Kristalli Katı Yüzeylerde Kuantum Nokta Oluşumlarının Elektrik ve Gerinim Alanları Altında Modellenmesi

5 1

Proje Grubu: MAG Sayfa Sayısı: 0 Proje No: 315M222 Proje Bitiş Tarihi: 01.05.2018 Metin Dili: Türkçe İndeks Tarihi: 20-03-2020

Kristalli Katı Yüzeylerde Kuantum Nokta Oluşumlarının Elektrik ve Gerinim Alanları Altında Modellenmesi

Öz:
Nanoboyutlu aygıtların yapılarında meydana gelen küçük değişiklikler bu aygıtların mekanik, optik ve elektronik özelliklerini değiştirebilmektedir. Bu nedenle, kuantum noktalar gibi nanoyapıların üretilebilmesi bu tip yapılardaki yüzey ve arayüzeyleri kontrol edebilmemize yani bu yüzey ve arayüzeylerde meydana gelen değişikliklerin mekanizmalarını anlamamıza bağlıdır. Bu çalışma kapsamında, heteroepitaksiyel gerginliğe ve yön bağımlı özelliklere sahip ince filmlerde film/altlık arayüzey denge(sizlik) durumlarını ve kuantum noktaların oluşma ve evrilme kinetiklerini yöneten bir diferansiyel denklemlere elektrik alan eklenerek geliştirilmiştir. Geliştirilen bu denklem sayısal olarak çözümlenmiş ve kapsamlı bir simülasyon programı ortaya çıkarılmıştır. Hazırlanan bu program ile simülasyonlar yapılarak, sistemdeki gerilim değerlerinin ve uygulanan elektrik alanın QD oluşumuna etkileri ortaya çıkarılmıştır. Simülasyonlardan elde edilen veriler sonucunda, malzeme özelliklerine göre hangi dışsal kuvvet alanlarının uygulanması durumunda ne tür kararlı nanoyapılar elde edileceği hakkında bilgiler elde edilmiş ve bu bilgiler faz diyagramları şeklinde sunulmuştur. Bu proje sonucunda elde edilen bilgilerin, istenilen kullanım alanları için gerekli optimum özelliklere sahip kuantum nokta nanoyapıların tasarımına yardımcı olması beklenmektedir.
Anahtar Kelime: modelleme elektrik alan yönsellik yayınım yüzeyler arayüzeyler ince filmler Kuantum noktalar

Konular: Mühendislik, Biyotıp Nanobilim ve Nanoteknoloji Malzeme Bilimleri, Biyomalzemeler
Erişim Türü: Erişime Açık
  • AKYILDIZ O., Oren E.E., Ogurtani T.O., "Grain boundary grooving in bi-crystal thin films induced by surface drift-diffusion driven by capillary forces and applied uniaxial-tensile stresses” Philosophical Magazine, 92, 804-829 (2012).
  • 1- Theory and Simulation of Quantum Dot Formation in Heteroepitaxialy Grown Thin Films under External Forces (Bildiri - Uluslararası Bildiri - Sözlü Sunum),
  • ALCHALABI K., Zimin D., Kostorz G., Zogg H. "Self-assembled semiconductor quantum dots with nearly uniform sizes" Phys. Rev. Lett., 90, 026104 (2003).
  • 2- Design of Heteroepitaxialy Grown Quantum Dots Under External Force Fields (Bildiri - Uluslararası Bildiri - Sözlü Sunum),
  • AROUTIOUNIAN V., Petrosyan S., Khachatryan A. "Quantum dot solar cells", Journal of Applied Physics, 89, 4, 2268-2271 (2000).
  • 3- Kuantum noktaların elektrik ve gerinim alanları etkisi altında modellenmesi ve tasarımı (Tez (Araştırmacı Yetiştirilmesi) - Yüksek Lisans Tezi),
  • ASARO R.J., Tiller W.A. "Interface morphology development during stress corrosion cracking: Part I. via surface diffusion", Metallurgical Transactions, 3, 1789-1792 (1972).
  • AUSTING D.G., Tamura H., Tokura Y. "Single dot and strongly coupled double dots at high magnetic fields, Physica E, 10, 112–116 (2001).
  • BADAWI A. “Tuning the energy band gap of ternary alloyed Cd1-xPbxS quantum dots for photovoltaic application”, Superlattices and microstructures, 90, 124-131 (2016).
  • BAO W., Jiang W., Wang Y., Zhao Q. “A parametric finite element method for solid-state dewetting problems withanisotropic surface energies”, Journal of Computational Physics 330, 380–400 (2017).
