, bilgi iletim kapasitesi, elektromanyetik girişimlere karşı yüksek bağışıklığı, uzamsal ortamlarda yüksek oranda güvenli kapanma özelliği ve kapsadığı frekans spektrumunun belli regülasyonlarla düzenlenmemiş olması nedeniyle, gerek OWC ve gerekse VLC sistemleri, çok geniş bir uygulama alanı içinde, radyo tabanlı kablosuz haberleşme sistemlerine bir seçenek olarak veya onların tamamlayıcı niteliğinde karşımıza çıkmaktadır. Ancak, büyük bir potansiyele sahip optik spektrumdan etkin bir biçimde yararlanılabilmesi için yoğun araştırma ve geliştirme çalışmalarına gerek vardır. Bu TÜBİTAKCOST projesi, Optical Wireless Communications -An Emergency Technology adlı COST (4159/10) projesinin bir parçasıdır. COST (4159/10), OWC konusunda disiplinler arası araştırma aktivitelerini yürütmekle görevli bir Avrupa Topluluğu bilimsel platformudur. Kapalı ortamlarda saçılmış veya görüş çizgisi yönünde iletim linki oluşturan kızıl ötesi ve görünür ışık haberleşmesi, son yıllarda yeni bir kablosuz haberleşme teknolojisi olarak karşımıza çıkmaktadır. VLC ürünlerinin pazara çıkmasıyla bunların geleceğinin çok ümit verici olduğu anlaşılmaktadır. VLC ile ilgili standartlaşma IEEE 802.15.7 çalışma grubu tarafından yürütülmüştür ve IEEE standartına uygun ilk VLC ürününün pazara sunulması yakın gelecekte beklenmektedir. Bu ürünün potansiyel uygulama alanları şu şekildedir: (a) kablosuz yerel ağlar (WLAN), (b) hava meydanları, tren istasyonları ve diğer halka açık kritik noktalar (c) uçaklar ve hızlı trenler (d) hastahaneler, müzeler ve sanat galerileri, (e) araç içinde ve araç ile altyapısı oluşturulmuş haberleşme ağları. Araştırma sonuçlarına göre optik kablosuz haberleşme teknolojisinin kullanıldığı diğer alanlarda da VLC yararlı olacaktır. Son on yıl içinde, kablosuz haberleşmenin fiziksel katmanı düzeyinde yürütülen araştırmalar sonucunda çok heyecan verici gelişmelere tanık olunmuştur. Bu gelişmelerden bazılarına çok-girişli-çokçıkışlı (MIMO) haberleşme, dik frekans bölmeli çoğullama (OFDM), uzaysal modülasyon (SM) ve İndis Modülasyonlu OFDM (OFDM-IM) teknikleri ve düşük hesaplama karmaşıklığına sahip kanal kestirim, kanal denkleştirme ve veri sezim algoritmaları sayılabilir. Bu özgün yaklaşımlardan bazıları günümüzde uluslararası kablosuz haberleşme standartlarları içinde yerini almış ve ticari ürün olarak kablosuz RF pazarına sunulmuştur. Bu projenin temel amacı, MIMO, OFDM ve SM gibi fiziksel katman yöntem ve tekniklerini kullanarak, yüksek hızda veri iletimini sağlayan güvenilir, dış etmenlerden etkilenmeyen ve optimal yapıda bir görünür ışıkla haberleşme sistem tasarımını gerçekleştirmektir. Bu kapsamda şu temel araştırma konuları üzerinde yoğunlaşılacaktır:  Kablosuz RF haberleşmesinde başarı ile kullanılan MIMO-OFDM, MIMO-SM ve OFDM-IM tekniklerini uygulayarak yeni ve özgün VLC sistemleri teklif edilecek ve geliştirilecektir. Bu tekniklerin VLC sistemlerine uygulanmasında, özellikle RF ve VLC haberleşme sistemlerinde karşılaşılan sinyal formatlarındaki farklı yapılardan dolayı, çok ilginç ve zorlu araştırma problemleriyle karşılaşılmaktadır;  Kızılötesi/görünür-ışık kanalların, fiziksel özelliklerinin de yansıtıldığı, gerçek optik kanal modellerinin matematiksel yöntemlerle geliştirilmesi;  İleri sinyal işleme tekniklerinden yararlanarak, görüş çizgisi yönünde propagasyon yapmayan (NLOS) VLC sistemleri için, çok yollu kanalın neden olduğu simgelerarası girişimlerin etkisini azaltmak için, yeni ve özgün kanal kestirim ve kanal denkleştirme algoritmalarının geliştirilmesi;  Geliştirilen kanal kestirim algoritmalarının doğruluğunun VLC başarımına etkilerinin bilgi kuramı yardımı ile belirlenmesi; Bu, kanalda oluşan çeşitli kanal gürültü modelleri (Gauss, Poisson, shot gürültüsü vs. gibi) ve alıcıda farklı kanal durum bilgileri varsayımları altında sistem hata başarımının analitik olarak belirlenmesi süreçlerini içermektedir;Tasarlanacak sistemlerin başarımları çeşitli gürültü ve kanal modellerini içeren gerçekçi haberleşme senaryoları için ayrıntılı bilgisayar benzetimleri ile belirlenecektir. Bu benzetim çalışmalarında, alıcı duyarlığı, alıcı/vericilerin doğrusal-olmayan (non-linear) rejimlerde çalışması, anten yayılım hüzmelerindeki sapmalar, ortam koşulları gibi uygulamalada karşılaşılan türlü sorunların haberleşme sistemin başarımına olası etkileri dikkatle incelenecektir
Anahtar Kelime: kanal denkleştirme kanal kestirimi uzamsal modülasyon görünür ışıkla haberleşme OFDM MIMO

Konular: Mühendislik, Elektrik ve Elektronik
Erişim Türü: Erişime Açık
  • Tanaka Y., Haruyama S., Nakagawa M., Wireless Optical Transmissions With White Colored LED For Wireless Home Links,” IEEE Int. Sym. on Personal, Indoor and Mobile Radio Comm. (PIMRC), London-UK, (2000), pp. 1325-29.
