1 5

Proje Grubu: MAG Sayfa Sayısı: 237 Proje No: 315M133 Proje Bitiş Tarihi: 01.11.2018 Metin Dili: Türkçe İndeks Tarihi: 08-01-2020

Sünek Metal Plakalarda Çatlak İlerleme Mekanizmalarının Nümerik ve Deneysel Metotlarla İncelenmesi

Öz:
Sünek metal plakaların yırtılması esnasında çatlaklar dört farklı şekilde ilerler: i-) eğik (slanted) çatlak, ii-) bardak-kapaksı (cup-cone) çatlak, iii-) bardak-bardaksı (cup-cup) çatlak ve iv-) bu üçünün karışımı. Çatlak ilerleme mekanizması, plakanın geometrisine, malzeme özelliklerine ve yükleme koşullarına göre değişmektedir. Literatürdeki birçok deneysel çalışma, plaka malzemesinin pekleşme kapasitesinin çatlak ilerleme mekanizmasında etkili olduğunu ortaya konmuştur. Yüksek pekleşme kapasitesine sahip metallerde çatlak ilerlemesinden önce oldukça yoğun çatlak ucu boyun vermesi gerçekleşmektedir. Boyun verme bölgesinin merkezindeki gerilme üç eksenliliği, plakanın yan yüzeylerindekine kıyasla oldukça yüksek değerlere ulaşmakta, dolayısıyla çatlak plakanın merkezinde oluşup, bardak- bardaksı olarak ilerlemektedir. Düşük pekleşme kapasitesine sahip metallerde ise, çatlak ucundaki boyun verme düşük düzeylerde kalmakta, plastik deformasyon kesme kuşaklarında yoğunlaşmakta ve çatlak eğik veya bardak-kapaksı olarak ilerlemektedir. Deney sonuçları ayrıca, düşük yükleme hızlarında (sanki-statik) bardak-bardaksı ilerlemenin, yüksek hızlarda ise eğik veya bardak-kapaksı ilerlemenin daha etkin bir mekanizma olduğunu ortaya koymuştur. Mevcut literatür, daha ziyade plakaların mekanik/geometrik özellikleri üzerine yoğunlaşmıştır; mikro-yapı?çatlak morfolojisi ilişkisi henüz net bir şekilde ortaya konamamıştır. Onaylanan Bütçe: Bu projenin temel amacı, mikro?yapının çatlak ilerleme mekanizmasına etkilerini ayrıntılı olarak araştırmaktır. Sünek metal ve metal alaşımlarında çatlaklar, temel olarak, büyüklükleri ?m mertebesinde olan ikinci faz parçacıkları tarafından peydahlanan boşlukların büyümesi ve birleşmesiyle ilerler. Projenin ana hipotezi, bu parçacıkların/boşlukların sadece oylum oranlarının değil, ortalama büyüklük ve uzaysal dağılımlarının da çatlak ilerleme mekanizmasını etkileyeceğidir. Bu hipotezi test etmek amacıyla, hem nümerik hem deneysel çalışmalar yapılmıştır. Yapılan çalışmalar hipotezi doğrulamış, elde edilen sonuçlar, ufak ve birbirine uzak parçacıkların bardak-bardaksı, büyük ve birbirine yakın parçacıkların ise eğik veya bardak-kapaksı çatlak ilerlemesine yol açtığını göstermiştir. Parçacıkları/boşlukların ortalama büyüklük ve uzaysal dağılımlarının çatlak morfolojisine etkilerinin, orta düzey pekleşme kapasitesine sahip metaller için daha belirgin olduğu sonucuna ulaşılmıştır.
Anahtar Kelime: plaka ve kabuklar. plastisite teorisi Gurson modeli sünek kırılma Kırılma mekaniği

Konular: Mühendislik, Makine Malzeme Bilimleri, Özellik ve Test Malzeme Bilimleri, Kaplamalar ve Filmler
Erişim Türü: Erişime Açık
  • ABAQUS, 2016. “Abaqus documentation collection”, Version 2016, Providence, RI: Dassault Systmes.
