Meyve sineği Drosophila melanogaster’da dikkatin nöral temellerinin araştırılması

8 3

Proje Grubu: SOBAG Sayfa Sayısı: 89 Proje No: 114K826 Proje Bitiş Tarihi: 01.10.2018 Metin Dili: Türkçe İndeks Tarihi: 06-09-2019

Meyve sineği Drosophila melanogaster’da dikkatin nöral temellerinin araştırılması

Öz:
Bu projenin amacı, dopaminerjik iletinin dikkat ve dikkat bozukluklarına nasıl aracılık ettiğini araştırmaktır. Meyve sineği Drosophila melanogaster kullanılarak yapılan translasyonel çalışmalarda, kendi geliştirmiş olduğumuz bir davranış testi uygulanmış, ve birbirini karşılıklı olarak dışlayan refleksler tetikleyen uyarıcıların varlığında dikkatin duyular arasında nasıl yönlendirildiği saptanmıştır. Daha sonra, dopamin tip 1 reseptör-1 mutasyonunun (Dop1R1) dikkatin uyarıcılar veya fizyolojik durumun belirlediği öncelikler tarafından yönlendirilmesi üzerindeki etkileri test edilmiştir. Sonuçlarımız, Dop1R1 mutasyonunun yukarıdan-aşağı dikkat süreçlerini bozarak davranışı daha uyarıcılara-bağlı hale getirdiğini, ve tepkiler arasında esnek geçişleri azalttığını göstermektedir. Dop1R1 mutasyonunun hedefli olarak böcek beynindeki en önemli heteromodal duyu entegrasyon alanlarından biri olan mantarsı yapılarda kurtarılması, çift-fazlı tepki örüntüsünün geri kazanılması için yeterli olmuştur. Dop1R1 mutasyonu, genetik arka planla etkileşim içerisinde hem hipoaktif hem de hiperaktif fenotiplerin ortaya çıkmasına sebep olmuştur. Dolayısıyla, proje sonuçları, meyve sineği Drosophila melanogaster Dop1R1 mutantlarının dikkat bozukluğu sendromları için uygun bir translasyonel hayvan model oluşturduğunu önermektedir.
Anahtar Kelime: dopamine dikkat Drosophila melanogaster

Konular: Psikoloji
Erişim Türü: Erişime Açık
  • Mesulam M (2000). Principles of Behavioral and Cognitive Neurology, Oxford University Press.
  • Phillips WA ve diğerleri (2010). Dynamic coordination in brain and mind. In Christoph von der Malsburg, William A Phillips and Wolf Singer, Eds, Dynamic Coordination in the Brain: From Neurons to Mind, MIT Press: Cambridge, MA.
  • Robbins TW and Arnsten AF (2009). The neuropsychopharmacology of fronto-executive function: Monoamine modulation. Annu Rev Neurosci, 32,267-87. doi: 10.1146/annurev.neuro.051508.135535
  • Petersen SE & Posner MI (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35: 73–89. doi:10.1146/annurev-neuro-062111-150525.
  • Barrett LF & Satpute AB (2013). Large scale brain networks in affective and social neuroscience: towards an integrative functional architecture of the brain. Current Opinion in Neurobiology, 23, 361-72.
  • Arnsten AFT (2011). Catecholamine influences on dorsolateral prefrontal cortical networks. Biological Psychiatry, 69:e89–e99, doi:10.1016/j.biopsych.2011.01.027
  • Barnes JJM (2011). The molecular genetics of executive function: the role of monoamine system genes. Biological Psychiatry, 69:e127–e143 69:e145–e157
  • del Campo ve digerleri (2011). The roles of dopamine and noradrenaline in the pathophysiology and treatment of attention deficit hyperactivity disorder. Biological Psychiatry, 69:e145–e157. doi:10.1016/j.biopsych.2011.02.036
  • Aston-Jones G & Diesseroth K (2013). Recent advances in optogenetics and pharmacogenetics. Brain Research, 1511, 1-5. dx.doi.org/10.1016/j.brainres.2013.01.026
  • Cardin, J (2012). Dissecting local circuits in vivo: Integrated optogenetic and electrophysiology approaches for exploring inhibitory regulation of cortical activity. Journal of Physiology (Paris), 106, 104-111.