  • Tanaka Y., Komine T., Haruyama S., Nakagawa M, Indoor Visible Communication Utilizing Plural White Leds As Lighting, IEEE Int. Sym. on Personal, Indoor and Mobile Radio Communications (PIMRC), San Diego, California, USA, (2001), pp. F-81-F-85 .
  • Vučić J., Kottke C., Nerreter S., Langer K., Walewski J., 513 Mbit/S Visible Light Communications Link Based On DMT-Modulation Of A White LED, IEEE/OSA J. of Lightwave Tech., 28, 24, 3512–18, (2010). Barry J., Kahn J., Krause W., Lee E., Messerschmitt D., Simulation Of Multipath Impulse Response For Indoor Wireless Optical Channels, IEEE J. Sel. Areas Commun., 11, 3, 367–79, (1993).
  • Carruthers J., Kahn J., Modeling Of Nondirected Wireless Infrared Channels, IEEE Trans. Commun., 45, 10, 1260–68, (1997).
  • Jungnickel V., Pohl V., Nonnig S., And Helmolt C., A Physical Model Of The Wireless Infrared Communication Channel, IEEE J. Sel. Areas Commun., 20, 3, 631–40, (2002).
  • Cui K., Chen G., He Q., Xu Z., Indoor Optical Wireless Communication By Ultraviolet And Visible Light, Proceedings of SPIE, 7464, 74640D, (2009).
  • Lee K., Park H., And Barry J., Indoor Channel Characteristics For Visible Light Communications, IEEE Commun. Lett., 15, 2, 217–19, (2011).
  • Elgala H., Mesleh R., Haas H., An LED Model For Intensity-Modulated Optical Communication Systems, IEEE Photonics Tech. Lett., 22, 11, 835–37, (2010).
  • Komine T., Lee J., Haruyama S., Nakagawa M., Adaptive Equalization System For Visible Light Wireless Communication Utilizing Multiple White LED Lighting Equipment, IEEE Trans. Wireless Commun., 8, 6, 2892–2900, (2009). Le Minh H., O’brien D., Faulkner G., Zeng L., Lee K., Jung D., Oh Y., Won E., 100-Mb/s NRZ visible light communications using a postequalized white LED, IEEE Photonics Tech. Lett., 21, 15, 1063–65, (2009).
  • Le Minh H., O’brien D., Faulkner G., Zeng L., Lee K., Jung D., Oh Y., High-Speed Visible Light Communications Using Multiple-Resonant Equalization, IEEE Photonics Tech. Lett., 20, 14, 1243–45, (2000).
  • Molisch A., Wireless Communications. John Wiley & Sons, (2011).
  • Dissanayake S. D., Armstrong J., Comparison of ACO-OFDM, DCO-OFDM and ADOOFDM in IM/DD Systems, J. Lightwave Tech., 31, 7, 1063-72, (2013).
  • Elgala H., Mesleh R., Haas H., Pricope B., OFDM Visible Light Wireless Communication Based On White LEDs, IEEE Veh. Tech. Conf. (VTC2007-Spring), Dublin-Ireland, (2007).
  • Hashemi S., Ghassemlooy Z., Chao L., Benhaddou D., Orthogonal Frequency Division Multiplexing For Indoor Optical Wireless Communications Using Visible Light Leds, 6th Int. Sym. on Commun. Systems, Networks and Digital Signal Proc. (CNSDSP), Graz, Austria, (2008), pp. 174-178.
  • Elgala H., Mesleh R., Haas H., Indoor Broadcasting via White Leds and OFDM,” IEEE Trans. Consumer Electronics, 55, 3, 1127–34, (2009).