  • Fracture Surface Morphology under Ductıle Tearıng of Metal Plates (Bildiri - Uluslararası Bildiri - Sözlü Sunum)
  • Algarnia, M., Choib,Y., Bai, Y. 2017. “A unified material model for multiaxial ductile fracture and extremely low cycle fatigue of Inconel 718”, International Journal of Fatigue, 96, 162-177.
  • Andersen, R., Woelke, P., Nielsen, K., 2018. “Cohesive traction-separation relations for plate tearing under mixed mode loading”, Engineering Fracture Mechanics, 71, 199-209.
  • Anderson, T.L. 2005. Fracture Mechanics: Fundamentals and Applications (3. Basım). Boca Raton: CRC Press.
  • Aravas, N., McMeeking, R. M.1985. “Finite element analysis of void growth near a blunting crack tip”, Journal of the Mechanics and Physics of Solids, 33, 25-37.
  • Aravas, N., McMeeking, R. M.1985. “Microvoid growth and failure in the ligament between a hole and a blunt crack tip”, International Journal of Fracture, 29, 21-38.
  • Argon, A. S., Im, J., Safoğlu, R. 1975. “Cavity formation from inclusions in ductile fracture”, Metallurgical and Materials Transactions A, 6, 825-37.
  • Babout, L., Bréchet, Y., Maire, E., Fougères, R. 2004. “On the competition between particle fracture and particle decohesion in metal matrix composites”, Acta Materialia, 52, 4517–25.
  • Becker, R., Needleman, A., Richmond, O., Tvergaard, V. 1988. “Void growth and failure in notched bars”, Journal of the Mechanics and Physics of Solids, 36, 317-51.
  • Benseddiq, N., Imad, A. 2008. “A ductile fracture analysis using a local damage model”, International Journal of Pressure Vessels and Piping, 85, 219-27.
  • Benzerga, A. A. 2002. “Micromechanics of coalescence in ductile fracture”, Journal of the Mechanics and Physics of Solids, 50, 1331-62.
  • Benzerga, A. A., Leblond, J.-B. 2010. “Ductile fracture by void growth to coalescence”, Advances in Applied Mechanics, 44, 169-305.
  • BEYOND: Workshop on Computational Science and Engineering, METU, 20-21 October 2018. http://files.iam.metu.edu.tr/workshop_cse/ Son erişim tarihi: 15 Aralık 2018.
  • Berdin, C. 2004. Sayfa 147-71. “Damage evolution laws and fracture criteria”, Local Approach to Fracture. Editör: Besson, J. Paris: Les Presses de l’Ecole des Mines de Paris.
  • Beremin, F.M. 1981. “Cavity formation from inclusions in ductile fracture of A508 steel”, Metallurgical Transactions A, 12, 723-731.
  • Besson, J., Brocks, W., Chabanet, O., Steglich, D. 2001. “Ductile Rupture of Aluminum Sheet Materials”, European Journal of Finite Elements, 10, 401-415.
  • Besson, J., Steglich, D., Brocks, W., 2003. “Modeling of plane strain ductile rupture”, International Journal of Plasticity, 19, 1517-1541.
  • Bilby, B. A., Howard, I. C., Li, Z. H. 1993. “Prediction of the first spinning cylinder test using ductile damage theory”, Fatigue and Fracture of Engineering Materials and Structures, 16, 1- 20.
  • Broek, D. 1986. Elementary Fracture Mechanics (4. Basım). Dordrecht, Hollanda: Kluwer Academic Publishers.
  • Chabanet, O., Steglich, D., Besson, J., Heitman, V., Hellmann, D., Brocks, W. 2003. “Predicting crack growth resistance of aluminium sheets”, Computational Materials Science, 26, 1-12.
