
Yeşil Robotik Hücre Çizelgeleme
Proje Grubu: TÜBİTAK MAG Proje Sayfa Sayısı: 0 Proje No: 215M845 Proje Bitiş Tarihi: 15.04.2018 Metin Dili: Türkçe İndeks Tarihi: 10-03-2023
Yeşil Robotik Hücre Çizelgeleme
Öz: Bu çalışmada endüstride kullanımı hızlı bir şekilde yaygınlaşan, buna paralel olarak da üzerine yapılan akademik çalışma sayısı aynı hızda artan robotik hücreler konu alınmıştır. Belirli sayıda makine ve bu makinelere hizmet veren bir malzeme elleçleme robotundan oluşan seri üretim sistemlerine robotik hücre adı verilmektedir. Sistemdeki robot üretilecek parçalar üzerinde herhangi bir işlem yapmamakta, makine yükleme/boşaltma ve makineler arası parça transferini gerçekleştirmektedir. Literatürdeki çalışmaların neredeyse tamamı üretim hızının maksimize edilmesini tek amaç olarak ele almaktadır. Bu alandaki çalışmaların tamamında robotun yaptığı bütün hareketleri mümkün olan en yüksek hızda gerçekleştirdiği varsayılmaktadır. Dolayısıyla robot hareketleriyle ilgili süreler sabit birer problem parametresidir. Halbuki robotların enerji tüketimleri hareket hızlarına bağlıdır ve yüksek hızda yapılan hareketler yüksek enerji tüketimine sebep olmaktadır. Diğer taraftan, hareketlerin en yüksek hızda yapılması bazı anlarda robotun bir sonraki hareket başlayana kadar boşta beklemesine sebep olmaktadır. Bu projede parça sıralaması, robot hareket sıralaması ve robot hareket hızlarının belirlenmesi problemleri beraberce ele alınmıştır. Proje kapsamında, i) Tek tip parça üreten tek tutuculu sistemler; ii) Tek tip parça üreten çift tutuculu sistemler ve iii) Farklı tip parça üreten tek tutuculu sistemler ayrı ayrı ele alınmıştır. Ele alınan sistemler için üretim hızı maksimizasyonu ve enerji tüketimi minimizasyonu beraberce ele alınmıştır. Dolayısıyla, her problem için 2- kriterli bir optimizasyon modeli kurulmuş ve başatlanmayan (etkin, nondominated) çözümler kümesinin belirlenmesi hedeflenmiştir. Tek tutuculu tek tip parça üreten 2 makineli sistemler için analitik bazı sonuçlar elde edilebilmiştir. Fakat daha çok makineli sistemler veya diğer hücre kombinasyonlarında karmaşıklık hızlı bir şekilde arttığı için analitik çözüm bulunması mümkün olmamıştır. Bu problemler için matematiksel modeller geliştirilmiştir. Karma Tamsayılı Doğrusal Olmayan yapıdaki bu modeller, çözüm süresini iyileştirmek için ikinci dereceden konik programlama formülasyonları olarak yeniden modellenmiştir. Geliştirilen bütün modeller çözdürülen örnek problemlerle doğrulanmıştır. İkinci dereceden konik modellerin çözüm sürelerini kısalttığı gözlenmekle beraber, problem büyüklüğü arttıkça bu modelle de makul sürelerde çözümelere ulaşmak mümkün olmamıştır. Bu sebeple, ele alınan her problem tipi için makul sürelerde kaliteli çözümler veren sezgisel/metasezgisel yöntemler geliştirilmiştir. Geliştirilen sezgiseller C++ ve Java dillerinden kodlanmış ve yapılan denemelerle doğrulanmış ve kapsamlı deneysel çalışmalarla performans testleri yapılmıştır. Ayrıca, daha maliyetli olan fakat üretim hızını artırma kapasitesi daha yüksek olan çift tutuculu robotlarla tek tutuculu robotlar enerji tüketimleri ve üretim hızları açılarından birbirleriyle karşılaştırılmıştır.
Anahtar Kelime: Konular:
Erişim Türü: Erişime Açık
- 1- Energy Conscious Robot Scheduling in Robotic Cell Manufacturing (Bildiri - Uluslararası Bildiri - Sözlü Sunum),
- [1] Sebastian Panek, Olaf Stursberg, and Sebastian Engell. Optimization of timed automata models using mixed-integer programming. In Formal Modeling And Analysis of Timed Systems, pages 73–87. Springer, 2003.