  • Mesleh R., Elgala H., Haas H.,, On The Performance Of Different OFDM Based Optical Wireless Communication Systems, IEEE/OSA J. of Optical Commun. and Netw., 3, 8, 620–28, (2011).
  • Zeng L., O’brien D., Minh H., Faulkner G., Lee K., Jung D., Oh Y., Won E., High Data Rate Multiple Input Multiple Output (MIMO) Optical Wireless Communications Using White LED Lighting, IEEE J. Sel. Areas Commun., 27, 9, 1654–62, (2009).
  • Dambul K., O’brien D., Faulkner G., Indoor Optical Wireless MIMO System With An imaging Receiver, IEEE Photonics Tech. Lett., 23, 2, 97–99, (2011).
  • Mesleh R., Mehmood R., Elgala H., Haas H., Indoor MIMO Optical Wireless Communication Using Spatial Modulation, IEEE Int. Conf. Commun.(ICC), Cape TownSouth Africa, (2010).
  • Park K., Ko Y., Alouini M., On the power and offset allocation for rate adaptation of spatial multiplexing in optical wireless MIMO channels, Int.Wireless Commun. and Mobile Computing Conf. (IWCMC), Istanbul-Turkey, (2011), pp. 141–146.
  • Mesleh R., Haas H., Sinanovic S., Ahn C., Yun S., Spatial Modulation, IEEE Tran. on Veh.Tech., 57, 4, pp. 2228–41, (2008).
  • Ghassemlooy, Z., OLED-Based Visible Light Communications, 2012 IEEE Photonics Society Summer Topical Meeting Series, Seattle, WA-USA, (2012).
  • Azhar, A. H., Tran, T., O’brien, D., A Gigabit/s Indoor Wireless Transmission Using MIMOOFDM Visible-Light Communications, IEEE Photonics Tech.Lett., 25, 2, 171-74, (2013).
  • Garfield M., Chao L., Kurzweg T., Dandekar K., MIMO Space-Time Coding For Diffuse Optical Communication, Microwave and Optical Technology Lett., 48,1108-10, (2006).
  • Wilson S. G., Brandt-Pearce M., Cao Q., Baedke M., Optical Repetition MIMO Transmission With Multipulse PPM, IEEE Journal on Sel. Areas Commun., 23, 9, 1901– 10, (2005).
  • Navidpour S. M., Uysal M., Kavehrad M., BER Performance of Free-Space Optical Transmission With Spatial Diversity, IEEE Trans.Wireless Commun., 6, 8, 2813–19, (2007).
  • Jeganathan J., Ghrayeb S., Zczecinski L., Ceron A., Space-Shift Keying Modulation For MIMO Channels, IEEE Trans. Wireless Commun., 8, 7, 3692-3703, (2009).
  • Mesleh R., Elgala H., Haas H., Optical Spatial Modulation, J. Opt. Commun. Netw., 3, 3, 234-44 (2011).
  • Başar E., Aygölü Ü., Panayirci E., Poor H. V., Space-Time Block Coded Spatial Modulation, IEEE Trans. Commun., 59, 3, 823-32, (2011).
  • Başar E., Aygölü Ü., Panayirci E., Poor H. V., New Trellis Code Design For Spatial Modulation, IEEE Trans. Wireless Commun., 10, 8, 2670-80, (2011).
  • Başar E., Aygölü Ü., Panayirci E., Poor H. V., Performance Of Spatial Modulation In The Presence of Channel Estimation Errors”, IEEE Commun. Letters, 16, 2, 176-79, (2012).
  • Başar E., Aygölü Ü., Panayirci E., Poor H. V., Super-Orthogonal Trellis Coded Spatial Modulation, IET Commun., 6, 17, 2922-32, (2012).
  • Renzo M. D., Haas H., Grant P., Spatial Modulation For Multiple-Antenna Wireless Systems: A Survey, IEEE Commun. Mag., 49, 12, 182–91, (2011).
  • Wang J., Jia S., Song J., Generalised Spatial Modulation System with Multiple Active Transmit Antennas and Low Complexity Detection Scheme, IEEE Trans. Wireless Commun., 11, 4, 1605–15, (2012).
  • Sugiura S., Chen S., Hanzo L., Coherent and Differential Space-Time Shift Keying: A Dispersion Matrix Approach, IEEE Trans. Commun., 58, 11, 3219 –30, (2010).
  • Amstrong J., Ofdm for Optical Communications, J. of Lıghtwave Tech., 27, 3, 189-204, (2009).
  • Başar E., Aygölü Ü., Panayirci E., Poor, H. V., Orthogonal Frequency Division Multiplexing with Index Modulation, IEEE Global Telecommun. Conf., Anaheim, CA-US, (2012).
  • Grubor, J. Randel, S, Langer, K. D., and WALEWSKI J. W., "Broadband information broadcasting using LED-based interior lighting," Journal of Lightwave Technology, vol. 26, no, 24, pp. 3883-3892 2008.