  • Chen, C. R., Kolednik, O., Heerens, J., Fischer, F. D. 2005. “Three-dimensional modelling of ductile crack growth: Cohesive zone parameters and crack tip triaxiality”, Engineering Fracture Mechanics, 72, 2072-94.
  • Chen, X., Deng, X., Sutton, M. A., Zavattieri, P. 2014. “An inverse analysis of cohesive zone model parameter values for ductile crack growth simulations”, International Journal of Mechanical Sciences, 79, 206-15.
  • Chu, C., Needleman, A. 1980. “Void nucleation effects in biaxially stretched sheets”, Journal of Engineering Materials and Technology, 102, 249–56.
  • Cox, T. B., Low, J. R., 1974. “An investigation of the plastic fracture of AISI 4340 and 18 Nickel- 200 grade maraging steels”, Metallurgical Transactions, 5, 1457-1470.
  • Cuesta, I. I., Alegre, J. M., Lacalle, R. 2010. “Determination of the Gurson-Tvergaard damage model parameters for simulating small punch tests”, Fatigue and Fracture of Engineering Materials and Structures, 33, 703-13.
  • Devaux, J.C., Mudry, F., Pineau, A., Rousselier, G. 1989. Sayfa 7–23. “Experimental and numerical validation of a ductile fracture local criterion based on a simulation of cavity growth”, Nonlinear Fracture Mechanics: Volume II – Elastic-Plastic Fracture, ASTM STP 995. Editörler: Landes J. D., Saxena, A., Merkle J. G. Philadelphia: American Society for Testing and Materials.
  • Dünya Çelik Birliği (World Steel Association). “World Steel in Figures 2018”. https://www.worldsteel.org/en/dam/jcr:f9359dff-9546-4d6b-bed0- 996201185b12/World+Steel+in+Figures+2018.pdf Son erişim tarihi: 24 Kasım 2018.
  • Engineers Edge http://www.engineersedge.com/coeffients_of_friction.htm Son erişim tarihi: 04 Aralık 2018.
  • Engineering-abc http://www.tribology-abc.com/calculators/e3_6a.htm Son erişim tarihi: 04 Aralık 2018.
  • El-Naaman, S. A., Nielsen, K. L. 2013. “Observations on Mode I ductile tearing in sheet metals”, European Journal of Mechanics A/Solids, 42, 54-62.
  • Felter, C. L., Nielsen, K. L., 2017. “Assisted crack tip flipping under mode I thin sheet tearing”, European Journal of Mechanics - A/Solids, 64, 58-68.
  • Fabrègue, D., Pardoen, T. 2008. “A constitutive model for elastoplastic solids containing primary and primary and secondary voids”, Journal of the Mechanics and Physics of Solids, 57, 869-870. 2008.
  • Faleskog, J., Shih, C. 1997. “Micromechanics of coalescence—I. Synergistic effects of elasticity, plastic yielding and multisize-scale voids”, Journal of the Mechanics and Physics of Solids, 45, 21–50.
  • Gao, F. J., Shih, C. F., Dodds, R. H. 1998. “Ductile tearing in part-through cracks: experiments and cell-model predictions”, Engineering Fracture Mechanics, 59, 761-77.
  • Gao, X. S., Wang, T. H., Kim, J. 2005, “On ductile fracture initiation toughness: effects of void volume fraction, void shape and void distribution”, International Journal of Solids and Structures, 42, 5097-5117.
  • Gao, X., Faleskog, J., Shih, C. F. 1998. “Cell model for nonlinear fracture analysis - II. Fracture- process calibration and verification”, International Journal of Fracture, 89, 374-386.
  • Gurson, A., 1977. “Continuum theory of ductile rupture by void nucleation and growth part I: yield criteria and low rules for porous ductile media”, ASME Journal of Engineering Materials and Technology, 99, 2-15.