  • Zeng H & Madisen L (2012). Mouse transgenic approaches to optogenetics. Prog Brain Research, 196: 193–213. doi:10.1016/B978-0-444-59426-6.00010-0
  • Gizer IR ve digerleri (2009). Candidate gene studies of ADHD: a meta-analytic review. Human Genetics, 126, 51-90.
  • Thomas, D (2010). Gene-environment-wide association studies: emerging approaches. Nature Reviews Genetics, 11, 259-72.
  • Doyle AE ve diğerleri (2005). Attention deficit/hyperactivity disorder endophenotypes. Biological Psychiatry, 57, 1324-35, doi:10.1016/j.biopsych.2005.03.015
  • Thompson PM ve digerleri (2014). The ENIGMA consortium: Large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging and Behavior, doi 10.1007/s11682-013-9269-5
  • Briscoe J & Therond PP (2013). Mechanisms of Hedgehog signalling and its role in development and disease. Nature Reviews Molecular Cellular Biology, 14(7):416-29. doi: 10.1038/nrm3598.
  • Chon SYC ve digerleri (2012). Genetic insights on sleep schedules: This time its PERsonal. Trends in Genetics, 28(12):598-605. doi: 10.1016/j.tig.2012.08.002.
  • Frank CA ve digerleri (2013). New approaches for studying synaptic development, function and plasticity using Drosophila as a model system. The Journal of Neuroscience, 33(45):17560 –17568.
  • Neckameyer WS & Argue KJ (2012). Comparative approaches to the study of physiology: Drosophila as a physiological tool. American Journal of Physiology: Regulatory Integrative Comparative Physiology, 304, R177-88. doi:10.1152/ajpregu.00084.2012.
  • Weiner, J (2000). Time, Love and Memory: A great biologist and his quest for the origins of behavior. Vintage.
  • Kandel ER (2012). The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, CPEB. Molecular Brain, 14;5:14. doi: 10.1186/1756-6606-5-14
  • Flight MH (2013). Neurodevelopmental disorders: When more is less? Nature Reviews Neuroscience, 4(7):458-9. doi: 10.1038/nrn3528.
  • Martin, CA ve digerleri (2014). Synergistic effects on dopamine cell death in a Drosophila model of chronic toxin exposure. Neurotoxicology, pii: S0161- 813X(14)00144-2. doi: 10.1016/j.neuro.2014.08.005
  • Vollmayr B ve Gass P (2013). Learned helplessness: Unique features and the translational value of a cognitive depression model. Cell and Tissue Research, 354(1):171-8. doi: 10.1007/s00441-013-1654-2
  • Lima SQ & Miesenbock G (2005). Remote control of behavior through genetically targeted photostimulation of neurons. Cell, 121(1):141-52.
  • Ueno ve digerleri (2012). Identification of a dopamine pathway that regulates sleep and arousal in Drosophila. Nature Neuroscience, 15(11):1516-23. doi: 10.1038/nn.3238.
  • Keene AC ve Masek P (2012). Optogenetic induction of aversive memory. Neuroscience, 222:173-80. doi: 10.1016/j.neuroscience.2012.07.028
  • Gohl ve digerleri (2011). A versatile in vivo system for directed dissection of gene expression patterns. Nature Methods 8(3): 231–237.
  • Bouabe H ve Okkenhaug K (2013). Gene targeting in mice: a review. Methods in Molecular Biology, 1064:315-36. doi: 10.1007/978-1-62703-601-6_23.
  • Zheng, Z, Lauritzen, JS, Perlman, E, Robinson,CG, Nichols, M, Milkie, D, Torrens, O, Price, J, Fisher, CB, Sharifi,N, Calle-Schuler, SA, Kmecova, L, Ali, IJ, Karsh, B, Trautman, E, Bogovic, JA, Hanslovsky, P, Jefferis, GXSE, Kazhdan, M, Khairy, K, Saalfeld, S, Fetter, RD, and Bock, DD (2018). A Complete Electron Microscopy Volume of the Brain of Adult Drosophila melanogaster. Cell, 174, 730-43. https://doi.org/10.1016/j.cell.2018.06.019
  • Takemura SY, Aso Y, Hige T, Wong A, Lu Z, Xu CS, Rivlin PK, Hess H, Zhao T, Parag T, Berg S, Huang G, Katz W, Olbris DJ, Plaza S, Umayam L, Aniceto R, Chang LA, Lauchie S, Ogundeyi O, Ordish C, Shinomiya A, Sigmund C, Takemura S, Tran J, Turner GC, Rubin GM, Scheffer LK. (2017) A connectome of a learning and memory center in the adult Drosophila brain. Elife. pii: e26975. doi: 10.7554/eLife.26975.