  • Doğan H., Panayirci E., Poor H. V., Low Complexity Joint Data Detection and Channel Equalization for Highly Mobile OFDM Systems, IET Commun., 4, 8, 1000-11, (2010).
  • Panayirci E., Şenol H., Poor H. V., Joint Channel Estimation, Equalization and Data Detection for OFDM Systems In The Presence Of Very High Mobility, IEEE Trans. Signal Processing, 58, 8,1-14, (2010).
  • Panayirci E., Doğan H., Çirpan H., Iterative Joint Data Detection and Channel Estimation for DS-CDMA Systems in the Presence of Time-Varying Channels, Advances in Elect. and Telecommun.,1, 1, pp.1-8, (2010).
  • Kocian A., Panayirci E., Poor H. V., A Monte-Carlo Implementation of the SAGE Algorithm for Joint-Multiuser Decoding, Channel Parameter Estimation and Code Acquisition, IEEE Trans. Signal Process., 58, 11, 1-11, (2010).
  • Panayirci E., Doğan H., Poor H. V., Low Complexity MAP-Based Successive Data Detection for OFDM over Highly Mobile Wireless Channels, IEEE Trans. Vehicular Tech., 60, 6, 2849-58, (2011).
  • Şenol H., Panayirci E., Poor H. V., Non-Data-Aided Joint Channel Estimation and Equalization for OFDM Systems in Very Rapidly Varying Mobile Channels, IEEE Trans. Signal Process., 60, 8, 4236-53, (2012).
  • Dong Z., Fan P., Panayirci, E., Mathiopulos, P. T., Effect of Power and Rate Adaptation on the Spectral Efficiency of MQAM/OFDM System Under Very Fast Fading Channels, EURASIP Journal on Wireless Commun. and Netw. Commun., Article ID 570625, (2012).
  • Panayirci E., Şenol H., Poor, H. V., Low Complexity Joint Data Detection and Channel Equalization for Highly Mobile OFDM Systems, IEEE ICC 2010, Honolulu, Hawaii-USA, (2009).
  • Şenol H., Panayirci E., Poor H. V., Semiblind Joint Channel Estimation and Equalization for OFDM Systems in Rapidly Varying Channels, IEEE GLOBECOM 2010, Miami, FloridaUSA, (2010).
  • Şenol H., Panayirci E., Poor H. V., Non-Data-Aided Channel Estimation for OFDM Systems in Rapidly Varying Frequency Selective Channels, ICT Mobile Summit, Future Network & Mobile Summit 2010, Florence, Italy, (2010).
  • Dong Z., Fan P. Zhou W., Panayirci E., Power and Rate Adaptation for MQAM/OFDM Systems Under Fast Fading Channels, IEEE 75th Vehicular Technology Conference: VTC2012-Spring, Yokohama, Japan, (2012).
  • Şenol H., Panayirci E. , Erdoğan M., Uysal M., Channel estimation in underwater cooperative OFDM systems, IEEE GLOBECOM 2012, Anaheim, CA-USA, (2012).
  • Zemax software, http://www.radiantzemax.com/zemax.
  • Kahn, J. M., Barry, J. R., “Wireless infrared communications”, Proceedings of IEEE, 85, 2, 265- 298, (1998).
  • Gfeller, F. R. and Bapst, U. H., “Wireless In-House Data Communication via Diffuse Infrared Radiation,” Proc. IEEE, vol. 67, no. 11, pp. 1474–1486, Nov. (1979). Barry, J. R., [Wireless Infrared Communications], Kluwer Academic, (1994). Kahn, J. M., Krause, W. J. and Carruthers, J. B., “Experimental Characterization of Non directed Indoor Infrared Channels,” IEEE Trans. Commun., vol. 43, no. 234, pp. 1613– 1623, Apr. (1995). Chun, H., Chiang, C. and O’Brien, D., “Visible Light Communication Using OLEDs: Illumination and Channel Modeling,” in Int. Workshop Opt. Wireless Commun., pp. 1–3, Oct. (2012). Nguyen, H. Q. et al., “A MATLAB-Based Simulation Program for Indoor Visible Light Communication System,” CSNDSP 2010, pp. 537-540, July (2010). Komine, T. and Nakagawa, M., “Performance Evaluation on Visible-light Wireless Communication System Using White LED Lightings,” in Proc. Ninth IEEE Symposium on Computers and Communications, vol. 1, pp. 258-263, (2004). Zemax 13 Release 2, Radiant Zemax LLC,” www.radiantzemax.com/zemax . [2-8] ASTER Spectral Library - Version 2.0,” [Online]. Available at: http://speclib.jpl.nasa.gov. Lee, K., Park, H. and Barry, J. R., “Indoor Channel Characteristics for Visible Light Communications,” IEEE Commun. Lett., vol. 15, no. 2, Feb (2011). “CREE LEDs,” [Online]. Available at: http://www.cree.com. “OSRAM LEDs,” [Online]. Available at: http://www.osram-os.com. Sarbazi, E., Uysal, M., Abdallah, M. and Qaraqe, K., “Ray Tracing Based Channel Modeling for Visible Light Communications,” IEEE 22nd Signal Processing, Communication and Applications Conference (SIU), Trabzon, Turkey, April 2014. Sarbazi, E. and Uysal, M., Abdallah, M. and Qaraqe, K., “Indoor Channel Modeling and Characterization for Visible Light Communications,” Invited Paper, 16th International Conference on Transparent Optical Networks (ICTON), Graz, Austria, July 2014. T. Fath and H. Haas, “Performance Comparison of MIMO Techniques for Optical Wireless Communications in Indoor Environments,” Communications, IEEE Transactions on, vol.61, no.2, pp.733, 742, February 2013.