  • Gologanu, M., Leblond, J.-B., Devaux, J. 1993. “Approximate models for ductile metals containing non-spherical voids – case of axisymmetric prolate ellipsoidal cavities”, Journal of the Mechanics and Physics of Solids, 41, 1723-54.
  • Gologanu, M., Leblond, J.-B., Devaux, J. 1994. “Approximate models for ductile metals containing non-spherical voids – case of axisymmetric oblate ellipsoidal cavities”, Journal of Engineering Materials and Technology, 116, 290-7.
  • Irwin, G. R., Kies, J. A., Smith, H. L. 1958. “Fracture strengths relative to onset and arrest of crack propagation”, American Society for Testing and Materials (ASTM) Transactions, 58, 640- 60.
  • ImageJ yazılımının internet sitesi https://imagej.nih.gov/ij/ Son erişim tarihi: 07 Aralık 2018.
  • Jun, S., Zengjie, D., Zhonghua, L., Mingjing, T. 1990. “Fracture strength of spheroidal carbide particle”, International Journal of Fracture, 42, 39–42.
  • Kami, A., Mollaei Dariani, B., Sadough Vanini, A., Comsa, D., Banabic, D. 2014. 300–309.
  • “Application of a GTN damage model to predict the fracture of metallic sheets subjected to deep-drawing”, Proceedings of the Romanian Academy, Series A: Mathematics, Physics, Technical Sciences, Information Science, 15, 300-309.
  • Keller K., Weihe, S., Siegmund, T., Kroplin, B.1999. “Generalized Cohesive Zone Model: incorporating triaxiality dependent failure mechanisms”, Computational Materials Science, 16, 267-74.
  • Kim, J., Gao, X. S., Srivatsan, T. S. 2003. “Modeling of crack growth in ductile solids: a three- dimensional study”, International Journal of Solids and Structures, 40, 7357-74.
  • Kiran, R., Khandelwal, K. 2014. “Gurson model parameters for ductile fracture simulation in ASTM A992 steels”, Fatigue and Fracture of Engineering Materials and Structures, 37, 171- 83.
  • Knott, J. F. 1973. Fundamentals of Fracture Mechanics. London: Butterworths. Koplik, J., Needleman, A. 1988. “Void growth and coalescence in porous plastic solids”, International Journal of Solids and Structures, 24, 835-53.
  • Lassance, D., Fabrègue, D., Delannay, F., Pardoen, T. 2007. “Micromechanics of room and high temperature fracture in 6xxx Al alloys”, Progress in Materials Science, 52, 62-129.
  • Leblond, J.-B., Mottet, G. 2008. “A theoretical approach of strain localization within thin planar bands in porous ductile materials”, Comptes Rendus Mécanique, 336, 176-189.
  • Lecarme, L., Tekoğlu, C., Pardoen, T. 2011. “Void growth and coalescence in ductile solids with stage III and stage IV strain hardening”, International Journal of Plasticity, 27, 1203–23.
  • Li, W., Siegmund, T. 2002. “An analysis of crack growth in thin-sheet metal via cohesive zone model”, Engineering Fracture Mechanics, 69, 2073-93.
  • Liang, Y., Wen-quan, L., Dan-tong, W.,Ping, H., Qi, W. 2016. “Experimental and simulation of damage evolution behavior for 7075-T6 aluminum alloy in warm forming”, The Chinese Journal of Nonferrous Metals, 26, 1383-08.
  • Mackenzie, A. C., Hancock, J. W., Brown, D.K. 1977. “On the influence of state of stress on ductile failure initiation in high strength steels”, Engineering Fracture Mechanics, 9, 167-188.
  • Mathur, K., Needleman, A., Tvergaard, V., 1996. “Three dimensional analysis of dynamic ductile crack growth in a thin plate”, Journal of the Mechanics and Physics of Solids, 44, 439- 464.