  • Eichler K, Li F, Litwin-Kumar A, Park Y, Andrade I, Schneider-Mizell CM, Saumweber T, Huser A, Eschbach C, Gerber B, Fetter RD, Truman JW, Priebe CE, Abbott LF, Thum AS, Zlatic M, Cardona A. (2017) The complete connectome of a learning and memory centre in an insect brain. Nature. 548(7666):175-182. doi: 10.1038/nature23455.
  • Chiang AS ve digerleri (2011). Three dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Current Biology, 21, 1-11.
  • Shih CT, Sporns O, Yuan SL, Su TS, Lin YJ, Chuang CC, Wang TY, Lo CC, Greenspan RJ, Chiang AS. (2015). Connectomics-based analysis of information flow in the Drosophila brain. Current Biology, 25(10):1249-58.doi:10.1016/j.cub.2015.03.021.
  • Strausfeld NJ (2012). Arthropod Brains: Evolution, Functional Elegance and Historical Significance. Cambridge, MA: The Belknap Press of Harvard University Press.
  • Mao Z and Davis R (2009). Eight different types of dopaminergic neurons innervate the Drosophila mushroom body neuropil: Anatomical and physiological heterogeneity. Frontiers in Neural Circuits, 3, 5. doi: 10.3389/neuro.04.005.2009
  • Sinakevitch I & Strausfeld NJ (2006). Comparison of octopamine-like immunoreactivity in the brains of the fruit fly and blow fly. Journal of Comparative Neurology, 494(3):460- 75. 38. Pakkenberg, B. & Gundersen, H.J.G. (1997). Neocortical neuron number in humans: effect of sex and age. J. Comp. Neurology, 384:312-320
  • Waddell, S. (2010). Dopamine reveals neural circuit mechanisms of fly memory. Trends in Neurosciences, 33, 457-64. doi:10.1016/j.tins.2010.07.001
  • Vickrey TL & Venton BJ (2011). Drosophila Dopamine2-like receptors function as autoreceptors. ACS Chemical Neuroscience, 2, 723-9. dx.doi.org/10.1021/cn200057k
  • Ishimoto H ve digerleri (2013). A novel role for ecdysone in Drosophila conditioned behavior: Linking GPCR-mediated non-canonical steroid action to cAMP signalling in the adult brain. PLOS Genetics, 9(10): e1003843. doi:10.1371/journal.pgen.1003843
  • Han ve digerleri (1996). DAMB, a novel dopamine receptor expressed specifically in Drosophila mushroom bodies. Neuron, 16, 1127–1135
  • Chen ve digerleri (2012). Mutation of Drosophila dopamine receptor DOPR leads to male-male courtship behavior. Biochemical and Biophysical Research Communications 423 (2012) 557–563
  • Inagaki HK, Ben-Tabou de-Leon S, Wong AM, Jagadish S, Ishimoto H, et al. (2012). Visualizing neuromodulation in vivo: TANGO-mapping of dopamine signaling reveals appetite control of sugar sensing. Cell 148: 583-95.
  • Burke C, Huetteroth W, Owald D, Perisee E, Krashes MJ, Das G et. al. (2012). Layered reward signaling through octopamine and dopamine in Drosophila. Nature, 492, 433-7.
  • Berry ve digerleri (2012). Dopamine is required for learning and forgetting in Drosophila. Neuron, 74, 530-42. DOI 10.1016/j.neuron.2012.04.007
  • Bang ve digerleri (2011). Dopamine signalling in mushroom bodies regulates temperature preference behavior in Drosophila. PLoS Genetics, 7(3): e1001346. doi:10.1371/journal.pgen.1001346
  • Alekseyenko OV (2013). Single dopaminergic neurons that modulate aggression in Drosophila. PNAS, 110, 6151-56. doi/10.1073/pnas.1303446110
  • Keleman ve digerleri (2012). Dopamine neurons modulate pheromone responses in Drosophila courtship learning. Nature, 489, 145-50. doi:10.1038/nature11345
  • van Swinderen B (2007). Attention like processes in Drosophila require short term memory genes. Science, 315, 1590-3.