- 2- Robotic Cell Scheduling Considering Energy Consumption of Robot Moves (Bildiri - Uluslararası Bildiri - Sözlü Sunum),
- [2] Avenir Kobetski and Martin Fabian. Time-optimal coordination of flexible manufacturing systems using deterministic finite automata and mixed integer linear programming. Discrete Event Dynamic Systems, 19(3):287–315, 2009.
- 3- Energy Aware Scheduling of the Material Handling Robot in M-Machine Robotic Cells (Bildiri - Uluslararası Bildiri - Sözlü Sunum),
- [3] Annual survey of manufacturers. 2005.
- 4- Energy conscious scheduling of robotmoves in dual-gripper robotic cells (Bildiri - Uluslararası Bildiri - Sözlü Sunum),
- [4] Manufuture-strategic research agenda. ManuFuture Platform, 2006.
- 5- Tek Tutuculu Robotik Hücrelerde Enerji Tüketimi Üretim Hızı Ödünleşimi (Bildiri - Ulusal Bildiri - Sözlü Sunum),
- [5] Iain MacLeay. Digest of United Kingdom energy statistics 2010. The Stationery Office, 2010.
- 6- Çift Tutuculu Robotlu Hücrelerde Robot Hareket Hızlarının Ve Sıralamalarının Belirlenmesi (Bildiri - Ulusal Bildiri - Sözlü Sunum),
- [6] Energy Efficiency. Tracking industrial energy efficiency and co2 emissions. International Energy Agency, 34(2):1–12, 2007.
- 7- Green Scheduling in a Two-Machine Robotic Cell (Bildiri - Ulusal Bildiri - Sözlü Sunum),
- [7] http://www.eia.gov/consumption/manufacturing. visited on Dec. 2014.
- 8- ENERGY CONSCIOUS SCHEDULING IN A TWO-MACHINE ROBOTIC CELL (Tez (Araştırmacı Yetiştirilmesi) - Yüksek Lisans Tezi),
- [8] A Fysikopoulos, D Anagnostakis, K Salonitis, and G Chryssolouris. An empirical study of the energy consumption in automotive assembly. Procedia CIRP, 3:477–482, 2012.
- [9] T Chettibi, HE Lehtihet, M Haddad, and S Hanchi. Minimum cost trajectory planning for industrial robots. European Journal of Mechanics-A/Solids, 23(4):703–715, 2004.
- [10] J Franke, S Kreitlein, F Risch, and S Guenther. Energy-efficient production strategies and technologies for electric drives. In Industrial Technology (ICIT), 2013 IEEE International Conference on, pages 1898–1903. IEEE, 2013.
- [11] Sebastian Thiede. Energy efficiency in manufacturing systems. Springer Science & Business Media, 2012.
- [12] M Bornschlegl, M Drechsel, S Kreitlein, and J Franke. Holistic approach to reducing co2 emissions along the energy-chain (e-chain). In Sustainable Automotive Technologies 2013, pages 227–234. Springer, 2014.
- [13] Fridtjof Unander. Decomposition of manufacturing energy-use in iea countries: How do recent developments compare with historical long-term trends? Applied Energy, 84(7): 771–780, 2007.
- [14] Jörg Engelmann. Methoden und Werkzeuge zur Planung und Gestaltung energieeffizienter Fabriken. IBF, 2009.
- [15] Davis Meike and Leonids Ribickis. Energy efficient use of robotics in the automobile industry. In Advanced Robotics (ICAR), 2011 15th International Conference on, pages 507–511. IEEE, 2011.
- [16] Anton Rassolkin, Hardi Hoimoja, and Raivo Teemets. Energy saving possibilities in the industrial robot irb 1600 control. In 2011 7th International Conference-Workshop Compatibility and Power Electronics (CPE), 2011.
- [17] Zdenek Kolíbal and Anna Smetanova. Experimental implementation of energy optimization by robot movement. In 19th International Workshop on Robotics in Alpe- Adria-Danube Region (RAAD 2010), 2010.
- [18] Rolf Isermann. Mechatronic systems: fundamentals. Springer Science & Business Media, 2007.