  • Moud, S. H., Hosseini, S. F. 2012. “Ductile Fracture of 7075-T651 Aluminum Alloy”, 19th European Conference on Fracture (ECF19), Kazan, Rusya.
  • Nahshon, K., Hutchinson, J. W. 2008. “Modification of the Gurson model for shear failure”, European Journal of Mechanics - A/Solids, 27, 1-17.
  • Needleman, A. 1987. “A continuum model for void nucleation by inclusion debonding”, Journal of Applied Mechanics, 54, 525–31.
  • Needleman, A. 2014. “Some Issues in Cohesive Surface Modeling”, Procedia IUTAM, 10, Pages 221-246.
  • Needleman, A., Tvergaard, V. 1987. “An analysis of ductile rupture modes at a crack tip”, Journal of the Mechanics and Physics of Solids, 35, 151-183.
  • Needleman, A., Tvergaard, V. 1991. “A numerical study of void distribution effects on dynamic, ductile crack-growth”, Engineering Fracture Mechanics, 38, 157-173.
  • Negre, P., Steglich, D., Brocks, W. 2005. “Crack extension at an interface: prediction of fracture toughness and simulation of crack path deviation”, International Journal of Fracture, 134, 209- 229.
  • Nielsen, K., Hutchinson, J., 2012. “Cohesive traction-separation laws for tearing of ductile metal plates”, International Journal of Impact Engineering, 48, 15-23.
  • Noell, P. J., Carroll, J. D., Boyce, B. L., 2018. "The mechanisms of ductile rupture", Acta Materialia, 161, 83-98.
  • Norris, D. M., Reaugh, J. E.,Moran, B., Quinones, D. F. 1978. “A plastic-strain, mean-stress criterion for ductile fracture”, Journal of Engineering Materials Technology, 100, 270-286.
  • Orowan, E., 1949. “Fracture and strength of solids”, Reports on Progress in Physics, 12, 185- 232.
  • Osovski, S., Srivastava, A., Ponson, L., Bouchaud, E., Tvergaard, V., Ravi-Chandar, K., Needleman, A., 2015. “The effect of loading rate on ductile fracture toughness and fracture surface roughness”, Journal of the Mechanics and Physics of Solids, 76, 20-46.
  • Pardoen, T., Hachez, F., Marchioni, B., Blyth, P. H., Atkins A. G. 2004. “Mode I fracture of sheet metal”, Journal of the Mechanics and Physics of Solids, 52, 423-52.
  • Pardoen, T., Hutchinson, J.W. 2000. “An extended model for void growth and coalescence”, Journal of the Mechanics and Physics of Solids, 48, 2467–2512.
  • Pardoen, T., Marchal, Y., Delannay, F. 1999. “Thickness dependence of cracking initiation criteria in thin aluminum plates”, Journal of the Mechanics and Physics of Solids, 47, 2093- 2123.
  • Pardoen, T., Marchal, Y., Delannay, F. 2002. “Essential work of fracture versus fracture mechanics—towards a thickness independent plane stress toughness”, Engineering Fracture Mechanics, 69, 617-631.
  • Pardoen, T., Scheyvaerts, F., Simar, A., Tekoğlu, C., Onck, P. R. 2010. “Multiscale modeling of ductile failure in metallic alloys”, Comptes Rendus Physique, 11, 326-45.
  • Petti, J. P., Dodds, R. H. 2005. “Ductile tearing and discrete void effects on cleavage fracture under small-scale yielding conditions”, International Journal of Solids and Structures, 42, 3655- 76.
  • Pineau, A. 1990. Sayfa 197–234. “Global and local approaches of fracture – Transferability of laboratory test results to Components”, Topics in Fracture and Fatigue. Editör: Argon, A. S. New York: Springer Verlag.
  • Pineau, A., Pardoen, T. 2007. 2. cilt, 6. bölüm. “Failure mechanisms of metals”. Comprehensive structural integrity encyclopedia. Editörler: Karihaloo, B. veKnauss, W. G. Amsterdam: Elsevier.