  • T. Ngoc-Anh, D. A. Luong, T. C. Thang and A. T. Pham, “Performance analysis of indoor MIMO visible light communication systems,” IEEE Fifth International Conference on Communications and Electronics (ICCE), vol., no., pp.60, 64, July 30 2014-Aug. 1, 2014. L. Wu, Z. Zhang and H. Liu, “MIMO-OFDM visible light communications system with low complexity,” IEEE International Conference on Communications (ICC), vol., no., pp.3933, 3937, 9-13 June 2013. F. Miramirkhani, M. Uysal, and E. Panayirci, “Novel channel models for visible light communications,” SPIE Photonics West, Broadband Access Communication Technologies IX, February 7-12, 2015. J. Ding, K. Wang and Z. Xu, “Impact of different LED-spacing in arrayed LED transmitter on VLC channel modeling,” Sixth International Conference on Wireless Communications and Signal Processing (WCSP), vol., no., pp.1, 6, 23-25 Oct. 2014.
  • Ding, K. Wang and Z. Xu, “Impact of LED array simplification on indoor visible light communication channel modeling,” 9th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), vol., no., pp.1159, 1164, 2325 July 2014. G. Ren, S. He and Y, Yang, “An Improved Recursive Channel Model for Indoor Visible Light Communication Systems,” Information Technology Journal, 1245-1250, 2013. R. C. Kizilirmak, and M. Uysal, “Single Color Networks: OFDM-Based Visible Light Broadcasting,” International Conference on Computer, Communication, and Control Technology (I4CT), Kuching, Malaysia, April 2015. H. Chun, C. Chiang, and D. O’Brien, “Visible light communication using OLEDs: illumination and channel modeling,” in Proc. Int. Workshop Opt. Wireless Commun., pp. 1–3, Oct. 2012. H. Q. Nguyen, et al., “A MATLAB-Based simulation program for indoor visible light communication system,” in Proc. CSNDSP, pp. 537-540, July 2010. T. Komine, and M. Nakagawa, “Performance evaluation on visible-light wireless communication system using white LED lightings,” in Proc. 9th IEEE Symp. Comput. Commun., vol. 1, pp. 258-263, 2004. S. Long, M. A. Khalighi, M. Wolf, S. Bourennane, Z. Ghassemlooy, “Channel characterization for indoor visible light communications,” in Proc. Opt. Wireless Commun. (IWOW), pp.75-79, Sept. 2014. K. Lee, H. Park, and J. R. Barry, “Indoor channel characteristics for visible light communications,” IEEE Commun. Lett., vol. 15, no. 2, Feb 2011. F. Miramirkhani, M. Uysal, and E. Panayirci, “Novel channel models for visible light communications,” SPIE Photonics West, Broadband Access Communication Technologies IX, February 7-12, 2015. T. Komine and M. Nakagawa, “A study of shadowing on indoor visible-light wireless communication utilizing plural white LED lightings,” in 1st Int. Symp. Wireless Commun. Systems, pp.36-40, 2004. T. Komine, S. Haruyama and M. Nakagawa, “A study of shadowing on indoor visible-light wireless communication utilizing plural white LED lightings,” Wireless Personal Communications, 34(1-2), 211-225, 2005. Y. Xiang, M. Zhang, M. Kavehrad, et al, “Human shadowing effect on indoor visible light communications channel characteristics,” Opt. Eng., 53(8), 086113-086113, 2014. P. Chvojka, S. Zvanovec, P. A. Haigh, Z. Ghassemlooy, “Channel characteristics of visible light communications within dynamic indoor environment,” J. Lightwave Technol., vol. 33, no.9, pp. 1719-1725, May, 2015. “Lighting of indoor work places”, International Standard. ISO 8995:2002 CIE S 008/E2001. Q. Zhou and H. Dai, “Joint Antenna Selection and Link Adaptation for MIMO Systems,” IEEE Transactions on Vehicular Technology, Vol. 55, No. 1, January, 2006. N. P. Le, F. Safaei and L. C. Tran, “Antenna Selection Strategies for MIMO-OFDM Wireless Systems: An Energy Efficiency Perspective,” IEEE Transactions on Vehicular Technology, Vol. 65, No. 4, April, 2016. D. Tsonev, S. Videv and H. Haas, “Unlocking Spectral Efficiency in Intensity Modulation and Direct Detection Systems,” IEEE Journal on Selected Areas in Communications, Vol. 33, No. 9, September, 2015. K. Cho and D. Yoon, “On the general BER expression of one and two dimensional amplitude modulations,” IEEE Transactions on Communications, vol. 50, no. 7, pp. 1074– 1080, Jul. 2002.