- [19] Marcello Pellicciari, Angelo O Andrisano, Francesco Leali, and Alberto Vergnano. Engineering method for adaptive manufacturing systems design. International Journal on Interactive Design and Manufacturing (IJIDeM), 3(2):81–91, 2009.
- [20] Suresh P Sethi, Chelliah Sriskandarajah, Gerhard Sorger, Jacek Blazewicz, and Wieslaw Kubiak. Sequencing of parts and robot moves in a robotic cell. International Journal of Flexible Manufacturing Systems, 4(3 – 4):331–358, 1992.
- [21] Yves Crama and Joris Van De Klundert. Cyclic scheduling of identical parts in a robotic cell. Operations Research, 45(6):952–965, 1997.
- [22] Milind Dawande, Chelliah Sriskandarajah, and Suresh Sethi. On throughput maximization in constant travel-time robotic cells. Manufacturing & Service Operations Management, 4(4):296–312, 2002.
- [23] Leon van Os. The power of cyclic production. https://www.involvation.nl/en/articles/power-cyclic-production-2/ . Accessed: 2016-08-18.
- [24] IG Drobouchevitch, S Sethi, J Sidney, and Chelliah Sriskandarajah. A note on scheduling multiple parts in two-machine dual gripper robotic cell: Heuristic algorithm and performance guarantee. International Journal of Operations and Quantitative Management, 10(4):297–314, 2004.
- [25] R Neugebauer, M Putz, J Böhme, M Todtermuschke, and M Pfeifer. New aspects of energy consumption analysis in assembly processes and equipment. In Sustainable Manufacturing, pages 197–201. Springer, 2012.
- [26] A Barili, M Ceresa, and C Parisi. Energy-saving motion control for an autonomous mobile robot. In Industrial Electronics, 1995. ISIE’95., Proceedings of the IEEE International Symposium on, volume 2, pages 674–676. IEEE, 1995.
- [27] Milind W Dawande, H Neil Geismar, Suresh P Sethi, and Chelliah Sriskandarajah. Throughput optimization in robotic cells, volume 101. Springer Science & Business Media, 2007.
- [28] Alessandro Agnetis. Scheduling no-wait robotic cells with two and three machines. European Journal of Operational Research, 123(2):303–314, 2000.
- [29] Alessandro Agnetis and Dario Pacciarelli. Part sequencing in three-machine no-wait robotic cells. Operations Research Letters, 27(4):185–192, 2000.
- [30] Ada Che, Chengbin Chu, and Eugene Levner. A polynomial algorithm for 2-degree cyclic robot scheduling. European Journal of Operational Research, 145(1):31–44, 2003.
- [31] Nicholas G Hall and Chelliah Sriskandarajah. A survey of machine scheduling problems with blocking and no-wait in process. Operations research, 44(3):510–525, 1996.
- [32] Vladimir Kats and Eugene Levner. Cyclic scheduling in a robotic production line. Journal of Scheduling, 5(1):23–41, 2002.
- [33] Eugene Levner, Vladimir Kats, and Vadim E Levit. An improved algorithm for cyclic flowshop scheduling in a robotic cell. European Journal of Operational Research, 97 (3):500–508, 1997.
- [34] William D Hitz and Cecil R Stewart. Oxygen and carbon dioxide effects on the pool size of some photosynthetic and photorespiratory intermediates in soybean (glycine max [l.] merr.). Plant physiology, 65(3):442–446, 1980.
- [35] Yves Crama, Vladimir Kats, J Van de Klundert, and Eugene Levner. Cyclic scheduling in robotic flowshops. Annals of operations Research, 96(1-4):97–124, 2000.
- [36] Milind Dawande, H Neil Geismar, Suresh P Sethi, and Chelliah Sriskandarajah. Sequencing and scheduling in robotic cells: Recent developments. Journal of Scheduling, 8(5):387–426, 2005.
- [37] W Baumann, R Birner, J Haeusler, and R-P Hartmann. Operating and idle times for cyclic multi-machine servicing. Industrial Robot: An International Journal, 8(1):44–49, 1981.
- [38] DJ Medeiros, EF Watson, JS Carson, and MS Manivannan. Operational modeling & simulation in semiconductor manufacturing. In Proceedings of the 1998 Winter Simulation Conference, 1998.