  • Rivalin, F., Pineau, A., Di Fant, M., Besson, J. 2001. “Ductile tearing of pipeline-steel wide plates - I. dynamic and quasi-static experiments”, Engineering Fracture Mechanics, 68, 329- 345.
  • Roychowdhury, S., Roy, Y. D., Dodds, R. H. 2002. “Ductile tearing in thin aluminium panels: experiments and analyses using large-displacement, 3-D surface cohesive elements”, Engineering Fracture Mechanics, 69, 983-1002.
  • Ruggieri C., Panontin T. L., Dodds Jr., R. H. 1996. “Numerical modeling of ductile crack growth in 3-D using computational cell elements”, International Journal of Fracture, 82, 67-95.
  • Sanford, R. J. 2002. Principles of Fracture Mechanics. Upper Saddle River, New Jersey: Prentice Hall.
  • Scheider, I., Schodel, M., Brocks, W., Schonfeld, W. 2006. “Crack propagation analyses with CTOA and cohesive model: Comparison and experimental validation”, Engineering Fracture Mechanics, 73, 252-63
  • Scheyvaerts, F., Onck, P. R., Tekoğlu, C., Pardoen, T. 2011. “The growth and coalescence of ellipsoidal voids in plane strain under combined shear and tension”, Journal of the Mechanics and Physics of Solids, 59, 373–97.
  • Scheyvaerts, F., Pardoen, T., Onck, P. R., 2010. “A new model for void coalescence by internal necking”, International Journal of Damage Mechanics, 19, 95–126.
  • Siegmund T., Brocks. W., 2000. “A numerical study on the correlation between the work of separation and the dissipation rate in ductile fracture”, Engineering Fracture Mechanics, 67, 139-154.
  • Simonsen, B., Törnqvist, R., 2004. “Experimental and numerical modelling of ductile crack propagation in large-scale shell structures”, Marine Structures, 17, 1-27.
  • Srivastava, A., Osovski, S., Needleman, A., 2017. “Engineering the crack path by controlling the microstructure”, Journal of the Mechanics and Physics of Solids, 100, 1-20.
  • Srivastava, A., Ponson, L., Osovski, S., Bouchaud, E., Tvergaard, V., Needleman, A., 2014. “Effect of inclusion density on ductile fracture toughness and roughness”, Journal of the Mechanics and Physics of Solids, 63, 62-79.
  • Tekoğlu, C. 2014. “Representative volume element calculations under constant stress triaxiality, Lode parameter, and shear ratio”, International Journal of Solids and Structures, 51, 4544-53.
  • Tekoğlu, C. 2015. “Void coalescence in ductile solids containing two populations of voids”, Engineering Fracture Mechanics, 147, 418-430.
  • Tekoğlu, C., Hutchinson, J. W., Pardoen, T. 2015. “On localization and void coalescence as a precursor to ductile fracture”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, DOI: 10.1098/rsta.2014.0121.
  • Tekoğlu, C., Leblond, J.-B., Pardoen, T. 2012. “A criterion for the onset of void coalescence under combined tension and shear”, Journal of the Mechanics and Physics of Solids, 60, 1363- 81.
  • Tekoğlu, C., Pardoen, T. 2010. “A micromechanics based damage model for composite materials”, International Journal of Plasticity, 26, 549-69.
  • Thomason, P. F. 1990. Ductile Fracture of Metals (1. Basım). Oxford: Pergamon Press.
  • Thompson, A. V., Williams, J. C. 1977. Sayfa 343–8. “Nuclei for ductile fracture in titanium”, Proceedings of the 4th International Conference on Fracture. Editör: Taplin, M. D. R. Oxford: Pergamon Press.
  • Tvergaard, V. 1981. “Influence of voids on shear band instabilities under plane strain conditions”, International Journal of Fracture, 17, 389-407.