  • BARIBEAU J.M., Wu X., Rowell N.L., Lockwood D.J., "Ge dots and nanostructures grown epitaxially on Si", Journal of Physics: Condensed Matter, 18 (8), R139–R174 (2006).
  • BARTH J.V., Costantini G.C., Kern K. "Engineering atomic and molecular nanostructures at surfaces", Nature, 437, 671-679 (2005).
  • BEER G., Smith I., Duenser C. "The boundary element method with programming: for engineers and scientists", Springer pp. 500 (2008).
  • BERBEZIER I., Ronda A., Portavoce A. "SiGe nanostructures: new insights into growth processes, Journal of Physics, 8283, 47-98 (2002).
  • BERREHAR J., Caroli C., Lapersonne-Meyer C., Schott M. "Surface patterns on singlecrystal films under uniaxial stress: experimental evidence for the Grinfel’d instability", Physical Review B, 46 (20), 487-495 (1992).
  • BIMBERG D., Pohl U.W. "Quantum dots: promises and accomplishments, Materials Today, 14 (9), 388-397 (2011).
  • BREBBIA C.A., Dominguez J., “Boundary elements an introductory course”, (McGraw Hill, New York, USA), p. 160 (1992).
  • BUALEV D.V., Geyler V.A., Margulis V.A. "Magnetic response for an ellipsoid of revolution in a magnetic field", Physical Review B, 62, 17 (2000).
  • BUALEV D.V., Geyler V.A., Margulis V.A. "Effect of the surface curvature on the magnetic moment and persistent currents in two-dimensional quantum rings and dots", Physical Review B, 69, 195313 (2004).
  • CHANG L.L. "Resonant tunneling in semiconductor double barriers", Applied Physics Letters, 24 (12), 593-595 (1974).
  • CHENG C-C., Meneou K., Cheng K.Y. "Effects of nano-pattern size on the property of InAs site-controlled quantum dots", J. Crystal Growth, 323, 180-182 (2011).
  • CHIU C-H. "Stable and uniform arrays of self-assembled nanocrystalline islands", Phys. Rev. B, 69, 165413 (2004).
  • CHIU C-H., Gao H. "Stress singularities along a cycloid rough surface", Int. J. Solids Struct., 30, 2981-3012 (1993).
  • DASGUPTA D., Sfyris G.I., Gungor M.R., Maroudas D. “Surface morphological stabilization of stressed crystalline solids by simultaneous action of applied electric and thermal fields”, Applied Physics Letters, 100 (14), 141902 (2012).
  • DINGLE R., Henry, C. H., US Patent, 3, 982, 207 (1976).
  • DIXIT G.K., Ranganathan M. “Modeling elastic anisotropy in strained heteroepitaxy”, J. Phys.: Condens. Matter, 29, 375001 (2017).
  • DU L., Maroudas D. “Current-induced surface roughness reduction in conducting thin films”, Applied Physics Letters, 110, 103103 (2017).
  • EAGLESHAM D.J., Cerullo M., "Dislocation-free Stranski-Krastanow Growth of Ge on Si(100)", Phys. Rev. Lett., 64 (16), 1943-1946 (1990).
  • EISENBERG H.R., Kandel D. "Formation, ripening, and stability of epitaxially strained island arrays", Phys. Rev. B, 71, 115423 (2005).
  • ENTIN M.V., Magaril L.I. "Spin-orbit interaction of electrons on a curved surface", Phys. Rev. B 64, 085330 (2001).
  • FLORO J., Chason E., Twesten R., Hwang R., Freund L. "SiGe coherent islanding and stress relaxation in the high mobility regime", Physical Review Letters, 79 (20), 3946–3949 (1997).
  • GAILLARD P., Aqua J.N., Frisch T. "Kinetic Monte Carlo simulations of the growth of silicon rermanium pyramids", Physical Review B, 87, 125310, 1-6 (2013).
  • GAMAGE C.G., Huang Z.F. "Nonlinear dynamics of island coarsening and stabilization during strained film heteroepitaxy", Physical Review E, 87, 022408, 1-6 (2013).
  • GARCIA J.M., Silveira J.P., Briones F. “Strain relaxation and segregation effects during selfassembled InAs quantum dots formation on GaAs (001)”, Applied Physics Letters, 77, 409 (2000).