- [39] SY Nof and D Hanna. Operational characteristics of multi-robot systems with cooperation. THE INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 27(3): 477–492, 1989.
- [40] Anthony S Kondoleon. Cycle time analysis of robot assembly systems. Society of Manufacturing Engineers, 1979.
- [41] BH Claybourn. Scheduling robots in flexible manufacturing cells. Chartered Mechanical Engineer, 30:36–40, 1983.
- [42] Jacek Blazewicz, Suresh P Sethi, and Chelliah Sriskandarajah. Scheduling of robot moves and parts in a robotic cell. École des hautes études commerciales, 1989.
- [43] R Logendran and C Sriskandarajah. Sequencing of robot activities and parts in two- machine robotic cells. International Journal of production research, 34(12):3447–3463, 1996.
- [44] N Brauner and G Finke. Final results on the one-cycle conjecture in robotic cells. Internal note, Laboratoire LEIBNIZ, Institut IMAG, Grenoble, France, 1997.
- [45] Nadia Brauner and Gerd Finke. On a conjecture about robotic cells: new simplified proof for the three-machine case. Infor-Information Systems and Operational Research, 37(1): 20–36, 1999.
- [46] N Brauner and G Finke. Optimal moves of the material handling system in a robotic flow-shop. In Proceedings IEPM, volume 99, pages 409–417, 1999.
- [47] Nadia Brauner and Gerd Finke. Cycles and permutations in robotic cells. Mathematical and Computer Modelling, 34(5):565–591, 2001.
- [48] Nadia Brauner, Gerd Finke, and Wieslaw Kubiak. Complexity of one-cycle robotic flow- shops. Journal of Scheduling, 6(4):355–372, 2003.
- [49] Nicholas G Hall, Hichem Kamoun, and Chelliah Sriskandarajah. Scheduling in robotic cells: Classification, two and three machine cells. Operations Research, 45(3):421–439, 1997.
- [50] Nicholas G Hall, Hichem Kamoun, and Chelliah Sriskandarajah. Scheduling in robotic cells: Complexity and steady state analysis. European Journal of Operational Research, 109(1):43–65, 1998.
- [51] Chelliah Sriskandarajah, Nicholas G Hall, and Hichem Kamoun. Scheduling large robotic cells without buffers. Annals of Operations Research, 76:287–321, 1998.
- [52] M Selim Akturk, Hakan Gultekin, and Oya Ekin Karasan. Robotic cell scheduling with operational flexibility. Discrete Applied Mathematics, 145(3):334–348, 2005.
- [53] Hakan Gultekin, M Selim Akturk, and Oya Ekin Karasan. Cyclic scheduling of a 2- machine robotic cell with tooling constraints. European Journal of Operational Research, 174(2):777–796, 2006.
- [54] Lei Lei and Tzyh-Jong Wang. Determining optimal cyclic hoist schedules in a single-hoist electroplating line. IIE transactions, 26(2):25–33, 1994.
- [55] Haoxun Chen, Chengbin Chu, and Jean-Marie Proth. Cyclic scheduling of a hoist with time window constraints. Robotics and Automation, IEEE Transactions on, 14(1):144– 152, 1998.
- [56] Ada Che, Chengbin Chu, and Feng Chu. Multicyclic hoist scheduling with constant processing times. Robotics and Automation, IEEE Transactions on, 18(1):69–80, 2002.
- [57] Raza Ur-Rehman, Stéphane Caro, Damien Chablat, and Philippe Wenger. Path placement optimization of manipulators based on energy consumption: application to the orthoglide 3-axis. arXiv preprint arXiv:0910.4000, 2009.
- [58] Cory Bryan, Mitch Grenwalt, and Adam Stienecker. Energy consumption reduction in industrial robots. In Proceedings ASEE North Central Sectional Conference, 2010.
- [59] A Smetanová. Optimization of energy by robot movement. Modern Machinery Science Journal, 3(1):172–176, 2010.
- [60] Davis Meike and Leonids Ribickis. Analysis of the energy efficient usage methods of medium and high payload industrial robots in the automobile industry. In 10th International Symposium "Topical Problems in the Field of Electrical and Power Engineering" Pärnu, Estonia, 2011.
- [61] M Pellicciari, G Berselli, F Leali, and A Vergnano. A method for reducing the energy consumption of pick-and-place industrial robots. Mechatronics, 23(3):326–334, 2013.