  • Tvergaard, V. 1982. “On localisation in ductile materials containing voids”, International Journal of Fracture, 18, 237–251.
  • Tvergaard V., Hutchinson, J. W. 1992. “The relationship between crack growth resistance and fracture process parameters in elastic plastic solids”, Journal of the Mechanics and Physics of Solids, 40, 1377-1397.
  • Tvergaard, V. 1990. “Material failure by void growth to coalescence”, Advances in Applied Mechanics, 27, 83-151.
  • Tvergaard, V. 1993. “Model studies of fibre breakage and debonding in a metal reinforced by short fibers”, Journal of the Mechanics and Physics of Solids, 41, 1309–26.
  • Tvergaard, V., Hutchinson, J. W. 2002. “Two mechanisms of ductile fracture: void by void growth versus multiple void interaction”, International Journal of Solids and Structures, 39, 3581-97.
  • Tvergaard, V., Needleman, A. 1984. “Analysis of cup-cone fracture in a round tensile bar”, Acta Metallurgica, 32, 157-169.
  • Tvergaard, V., Needleman, A. 1992. “Effect of crack meandering on dynamic, ductile fracture”, Journal of the Mechanics and Physics of Solids, 40, 447-471.
  • Ugural, A. C. 2009. Stresses in Beams, Plates, and Shells (3. Basım). New York: CRC Press.
  • Ventsel, E., Krauthammer, T. 2001. Thin Plates and Shells: Theory: Analysis, and Applications. New York: Marcel Dekker, Inc.
  • Woelke, P. B., Shields, M. D., Abboud, N. N., Hutchinson, J. W. 2013. “Simulations of ductile fracture in an idealized ship grounding scenario using phenomenological damage and cohesive zone models”, Computational Materials Science, 80, 79-95.
  • Xia L., Shih, C. F. 1995. “Ductile crack growth – I. A numerical study using computational cells with microstructurally based length scales”, Journal of the Mechanics and Physics of Solids, 43, 233-259.
  • Xia L., Shih, C. F. 1995. “Ductile crack growth – II. Void nucleation and geometry effects on macroscopic fracture behavior”, Journal of the Mechanics and Physics of Solids, 43, 1953- 1981.
  • Xia, L., Shih, C. F., Hutchinson, J. W. 1995. “A computational approach to ductile crack growth under large scale yielding conditions”, Journal of the Mechanics and Physics of Solids, 43, 389–413.
  • Xue, Z., Pontin, M. G., Zok, F. W., Hutchinson, J. W. 2010. “Calibration procedures for a computational model of ductile fracture”, Engineering Fracture Mechanics, 77, 492-509.
  • Yan, C., Mai, W. Y. 1997. “Effect of constraint on ductile crack growth and ductile-brittle fracture transition of a carbon steel”, International Journal of Pressure Vessels and Piping, 73, 167- 173.
  • Yayla, P. 2007. Kırılma Mekaniği (1. Basım). İstanbul: Çağlayan Kitabevi. Yerra, S. K., Tekoğlu, C., Scheyvaerts, F., Delannay, L., Houtte, P. V., Pardoen, T., 2010. “Void growth and coalescence in single crystals”, International Journal of Solids and Structures, 47, 1016–1029.
  • Yu, H., Tieu, K., Lu, C., Lou, Y., Liu, X., Godbole, A., Kong, C. 2014. “Tensile fracture of ultrafine grained aluminum 6061 sheets by asymmetric cryorolling for microforming”, International Journal of Damage Mechanics, 23, 1077-1095.
  • Zhang, Z. L., Thaulow, C., Odegard, H. 2000. “A complete Gurson model approach for ductile fracture”, Engineering Fracture Mechanics, 67, 155-168.