  • J. Amstrong, “OFDM for Optical Communications”, J. Lightwave Tech., cilt 27, sayı 3, s 189-204, 2009.
  • S. D. Dissanayake, J. Amstrong, “Comparison of ACO-OFDM, DCO-OFDM and ADOOFDM in IM/DD Systems”, J. Lightwave Tech., cilt 31, sayı 7, s. 1063-1072, 2013.
  • J .M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE, cilt. 85, sayı 2, s. 265–298, 1997.
  • J. Armstrong, A. J. Lowery, “Power efficient optical OFDM,” Electron. Lett., cilt 42, sayı 6, s. 370–372, 2006.
  • D. Tsonev, S. Sinanovic, H. Haas, “Novel unipolar orthogonal frequency division multiplexing (U-OFDM) for optical wireless”, IEEE Vech. Tech. Conf. (VTC Spring), Yokohama, Japonya, 2012.
  • N. Fernando, Y. Hong, E. Viterbo, “Flip-OFDM for Unipolar Communication Systems”, IEEE Trans. Commun., cilt 60, sayı 12, s. 3726-3733, 2012.
  • D. Tsonev, H. Haas, “Avoiding spectral efficiency loss in unipolar OFDM for optical wireless communication”, IEEE Conf. Commun, Sidney, Avustralya, 2014.
  • E. Başar, Ü. Aygölü, E. Panayırcı, H. V. Poor, “Orthogonal frequency division multiplexing with index modulation”, IEEE Trans. Signal Process, cilt 61, sayı 22, s. 5536-5549, 2013.
  • P. Tang, N. C. Beaulieu, “A comparison of dct-based ofdm and DFT-based OFDM in frequency offset and fading channels”, IEEE Trans. Commun, cilt 54, sayı 11, s. 21132125, 2006.
  • C. Yang, F. Yang, Z. Wang, “Phase noise estimation and mitigation for DCT-based coherent optical OFDM systems”, Optics Express, cilt 17, sayı 19, 2009.
  • M. Sung, J. Lee, J. Jeong, “DCT-precoding technique in optical fast OFDM for mitigating fiber nonlinearity”, IEEE Photonics Tech. Lett., cilt 25, sayı 22, s. 2209-2212, 2013.
  • W. H. Chen, C. H. Smith, S. C. Fralick, “A fast computational algorithm for the discrete cosine transform”, IEEE Trans. Commun., cilt 25, sayı 9, s. 1004-1009, 1977.
  • W. Zang, X-G. Xia ve K. B. Letaief, “Space-Time Frequency Coding for MIMO-OFDM in Next Generation Broadband Wireless Systems”, IEEE Wireless Commun., cilt 14, sayı 3, s. 32-43, 2007.
  • H. Bölcskei, “MIMO-OFDM Wireless Systems: Basics, Perspectives, and Challenges”, IEEE Wireless Commun., cilt 13, sayı 4, s. 31-47, 2006.
  • C.-X. Wang et al., “Cellular Architecture and Key Technologies for 5G Wireless Communication Networks”, IEEE Commun. Mag., cilt 52, sayı 2, s. 122-130, 2014.
  • R. Mesleh, H. Elgala ve H. Haas, “Optical Spatial Modulation”, J. Opt. Commun. Netw., cilt 3, sayı 3 s. 234-244, 2011. [3-17] H. Burchardt, N. Serafimovski, D. Tsonev, S. Videv ve Harald Haas, “VLC: Beyond Point-
  • R. Mesleh, H. Haas ve S. Sinanovic, “Spatial Modulation”, IEEE Trans Vech. Tech., cilt 57, sayı 4, s. 2228- 2241, 2008. Abtahi, M. and Hashemi, H., “Simulation of indoor propagation channel at infrared frequencies in furnished office environments,” in IEEE Int. Symp. Personal Indoor and Mobile Radio Commun (PIMRC), pp. 306–310, (1995). T. Fath and H. Haas, “Performance comparison of MIMO techniques for optical wireless communications in indoor environments,” IEEE Trans. Commun., cilt 61, sayı 2, s. 733– 742, 2013. R. Mesleh, H. Elgala ve H. Haas, “Optical Spatial Modulation”, J. Opt. Commun. Netw., cilt 3, sayı 3 s. 234- 244, 2011. Y. Li, D. Tsonev, and H. Haas, “Non-DC-biased OFDM with optical spatial modulation,” in IEEE Int. Symp. Personal Indoor and Mobile Radio Commun. (PIMRC), Sep. 2013, pp. 486–490. J. Kahn and J. Barry, “Wireless infrared communications,” Proc. IEEE, cilt 85, sayı 2, s. 265–298, 1997. S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004. L. Zeng, D. O'Brien, H. Minh, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. Select. Areas Commun., cilt 27, sayı 9, s. 1654-1662, 2009. J. D. McCaffrey, “Generating the mth lexicographical element of a mathematical combination,” MSDN Library, Jul. 2004. [Online].Available: http://msdn.microsoft.com/en-us/library/aa289166(VS.71).aspx
  • D. Tsonev, S. Videv, H. Haas, “Unlocking Spectral Efficiency in Intensity Modulation and Direct Detection Systems”, IEEE J Sel Areas Commun, cilt 33, sayı 9, 2015.