- [62] Alberto Vergnano, Carl Thorstensson, Bengt Lennartson, Petter Falkman, Marcello Pellicciari, Francesco Leali, and Stephan Biller. Modeling and optimization of energy consumption in cooperative multi-robot systems. Automation Science and Engineering, IEEE Transactions on, 9(2):423–428, 2012.
- [63] Avenir Kobetski and Martin Fabian. Velocity balancing in flexible manufacturing systems. In Discrete Event Systems, 2008. WODES 2008. 9th International Workshop on, pages 358–363. IEEE, 2008.
- [64] Kai Li, Xun Zhang, Joseph Y-T Leung, and Shan-Lin Yang. Parallel machine scheduling problems in green manufacturing industry. Journal of Manufacturing Systems, 38:98– 106, 2016.
- [65] Yi-Chi Wang, Ming-Jun Wang, and Sung-Chi Lin. Selection of cutting conditions for power constrained parallel machine scheduling. Robotics and Computer-Integrated Manufacturing, 2015.
- [66] Min Ji, Jen-Ya Wang, and Wen-Chiung Lee. Minimizing resource consumption on uniform parallel machines with a bound on makespan. Computers & Operations Research, 40 (12):2970–2974, 2013.
- [67] Dvir Shabtay and Moshe Kaspi. Parallel machine scheduling with a convex resource consumption function. European Journal of Operational Research, 173(1):92–107, 2006.
- [68] S Afshin Mansouri, Emel Aktas, and Umut Besikci. Green scheduling of a two-machine flowshop: Trade-off between makespan and energy consumption. European Journal of Operational Research, 248(3):772–788, 2016.
- [69] Jian-Ya Ding, Shiji Song, and Cheng Wu. Carbon-efficient scheduling of flow shops by multi-objective optimization. European Journal of Operational Research, 248(3):758– 771, 2016.
- [70] Wenwen Lin, DY Yu, Chaoyong Zhang, Xun Liu, Sanqiang Zhang, Yuhui Tian, Shengqiang Liu, and Zhanpeng Xie. A multi-objective teaching- learning-based optimization algorithm to scheduling in turning processes for minimizing makespan and carbon footprint. Journal of Cleaner Production, 101:337–347, 2015.
- [71] Dunbing Tang, Min Dai, Miguel A Salido, and Adriana Giret. Energy-efficient dynamic scheduling for a flexible flow shop using an improved particle swarm optimization. Computers in Industry, 81:82–95, 2016.
- [72] Min Dai, Dunbing Tang, Adriana Giret, Miguel A Salido, and Wei Dong Li. Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm. Robotics and Computer-Integrated Manufacturing, 29(5):418–429, 2013.
- [73] Hao Luo, Bing Du, George Q Huang, Huaping Chen, and Xiaolin Li. Hybrid flow shop scheduling considering machine electricity consumption cost. International Journal of Production Economics, 146(2):423–439, 2013.
- [74] AAG Bruzzone, D Anghinolfi, M Paolucci, and F Tonelli. Energy-aware scheduling for improving manufacturing process sustainability: a mathematical model for flexible flow shops. CIRP Annals-Manufacturing Technology, 61(1):459–462, 2012.
- [75] Christian Gahm, Florian Denz, Martin Dirr, and Axel Tuma. Energy-efficient scheduling in manufacturing companies: a review and research framework. European Journal of Operational Research, 248(3):744–757, 2016.
- [76] Adriana Giret, Damien Trentesaux, and Vittal Prabhu. Sustainability in manufacturing operations scheduling: a state of the art review. Journal of Manufacturing Systems, 37: 126–140, 2015.
- [77] Kuei-Tang Fang and Bertrand MT Lin. Parallel-machine scheduling to minimize tardiness penalty and power cost. Computers & Industrial Engineering, 64(1):224–234, 2013.
- [78] Bing Du, Huaping Chen, George Q Huang, and HD Yang. Preference vector ant colony system for minimising make-span and energy consumption in a hybrid flow shop. In Multi-objective Evolutionary Optimisation for Product Design and Manufacturing, pages 279–304. Springer, 2011.
- [79] Min Dai, Dunbing Tang, Yuchun Xu, and Weidong Li. Energy-aware integrated process planning and scheduling for job shops. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 229(1 suppl):13–26, 2015.