  • Tang S and Juusola M (2010). Intrinsic activity in the fly brain gates visual information during behavioral choices. PLOSone 5(12): e14455. doi:10.1371/journal.pone.0014455
  • Maimon G, Straw AD, Dickinson MH (2010). Active flight increases the gain of visual motion processing in Drosophila. Nature Neuroscience,13, 393-7.
  • Seeling JD, Chiappe ME, Lott GK, Dutta A, Osborne JE, Reiser M, Jayaraman V (2010). Two- photon calcium imaging from head fixed Drosophila during optomotor walking behavior. Nature Methods, 7, 535-40.
  • Bhandavat V, Maimon G, Dickinson MH, and Wilson RI (2010). Olfactory modulation of flight in Drosophila melanogaster is sensitive, selective and rapid. The Journal of Experimental Biology, 213, 3625-3635.
  • Duistermars BJ and Frye MA (2008). Cross modal visual input for odor tracking during fly flight. Current Biology, 18, 270-5.
  • Xi W, Peng Y, Guo J, Ye Y, Zhang K, Yu F, Guo A (2008). Mushroom bodies modulate salience based selective fixation behavior in Drosophila. European Journal of Neuroscience, 27, 1441- 1451.
  • Sareen P, Wolf R, and Heisenberg, M (2011). Attracting the attention of a fly. Proc. Natl. Acad. Sci. USA, 108, 7230-7235.
  • Miller SM, Ngo TT, van Swinderen B (2012). Attentional switching in humans and flies: rivalry in large and miniature brains. Frontiers in Human Neuroscience, doi: 10.3389/fnhum.2011.00188.
  • Koenig S, Wolf R, Heisenberg M. (2016). Vision in Flies: Measuring the Attention Span. PLoS One. 2016 Feb 5;11(2):e0148208. doi: 10.1371/journal.pone.0148208.
  • Koenig S, Wolf R, Heisenberg M. (2016). Visual Attention in Flies-Dopamine in the Mushroom Bodies Mediates the After-Effect of Cueing. PLoS One. 2016 Aug 29;11(8):e0161412. doi: 10.1371/journal.pone.0161412.
  • de Bivort BL, van Swinderen B. (2016). Evidence for selective attention in the insect brain. Current Opinion in Insect Science, 15, 9-15. doi: 10.1016/j.cois.2016.02.007.
  • Rohde PD, Madsen LS, Neumann Arvidson SM, Loeschcke V, Demontis D, Kristensen TN. (2016). Testing candidate genes for attention deficit hyperactivity disorder in fruit flies using a high throughput assay for comlex behavior. Fly, 10, 25-34. doi: 10.1080/19336934.2016.1158365.
  • Zhang Y, Guo J, Guo A, Li Y. (2016). Nicotine induced hyperactivity is mediated by dopaminergic system in sexually dimorphic manner. Neuroscience, 332, 149-59. doi: 10.1016/j.neuroscience.2016.06.043.
  • Crickmore MA & Vosshall LB (2013). Opposing dopaminergic and GABAergic neurons control the duration and persistence of copulation in Drosophila. Cell, 155(4):881-93. doi: 10.1016/j.cell.2013.09.055.
  • Marella, S., Mann, K., and Scott, K. (2012). Dopaminergic modulation of sucrose acceptance behavior in Drosophila. Neuron, 73, 941-50.
  • Cevik MO and Erden A (2012). The course of habituation of the proboscis extension reflex can be predicted by sucrose responsiveness in Drosophila. PLOS One, 7 (6):e38963. doi: 10.1371/journal.pone.0039863
  • Waddell S. (2013). Reinforcement signalling in Drosophila: Dopamine does it after all. Curr Opin Neurobiol. 23(3):324-9. doi: 10.1016/j.conb.2013.01.005.
  • Cohn, R., Morantte, I., and Ruta, V. (2015). Coordinated and compartmentalized neuromodulation shapes sensory processing in Drosophila. Cell 163, 1742–1755.
  • Fischbach KF (1981). Habituation and sensitization of the landing response in Drosophila melanogaster. Naturwissenschaften, 68, 332.
  • Yang Z, Yu Y, Zhang V, Tian Y, Qi W, Wang L. (2015). Octopamine mediates starvation induced hyperactivity in Drosophila. PNAS, 112(16):5219-24. doi: 10.1073/pnas.1417838112.