  • E. Basar, E. Panayirci, M. Uysal, and H. Haas, “High-rate optical OFDM for MIMO visible light communications systems,” IEEE Int. Conf. Communications, Kuala Lumpur, 2016.
  • L. Zeng, D. O’brien, H. Minh, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “High data rate multiple input multiple output (MIMO) optical wireless communications using white led lighting,” , IEEE J Sel Areas in Commun, vol. 27, no. 9, pp. 1654– 1662, December 2009.
  • S.K. Hashemi, Z. Ghassemlooy, L. Chao, and D. Benhaddou, “Channel estimation for indoor diffuse optical OFDM wireless communications”, IEEE 5th International Conference on Broadband Communications, Networks and Systems, 8-11 Sept. 2008, London, UK.
  • D. Wu, Z. Wang, R. Wan, J. He, Q. Zuo, H. Zhao, “Channel estimation for asymmetrically clipped optical orthogonal frequency division multiplexing optical wireless communications”, IET Commun., 2012, Vol. 6, Iss. 5, pp. 532–540. Armstrong, J., "OFDM for Optical Communications," Journal of Lightwave Technology, vol.27, no.3, pp.189, 2014, Feb. 2009. Elgala, H.; Mesleh, R.; Haas, H., "Indoor optical wireless communication: Potential and state-of-the-art," IEEE Commn. Magazine, vol.49, no.9, pp.56,62, September 2011. H. Dogan, H. Cirpan and E. Panayirci, ” Iterative channel estimation and decoding of turbo coded SFBC-OFDM systems IEEE Trans. on Wireless Commun, vol. 6, no.7, July 2007. E. Panayirci, H. Senol and H.V. Poor, “Joint channel estimation, equalization and data detection for OFDM systems in the presence of very high mobility”, IEEE Trans. Signal Processing, vol. 58, no. 8, pp. 1-14, August 2010. H. Senol, E. Panayirci and H.V. Poor, “ Non-data-aided joint channel estimation and equalization for OFDM systems in very rapidly varying mobilechannels”, IEEE Trans. Signal Processing, vol. 60, no. 8, pp. 4236-4253, Aug. 2012. E. Panayirci, H. Senol, M. Uysal and H. V, Poor “Channel Estimation in Underwater Cooperative OFDM System with Amplify-and-Forward Relaying”, IEEE Trans. Communications, IEEE Explore, 2015. S. K. Wilson, J. Armstrong, "Transmitter and receiver methods for improving asymmetrically-clipped optical OFDM,” IEEE Transactions on Wireless Communications, vol.8, no.9, pp.4561,4567, September, 2009. S. Dimitrov, S. Sinanovic and H. Haas. “Clipping Noise in OFDM-Based Optical Wireless Communication Systems”, IEEE Trans. Commun, vol.60, no 4, April 2012. J. Armstrong and B. Schmidt, “Comparison of Asymmetrically Clipped Optical OFDM and DC-Biased Optical OFDM in AWGN, IEEE Communucations Letters, vol.12 no.5, May 2008.
  • J. Bussgang, “Cross correlation function of amplitude-distorted Gaussian signals, MIT Researh Lab for Electronics, Technical Report 216, March1952 S. F. Cotter and B. D. Rao, “Sparse channel estimation via matching pursuit with application to equalization,” IEEE Trans. Commun., vol. 50, no. 3, pp. 374–377, March 2002. M. Feder and E. Weinstein, “Parameter estimation of superimposed signals using the EM algorithm,” IEEE Trans. Acoust., Speech, Signal Process., vol. 36, no. 4, pp. 477– 489, Apr. 1988. A. Jovicic, J. Li and T. Richardson, "Visible light communication: opportunities, challenges and the path to market," IEEE Communications Magazine, vol. 12, no. 51, pp. 26-32, 2013.