- [80] Corinne Subai, Pierre Baptiste, and Eric Niel. Scheduling issues for environmentally responsible manufacturing: The case of hoist scheduling in an electroplating line. International Journal of Production Economics, 99(1):74–87, 2006.
- [81] Liping Zhang, Xinyu Li, Liang Gao, Guohui Zhang, and Xiaoyu Wen. Dynamic scheduling model in fms by considering energy consumption and schedule efficiency. In Computer Supported Cooperative Work in Design (CSCWD), 2012 IEEE 16th International Conference on, pages 719–724. IEEE, 2012.
- [82] Gilles Mouzon and Mehmet B Yildirim. A framework to minimise total energy consumption and total tardiness on a single machine. International Journal of Sustainable Engineering, 1(2):105–116, 2008.
- [83] Mehmet Bayram Yildirim and Gilles Mouzon. Single-machine sustainable production planning to minimize total energy consumption and total completion time using a multiple objective genetic algorithm. IEEE transactions on engineering management, 59(4):585– 597, 2012.
- [84] ChenGuang Liu, Jing Yang, Jie Lian, WenJuan Li, Steve Evans, and Yong Yin. Sustainable performance oriented operational decision-making of single machine systems with deterministic product arrival time. Journal of Cleaner Production, 85:318– 330, 2014.
- [85] Hakan Gultekin, M Selim Akturk, and Oya Ekin Karasan. Bicriteria robotic cell scheduling. Journal of Scheduling, 11(6):457–473, 2008.
- [86] Hakan Gultekin, M Selim Akturk, and Oya Ekin Karasan. Bicriteria robotic operation allocation in a flexible manufacturing cell. Computers & operations research, 37(4):779– 789, 2010.
- [87] M Selim Akturk and Taylan Ilhan. Single cnc machine scheduling with controllable processing times to minimize total weighted tardiness. Computers & Operations Research, 38(4):771–781, 2011.
- [88] Zeynep Uruk, Hakan Gultekin, and M Selim Akturk. Two-machine flowshop scheduling with flexible operations and controllable processing times. Computers & Operations Research, 40(2):639–653, 2013.
- [89] Yongguo Mei, Yung-Hsiang Lu, Y Charlie Hu, and CS George Lee. Energy-efficient motion planning for mobile robots. In Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE International Conference on, volume 5, pages 4344–4349. IEEE, 2004.
- [90] John A Broderick. Energy and Mobility Management of a Ground Robot to Increase Operational Capacity. PhD thesis, University of Michigan, 2015.
- [91] M. Chemnitz, G. Schreck, and J. Krüger. Analyzing energy consumption of industrial robots. In ETFA2011, pages 1–4, 2011. doi: 10.1109/ETFA.2011.6059221.
- [92] Yves Crama and Joris Van de Klundert. Cyclic scheduling in 3-machine robotic flow shops. Journal of Scheduling, 2(1):35–54, 1999. doi: 10.1002/(SICI)1099- 1425(199901/02)2:1<35::AID-JOS15>3.0.CO;2-J.
- [93] S. P. Sethi, J. B. Sidney, and C. Sriskandarajah. Scheduling in dual gripper robotic cells for productivity gains. IEEE Transactions on Robotics and Automation, 17(3):324–341, 2001.
- [94] IG Drobouchevitch, S Sethi, J Sidney, and Chelliah Sriskandarajah. Scheduling dual gripper robotic cell: One-unit cycles. European Journal of Operational Research, 171(2): 598–631, 2006.
- [95] H Geismar, M Pinedo, and Chelliah Sriskandarajah. Robotic cells with parallel machines and multiple dual gripper robots: a comparative overview. IIE Transactions, 40(12):297– 314, 2008.
- [96] Chelliah Sriskandarajah, IG Drobouchevitch, S Sethi, and R Chandrasekaran. Scheduling multiple parts in a robotic cell served by a dual-gripper robot. Operations Research, 52(1):65–82, 2004.
- [97] H Geismar, Dawande M, and C Sriskandarajah. Throughput optimization in constant travel-time dual gripper robotic cells with parallel machines. Production and Operations Management, 14(2):311–328, 2006.