  • GELLER M, Marenta A, Nowozina T, Feisea D, Pötschke K., Akçayab N., Öncana N., Bimberg D. “Towards an universal memory based on self-organized quantum dots“, Physica E: Low-dimensional Systems and Nanostructures, 40 (6), p 1811-1814 (2008).
  • GOLOVIN A., Levine M., Savina T., Davis S. "Faceting instability in the presence of wetting interactions: A mechanism for the formation of quantum dots, Physical Review B, 70 (23), 235342, 1-11 (2004).
  • GRINFEL'D M.A. "Instability of the separation boundary between a nonhydrostatically stressed elastic body via melt", Soviet Physics Doklady, 831, 1-8 (1986).
  • GRINFEL'D M.A., "The stress driven instability in elastic crystals: Mathematical models and physical manifestations", Journal of Nonlinear Science, 3, 35–83 (1993).
  • HAN P., Mihi A., Ferre-borrul J., Pallarés J., Marsal F.L. “Interplay between morphology, optical properties and electronic structure of solution processed Bi2S3 colloidal nanocrystals”, The Journal of Physical Chemistry C, 119, 10693-10699 (2015).
  • HERNÁNDEZ-SAZ J., Herrera M., Duguay S., Molina S.I. "Strain analysis for the prediction of the preferential nucleation sites of stacked quantum dots by combination of FEM and APT, Nanoscale Research Letters, 8 (1), 513, 1-6 (2013).
  • HU H., Gao H., Liu F. "Quantitative model of heterogeneous nucleation and growth of SiGe quantum dot molecules", Physical Review Letters, 109 (10), 106103, 1-5 (2012).
  • HU W.W., Sarveswaran K., Lieberman M., Bernstein G.H. "Sub-10 nm electron beam lithography using cold development of poly(methylmethacrylate)", Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 22 (4), 1711-1716 (2004).
  • HULL R., Gray J.L., Kammler M., Vandervelde T., Kobayashi T., Kumar P., Pernell T., Bean J.C., Floro J.A., Ross F.M. "Precision placement of heteroepitaxial semiconductor quantum dots", Materials Science ve Engineering B, 101 (1-3), 1–8 (2003).
  • JBARA S.A., Othaman Z., Saeed M.A. “Effect of size and indium-composition on linear and non-linear optical absorption of InGaN/GaN lens-shaped quantum dot”, Chinese Physics B, 25, 5,057801 (2016).
  • JESSON D.E., Chen K.M., Pennycook S.J. "Mechanisms of strain induced roughening and dislocation multiplication in SiGe thin films, Journal of Electronic, 26 (9), 1039-1047 (1997).
  • KHENNER M., "Height transitions, shape evolution, and coarsening of equilibrating quantum nanoislands, Modelling and Simulation in Materials Science and Engineering, 25, 8, 085003 (2017).
  • KIENZLE O., Ernst F., Rühle M., Schmidt O.G., Eberl K., "Germanium ‘quantum dots’ embedded in silicon: quantitative study of self-alignment and coarsening", Applied Physics Letters, 74 (2), 269-274 (1999).
  • KIRSTAEDTER N., Schmidt O.G., Ledentsov N.N., Bimberg D., Ustinov V.M., Egorov A.Y., Zhukov A.E., Maximov M.V., Kopev P.S., Alferov Z.I. "Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers", Applied Physics Letters, 69, 9, 1226-1228 (1996).
  • KUKTA R.V., Freund L.B. "Minimum energy configuration of epitaxial material clusters on a lattice-mismatched substrate", Journal of the Mechanics ve Physics of Solids, 45 (11- 12), 1835–1860 (1997).
  • KUMAR O., Kaur M. "Single electron transistors: applications & problems, Int. J. VLSI Design & Communication Systems, 1, 24-29 (2010).
  • KUMAR A., Dasgupta D., Maroudas D. “Surface nanopattern formation due to currentinduced homoepitaxial nanowire edge instability”, Applied Physics Letters, 109, 113106 (2016a).
  • KUMAR A. Dasgupta D., Dimitrakopoulos C., Maroudas D. “Current-driven nanowire formation on surfaces of crystalline conducting substrates”, Applied Physics Letters, 108, 193109 (2016b).
  • KONGKANAND A., Tvrdy K., Takechi K., Kuno M.K., Kamat P.V. "Quantum dot solar cells: tuning photoresponse through size and shape control of CdSe-TiO2 Architecture", Journal of the American Chemical Society, 130, 4007–4015 (2008).
  • KURYLIUK V.V., Korotchenkov O.A. "Features of the stress-strain state of Si/SiO2/Ge heterostructures with germanium nanoislands of a limited density", Semiconductors, 47 (8), 1031–1036 (2013).