  • L. Garber, "Turning on the lights for wireless communications," Computer, vol. 44, no. 11, pp. 11-14, 2011. J. Armstrong and A. Lowery, "Power efficient optical ofdm," Electronics Letters, vol. 42, no. 6, pp. 370-372, 2006. J. Armstrong and B. Schmidt, "Comparison of asymmetrically clipped optical ofdm and dc-biased optical ofdm in awgn," IEEE Communications Letters, vol. 12, no. 5, pp. 343- 345, 2008. S. Coleri, M. Ergen, A. Puri and A. Bahai, "Channel estimation techniques based on pilot arrangement in ofdm systems," IEEE Transactions on Broadcasting, vol. 48, no. 3, pp. 223-229, 2002. S. Hashemi, Z. Ghassemlooy, L. Chao and D. Benhaddou, "Orthogonal division multiplexing for indoor optical wireless communications using visible light leds," in Communication Systems, Networks and Digital Signal Processing, 2008.
  • X. Yang, Z. Min, T. Xiongyan, W. Jian and H. Dahai, "A post-processing channel estimation method for dco-ofdm visible light communication," in Communication Systems, Networks Digital Signal Processing, 2012. J.-b. Wang, Y. Jiao, X.-y. Dang, M. Chen, X.-x. Xie, and L.-l. Cao, “Training sequence based channel estimation for indoor visible light communication system,” Optoelectronics Letters, vol. 7, pp. 213–216, 2011.
  • O. Narmanlioglu, R. Kizilirmak and M. Uysal, "Relay-assisted ofdm-based visible light communications over multipath channels," in 17th International Conference on Transparent Optical Networks (ICTON), 2015. S. Dyer and X. He, "Cubic-spline interpolation: Part 2," IEEE Instrumentation and Measurement Magazine, vol. 4, no. 2, pp. 34-36, 2001. E. Dahlman, S. Parkvall, and J. Skold, 4G: LTE/LTE-advanced for mobile broadband. Academic press, 2013.
APA PANAYIRCI E, BAŞAR E, YEŞİLKAYA A, ALSAN H (2016). MIMO-OFDM Tabanlı Görünür Işıkla Haberleşme. , 1 - 155.
Chicago PANAYIRCI Erdal,BAŞAR Ertuğrul,YEŞİLKAYA Anıl,ALSAN Hüseyin Fuat MIMO-OFDM Tabanlı Görünür Işıkla Haberleşme. (2016): 1 - 155.
MLA PANAYIRCI Erdal,BAŞAR Ertuğrul,YEŞİLKAYA Anıl,ALSAN Hüseyin Fuat MIMO-OFDM Tabanlı Görünür Işıkla Haberleşme. , 2016, ss.1 - 155.
AMA PANAYIRCI E,BAŞAR E,YEŞİLKAYA A,ALSAN H MIMO-OFDM Tabanlı Görünür Işıkla Haberleşme. . 2016; 1 - 155.
Vancouver PANAYIRCI E,BAŞAR E,YEŞİLKAYA A,ALSAN H MIMO-OFDM Tabanlı Görünür Işıkla Haberleşme. . 2016; 1 - 155.
IEEE PANAYIRCI E,BAŞAR E,YEŞİLKAYA A,ALSAN H "MIMO-OFDM Tabanlı Görünür Işıkla Haberleşme." , ss.1 - 155, 2016.
ISNAD PANAYIRCI, Erdal vd. "MIMO-OFDM Tabanlı Görünür Işıkla Haberleşme". (2016), 1-155.
APA PANAYIRCI E, BAŞAR E, YEŞİLKAYA A, ALSAN H (2016). MIMO-OFDM Tabanlı Görünür Işıkla Haberleşme. , 1 - 155.
Chicago PANAYIRCI Erdal,BAŞAR Ertuğrul,YEŞİLKAYA Anıl,ALSAN Hüseyin Fuat MIMO-OFDM Tabanlı Görünür Işıkla Haberleşme. (2016): 1 - 155.
MLA PANAYIRCI Erdal,BAŞAR Ertuğrul,YEŞİLKAYA Anıl,ALSAN Hüseyin Fuat MIMO-OFDM Tabanlı Görünür Işıkla Haberleşme. , 2016, ss.1 - 155.
AMA PANAYIRCI E,BAŞAR E,YEŞİLKAYA A,ALSAN H MIMO-OFDM Tabanlı Görünür Işıkla Haberleşme. . 2016; 1 - 155.
Vancouver PANAYIRCI E,BAŞAR E,YEŞİLKAYA A,ALSAN H MIMO-OFDM Tabanlı Görünür Işıkla Haberleşme. . 2016; 1 - 155.
IEEE PANAYIRCI E,BAŞAR E,YEŞİLKAYA A,ALSAN H "MIMO-OFDM Tabanlı Görünür Işıkla Haberleşme." , ss.1 - 155, 2016.
ISNAD PANAYIRCI, Erdal vd. "MIMO-OFDM Tabanlı Görünür Işıkla Haberleşme". (2016), 1-155.