- [98] M Foumani and K Jenab. Cycle time analysis in reentrant robotic cells with swap ability. International Journal of Production Research, 50(22):6372–6387, 2012.
- [99] TE Lee. A review of scheduling theory and methods for semiconductor manufacturing cluster tools. In Proceedings of the 40th Conference on Winter Simulation, Miami, Florida, 2008.
- [100] H Geismar, U.V Manoj, A Sethi, C Sriskandarajah, and N Ramanan. Scheduling robotic cells served by a dual-arm robot. IIE Transactions, 44(3):230–248, 2012.
- [101] N Hall, C Potts, and Chelliah Sriskandarajah. Parallel machine scheduling with a common server. Discrete Applied Mathematics, 102(3):223–243, 2000.
- [102] H Geismar, C Sriskandarajah, and N Ramanan. Increasing throughput for robotic cells with parallel machines and multiple robots. IEEE Transactions on Automation Science and Engineering, 1(1):84–89, 2004.
- [103] E Gundogdu and H Gultekin. Scheduling in two-machine robotic cells with a self-buffered robot. IEEE Transactions, 48(2):170–191, 2015.
- [104] IG Drobouchevitch, N Geismar, and Chelliah Sriskandarajah. Throughput optimization in robotic cells with input and output machine buffers: A comparative study of two key models. European Journal of Operational Research, 206(3):623–633, 2010.
- [105] V Kats and Levner. A strongly polynomial algorithm for no-wait cyclic robotic flowshop scheduling. Operations Research Letters, 21(4):171–179, 1997.
- [106] V Kats and Levner. Minimizing the number of vehicles in periodic scheduling: The non- euclidean case. European Journal of Operational Research, 107(2):371–377, 1998.
- [107] Umit Bilge and Gunduz Ulusoy. A time window approach to simultaneous scheduling of machines and material handling system in an fms. Operations Research, 43(6):1058 – 1070, 1995.
- [108] Y.P. Aneja and H. Kamoun. Scheduling of parts and robot activities in a two machine robotic cell. Computers & Operations Research, 26(4):297 – 312, 1999.
- [109] Johann Hurink and Sigrid Knust. A tabu search algorithm for scheduling a single robot in a job-shop environment. Discrete Applied Mathematics, 119(1):181 – 203, 2002.
- [110] A. Soukhal and P. Martineau. Resolution of a scheduling problem in a flowshop robotic cell. European Journal of Operational Research, 161(1):62 – 72, 2005.
- [111] Jacques Carlier, Mohamed Haouari, Mohamed Kharbeche, and Aziz Moukrim. An optimization-based heuristic for the robotic cell problem. European Journal of Operational Research, 202(3):636 – 645, 2010.
- [112] Wassim Zahrouni and Hichem Kamoun. Sequencing and scheduling in a three-machine robotic cell. International Journal of Production Research, 50(10):2823 – 2835, 2012.
- [113] Muhammad Nawaz, E Emory Enscore, and Inyong Ham. Sequencing and scheduling in a three-machine robotic cell. Omega, 11(1):91 – 95, 1983.
- [114] G. Didem Batur, Oya Ekin Karasan, and M. Selim Akturk. Multiple part-type scheduling in flexible robotic cells. International Journal of Production Economics, pages 726 –740, 2012.
- [115] M.H. Fazel Zarandi, H. Mosadegh, and M. Fattahi. Two-machine robotic cell scheduling problem with sequence-dependent setup times. Computers & Operations Research, 40 (5):1420 – 1434, 2013.
- [116] Atabak Elmi and Seyda Topaloglu. Scheduling multiple parts in hybrid flow shop robotic cells served by a single robot. International Journal of Computer Integrated Manufacturing, 27(12):1144 – 1159, 2014.
- [117] Hakan Gultekin, Betul Coban, and Vahid Eghbal Akhlaghi. Cyclic scheduling of parts and robot moves in m-machine robotic cells. Computers & Operations Research, 90:161 – 172, 2018. doi: https://doi.org/10.1016/j.cor.2017.09.018.
- [118] Hiroshi Kise. On an automated two-machine flowshop scheduling problem with infinite buffer. Journal of the Operations Research Society of Japan, 34(3):354 –361, 1991.
- [119] Helman I. Stern and Gad Vitner. Scheduling parts in a combined production- transportation work cell. The Journal of the Operational Research Society, 41(7):625 – 632, 1990.