  • Yu Y, Huang R, Ye J, Zhang V, Wu C, Cheng G, Jia J, Wang L. (2016). Regulation of starvation-induced hyperactivity by insulin and glucagon signaling in adult Drosophila. Elife, pii: e15693. doi: 10.7554/eLife.15693.
  • Chandler CH, Sudarshan C, and Ion Dworkin (2013). Does your gene need a background check? How genetic background impacts the analysis of mutations, genes and evolution. Trends in Genetics, 29, 358-66.
  • Kong EC, Woo K, Li H, Lebestky T, Mayer N, Sniffen MR, Heberlein U, Bainton RJ, Hirsh J, Wolf FW. (2010). A pair of dopamine neurons target the D1- like dopamine receptor DopR in the central complex to promote ethanol-stimulated locomotion in Drosophila. PLoS One., 5(4):e9954. doi: 10.1371/journal.pone.0009954.
  • Lebestky T, Chang JS, Dankert H, Zelnik L, Kim YC, Han KA, Wolf FW, Perona P, Anderson DJ. (2009). Two different forms of arousal in Drosophila are oppositely regulated by the dopamine D1 receptor ortholog DopR via distinct neural circuits. Neuron. 2009 Nov 25;64(4):522-36. doi: 10.1016/j.neuron.2009.09.031.
  • Diamond A (2005). Attention-deficit disorder without hyperactivity: A neurobiologically and behaviorally distinct disorder from attention-deficit hyperactivity disorder with hyperactivity. Development and Psychopathology, 17, 807–825.
  • Wasserman T, Wasserman LD(2015). The misnomer of attention deficit disorder. Applied Neuropsychology Child, 2, 116-122.
  • Sharma A, Coutre J (2013). A Review of the Pathophysiology, Etiology, and Treatment of Attention-Deficit Hyperactivity Disorder (ADHD). Annals of Pharmacotherapy, Volume: 48 issue: 2, page(s): 209-225.
  • Pietrzak RH, Mollica CM, Maruff, P, Snyder PJ (2006). Cognitive effects of immediate- release methylphenidate in children with attention-deficit/hyperactivity disorder. Neuroscience and Biobehavioral Reviews, 30, 1225-45.
  • Advokat C (2010). What are the cognitive effects of stimulant medications? Emphasis on adults with attention-deficit/hyperactivity disorder (ADHD). Neuroscience and biobehavioral reviews, 34, 1256-66.
  • van der Voet M, Harich B, Franke B, Schenck A. (2015). ADHD- associated dopamine transporter, latrophilin and neurofibromin share a dopamine- related locomotor signature in Drosophila. Molecular Psychiatry, 21(4):565-73. doi: 10.1038/mp.2015.55.
  • Van Swinderen B, Andretic R. (2011). Dopamine in Drosophila: setting arousal thresholds in a miniature brain. Proc Biol Sci. 2011 Mar 22;278(1707):906-13. doi: 10.1098/rspb.2010.2564.
  • Thibault ST, Singer MA, Miyazaki WY, Milash B, Dompe NA, Singh CM, Buchholz R, Demsky M, Fawcett R, Francis-Lang HL, Ryner L, Cheung LM, Chong A, Erickson C, Fisher WW, Greer K, Hartouni SR, Howie E, Jakkula L, Joo D, Killpack K, Laufer A, Mazzotta J, Smith RD, Stevens LM, Stuber C, Tan LR, Ventura R, Woo A, Zakrajsek I, Zhao L, Chen F, Swimmer C, Kopczynski C, Duyk G, Winberg ML, Margolis J. (2004). A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Nature Genetics, 36(3):283-7.
  • Yamamoto S, Seto ES.(2014). Dopamine dynamics and signaling in Drosophila: an overview of genes, drugs and behavioral paradigms. Experimental Animals, 63(2):107- 19.
  • Keene AC and Waddell S (2007). Drosophila olfactory memory: single genes to complex neural circuits. Nat Rev Neurosci., 8(5):341-54.
  • Zhang K, Guo JZ, Peng Y, Xi W, Guo A.(2007). Dopamine-mushroom body circuit regulates saliency-based decision-making in Drosophila. Science. 2007 Jun 29;316(5833):1901-4.
  • Cohn R, Morantte I, Ruta V. (2015). Coordinated and Compartmentalized Neuromodulation Shapes Sensory Processing in Drosophila. Cell, 17;163(7):1742-55. doi: 10.1016/j.cell.2015.11.019.