  • Zhou, J. 2013. "Numerical Modeling of Ductile Fracture", Doktora Tezi. https://etd.ohiolink.edu/!etd.send_file?accession=akron1384774266&disposition=inline Son erişim tarihi: 07 Aralık 2018.
APA TEKOĞLU C, DURAN DURMUŞ H, NİELSEN K (2018). Sünek Metal Plakalarda Çatlak İlerleme Mekanizmalarının Nümerik ve Deneysel Metotlarla İncelenmesi. , 1 - 237.
Chicago TEKOĞLU Cihan,DURAN DURMUŞ Hatice,NİELSEN Kim Lau Sünek Metal Plakalarda Çatlak İlerleme Mekanizmalarının Nümerik ve Deneysel Metotlarla İncelenmesi. (2018): 1 - 237.
MLA TEKOĞLU Cihan,DURAN DURMUŞ Hatice,NİELSEN Kim Lau Sünek Metal Plakalarda Çatlak İlerleme Mekanizmalarının Nümerik ve Deneysel Metotlarla İncelenmesi. , 2018, ss.1 - 237.
AMA TEKOĞLU C,DURAN DURMUŞ H,NİELSEN K Sünek Metal Plakalarda Çatlak İlerleme Mekanizmalarının Nümerik ve Deneysel Metotlarla İncelenmesi. . 2018; 1 - 237.
Vancouver TEKOĞLU C,DURAN DURMUŞ H,NİELSEN K Sünek Metal Plakalarda Çatlak İlerleme Mekanizmalarının Nümerik ve Deneysel Metotlarla İncelenmesi. . 2018; 1 - 237.
IEEE TEKOĞLU C,DURAN DURMUŞ H,NİELSEN K "Sünek Metal Plakalarda Çatlak İlerleme Mekanizmalarının Nümerik ve Deneysel Metotlarla İncelenmesi." , ss.1 - 237, 2018.
ISNAD TEKOĞLU, Cihan vd. "Sünek Metal Plakalarda Çatlak İlerleme Mekanizmalarının Nümerik ve Deneysel Metotlarla İncelenmesi". (2018), 1-237.
APA TEKOĞLU C, DURAN DURMUŞ H, NİELSEN K (2018). Sünek Metal Plakalarda Çatlak İlerleme Mekanizmalarının Nümerik ve Deneysel Metotlarla İncelenmesi. , 1 - 237.
Chicago TEKOĞLU Cihan,DURAN DURMUŞ Hatice,NİELSEN Kim Lau Sünek Metal Plakalarda Çatlak İlerleme Mekanizmalarının Nümerik ve Deneysel Metotlarla İncelenmesi. (2018): 1 - 237.
MLA TEKOĞLU Cihan,DURAN DURMUŞ Hatice,NİELSEN Kim Lau Sünek Metal Plakalarda Çatlak İlerleme Mekanizmalarının Nümerik ve Deneysel Metotlarla İncelenmesi. , 2018, ss.1 - 237.
AMA TEKOĞLU C,DURAN DURMUŞ H,NİELSEN K Sünek Metal Plakalarda Çatlak İlerleme Mekanizmalarının Nümerik ve Deneysel Metotlarla İncelenmesi. . 2018; 1 - 237.
Vancouver TEKOĞLU C,DURAN DURMUŞ H,NİELSEN K Sünek Metal Plakalarda Çatlak İlerleme Mekanizmalarının Nümerik ve Deneysel Metotlarla İncelenmesi. . 2018; 1 - 237.
IEEE TEKOĞLU C,DURAN DURMUŞ H,NİELSEN K "Sünek Metal Plakalarda Çatlak İlerleme Mekanizmalarının Nümerik ve Deneysel Metotlarla İncelenmesi." , ss.1 - 237, 2018.
ISNAD TEKOĞLU, Cihan vd. "Sünek Metal Plakalarda Çatlak İlerleme Mekanizmalarının Nümerik ve Deneysel Metotlarla İncelenmesi". (2018), 1-237.