- [120] I. N. Kamalabadi, S. Gholami, and A. H. Mirzaei. Considering a cyclic multiple-part type three-machine robotic cell problem. In 2007 IEEE International Conference on Industrial Engineering and Engineering Management, pages 704 – 708, 2007.
- [121] M. Fathian, I. N. Kamalabad, M. Heydari, and H. Farughi. A petri net model for part sequencing and robot moves sequence in a 2-machine robotic cell. The Journal of Software Engineering and Applications, 04(11):603 – 608, 2011.
- [122] Jacques Carlier. Ordonnancements à contraintes disjonctives. RAIRO - Operations Research - Recherche Opérationnelle, 12(4):333–350, 1978.
APA | GÜLTEKİN H, GÜREL S (2018). Yeşil Robotik Hücre Çizelgeleme. , 1 - 0. |
Chicago | GÜLTEKİN Hakan,GÜREL Sinan Yeşil Robotik Hücre Çizelgeleme. (2018): 1 - 0. |
MLA | GÜLTEKİN Hakan,GÜREL Sinan Yeşil Robotik Hücre Çizelgeleme. , 2018, ss.1 - 0. |
AMA | GÜLTEKİN H,GÜREL S Yeşil Robotik Hücre Çizelgeleme. . 2018; 1 - 0. |
Vancouver | GÜLTEKİN H,GÜREL S Yeşil Robotik Hücre Çizelgeleme. . 2018; 1 - 0. |
IEEE | GÜLTEKİN H,GÜREL S "Yeşil Robotik Hücre Çizelgeleme." , ss.1 - 0, 2018. |
ISNAD | GÜLTEKİN, Hakan - GÜREL, Sinan. "Yeşil Robotik Hücre Çizelgeleme". (2018), 1-0. |
APA | GÜLTEKİN H, GÜREL S (2018). Yeşil Robotik Hücre Çizelgeleme. , 1 - 0. |
Chicago | GÜLTEKİN Hakan,GÜREL Sinan Yeşil Robotik Hücre Çizelgeleme. (2018): 1 - 0. |
MLA | GÜLTEKİN Hakan,GÜREL Sinan Yeşil Robotik Hücre Çizelgeleme. , 2018, ss.1 - 0. |
AMA | GÜLTEKİN H,GÜREL S Yeşil Robotik Hücre Çizelgeleme. . 2018; 1 - 0. |
Vancouver | GÜLTEKİN H,GÜREL S Yeşil Robotik Hücre Çizelgeleme. . 2018; 1 - 0. |
IEEE | GÜLTEKİN H,GÜREL S "Yeşil Robotik Hücre Çizelgeleme." , ss.1 - 0, 2018. |
ISNAD | GÜLTEKİN, Hakan - GÜREL, Sinan. "Yeşil Robotik Hücre Çizelgeleme". (2018), 1-0. |
- 1- Energy Conscious Robot Scheduling in Robotic Cell Manufacturing (Bildiri - Uluslararası Bildiri - Sözlü Sunum),
- 2- Robotic Cell Scheduling Considering Energy Consumption of Robot Moves (Bildiri - Uluslararası Bildiri - Sözlü Sunum),
- 3- Energy Aware Scheduling of the Material Handling Robot in M-Machine Robotic Cells (Bildiri - Uluslararası Bildiri - Sözlü Sunum),
- 4- Energy conscious scheduling of robotmoves in dual-gripper robotic cells (Bildiri - Uluslararası Bildiri - Sözlü Sunum),
- 5- Tek Tutuculu Robotik Hücrelerde Enerji Tüketimi Üretim Hızı Ödünleşimi (Bildiri - Ulusal Bildiri - Sözlü Sunum),
- 6- Çift Tutuculu Robotlu Hücrelerde Robot Hareket Hızlarının Ve Sıralamalarının Belirlenmesi (Bildiri - Ulusal Bildiri - Sözlü Sunum),
- 7- Green Scheduling in a Two-Machine Robotic Cell (Bildiri - Ulusal Bildiri - Sözlü Sunum),
- 8- ENERGY CONSCIOUS SCHEDULING IN A TWO-MACHINE ROBOTIC CELL (Tez (Araştırmacı Yetiştirilmesi) - Yüksek Lisans Tezi),