  • Strauss, R. & Heisenberg, M. (1993) A higher control center of locomotor behavior in the Drosophila brain. J. Neurosci., 13, 1852–1861.
  • Strausfeld, N.J. & Hirth, F. (2013) Deep homology of arthropod central complex and vertebrate basal ganglia. Science, 340, 157–161.
  • Kahsai, L. & Winther, A.M. (2011) Chemical neuroanatomy of the Drosophila central complex: distribution of multiple neuropeptides in relation to neurotransmitters. J. Comp. Neurol., 519, 290–315.
  • Kahsai, L., Carlsson, M.A., Winther, A.M. & N€assel, D.R. (2012) Distribution of metabotropic receptors of serotonin, dopamine, GABA, glutamate, and short neuropeptide F in the central complex of Drosophila. Neuroscience, 208, 11–26.
  • Guo C, Du y, Yuan D, Li M, Gong H, Gong Z, Liu L (2014). A conditioned visual orientation requires the ellipsoid body in Drosophila. Learning and Memory, 22, 56-63.
  • Wu CL, Xia S, Fu TF, Wang H, Chen YH, Leong D, Chiang AS, Tully T. (2007). Specific requirement of NMDA receptors for long-term memory consolidation in Drosophila ellipsoid body. Nat Neurosci. 2007 Dec;10(12):1578-86.
  • Dus M, Ai M, Suh GS. (2013). Taste independent nutrient selection mediated by a brain specific Na+/ co-transporter in Drosophila. N at Neurosci., 16(5):526-8. doi: 10.1038/nn.3372.
  • Tumkaya T, Ott S, Claridge-Chang A. (2018). A systematic review of Drosophila short- term-memory genetics: Meta-analysis reveals robust reproducibility. Neuroscience Biobehavioral Reviews95:361-382. doi: 10.1016/j.neubiorev.2018.07.016
  • Ueno T, Tomita J, Kume S, Kume K. (2012). Dopamine modulates metabolic rate and temperature sensitivity in Drosophila melanogaster. PLoS One. 2012;7(2):e31513. doi: 10.1371/journal.pone.0031513.
APA ÇEVİK M (2018). Meyve sineği Drosophila melanogaster’da dikkatin nöral temellerinin araştırılması. , 0 - 89.
Chicago ÇEVİK Münire Özlem Meyve sineği Drosophila melanogaster’da dikkatin nöral temellerinin araştırılması. (2018): 0 - 89.
MLA ÇEVİK Münire Özlem Meyve sineği Drosophila melanogaster’da dikkatin nöral temellerinin araştırılması. , 2018, ss.0 - 89.
AMA ÇEVİK M Meyve sineği Drosophila melanogaster’da dikkatin nöral temellerinin araştırılması. . 2018; 0 - 89.
Vancouver ÇEVİK M Meyve sineği Drosophila melanogaster’da dikkatin nöral temellerinin araştırılması. . 2018; 0 - 89.
IEEE ÇEVİK M "Meyve sineği Drosophila melanogaster’da dikkatin nöral temellerinin araştırılması." , ss.0 - 89, 2018.
ISNAD ÇEVİK, Münire Özlem. "Meyve sineği Drosophila melanogaster’da dikkatin nöral temellerinin araştırılması". (2018), 0-89.
APA ÇEVİK M (2018). Meyve sineği Drosophila melanogaster’da dikkatin nöral temellerinin araştırılması. , 0 - 89.
Chicago ÇEVİK Münire Özlem Meyve sineği Drosophila melanogaster’da dikkatin nöral temellerinin araştırılması. (2018): 0 - 89.
MLA ÇEVİK Münire Özlem Meyve sineği Drosophila melanogaster’da dikkatin nöral temellerinin araştırılması. , 2018, ss.0 - 89.
AMA ÇEVİK M Meyve sineği Drosophila melanogaster’da dikkatin nöral temellerinin araştırılması. . 2018; 0 - 89.
Vancouver ÇEVİK M Meyve sineği Drosophila melanogaster’da dikkatin nöral temellerinin araştırılması. . 2018; 0 - 89.
IEEE ÇEVİK M "Meyve sineği Drosophila melanogaster’da dikkatin nöral temellerinin araştırılması." , ss.0 - 89, 2018.
ISNAD ÇEVİK, Münire Özlem. "Meyve sineği Drosophila melanogaster’da dikkatin nöral temellerinin araştırılması". (2018), 0-89.