  • KORZEC M.D., Muench A., Wagner B. “Anisotropic surface energy formulations and their effect on stability of a growing thin film”, Interfaces and Free Boundaries, 14 (4), 545-567 (2012).
  • KRISHNAMURTHY R., Srolovitz D.J. "Film/substrate interface stability in thin films" J. Appl. Phys., 99, 043504 (2006).
  • KROUTVAR M., Zrenner A., Ducommun Y., Finley J.J., Abstreiter G. "Wavelength selective data storage in InGaAs–GaAs quantum dots", Physica Status Solidi (b), 238, 2, 345– 348 (2003).
  • LEDENTSOV N.N., Grundmann M., Kirstaedter N. "Luminescence and structural properties of (In,Ga)As/GaAs quantum dots.” Proc. 22nd Int. Conf. Phys., 1855, (1994).
  • LEE S., Wang L., Lu W. "Formation of ordered nanodroplet chains on a solid surface by enhanced surface diffusion and shadow effect", Surface Science, 606 (5-6), 659–663 (2012).
  • LEONARD D., Pond K., Petroff P.M., P.M. "Critical layer thickness for self-assembled InAs islands on GaAs, Physical Review B, 50 (16), 1-9 (1994).
  • LEONARD D., Krishnamurthy M., Reaves C.M., Denbaars S.P., Petroff P.M., "Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces", Appl. Phys. Lett., 63 (23), 3203-3205 (1993).
  • LEVINE M.S., Golovin A.A., Davis S.H., Voorhees P.W. "Self-assembly of quantum dots in a thin epitaxial film wetting an elastic substrate" Phys. Rev. B, 75, 205312 (2007).
  • LIAO X., Xiao J., Ni Y., Li C., Chen X. "Self-assembly of islands on spherical substrates by surface instability", American Chemical Society Nano, 11, 2611−2617 (2017).
  • LIU P., Zhang Y.W., Lu C. "Coarsening kinetics of heteroepitaxial islands in nucleationless Stranski-Krastanov growth" Phys. Rev. B, 6, 035402 (2003).
  • LOZOVOY K., Alexander V.V, Andrey P.K, Vadim G.S., “Comparative Analysis of Pyramidal ve Wedge-Like Quantum Dots Formation Kinetics in Ge/Si(001) System.” Surface Science, 619, 1–4 (2014).
  • LU W., Rimberg J., Maranowski K.D., Gossard C., "Single-electron transistor strongly coupled to an electrostatically defined quantum dot, Applied Physics Letters, 77 (17), 2746-2751 (2000).
  • LUQUE A. "Will we exceed 50% efficiency in photovoltaics?" J. Applied Physics, 110, 031301 (2011).
  • MATHEWS J.H., Numerical Methods for Mathematics, Science and Engineering (PrenticeHall International Edition, New Jersey, USA), p. 148 (1992).
  • MEDHEKAR N.V., Shenoy V.B. "Shape dynamics in anisotropically strained two-dimensional self-assembling systems", J. Appl. Phys., 103, 063523 (2008).
  • MO Y.W., Savage D.E., Swartzentruber B.S., Lagally M.G. "Kinetic pathway in StranskiKrastanov growth of Ge on Si (001)", Physical Review Letters, 65 (8), 1020-1023 (1990).
  • MONTALENTI F., Raiteri P., Migas D., Känel von H., Rastelli A., Manzano C., Costantini G., “Atomic-scale pathway of the pyramid-to-dome transition during Ge growth on Si(001).” Physical Review Letters, 93 (21), 216102, 1-4 (2004).
  • NISHIGUCHI T., Mitsuhiro N., Koji N., Toshiyuki I., Shigehiro N. "Heteroepitaxial growth of (111) 3C–SiC on well-lattice-matched (110) Si substrates by chemical vapor deposition", Applied Physics Letters, 84 (16), 3082, 1-5 (2004).
  • NORRIS D.J., Bawendi M.G., “Measurement and assaignment of size-dependent optical spectrum in CdSe quantum dots”, Physical Review B, 53, 24 (1995).
  • OGURTANI T.O., Oren E.E. "Computer simulation of void growth dynamics under the action of electromigration and capillary forces in narrow thin interconnects” Journal of Applied Physics, 90 (3), 1564-1572 (2001).
  • OGURTANI T.O., Oren E.E. "Irreversible thermodynamics of triple junctions during the intergranular void motion under the electromigration forces, International Journal of Solids ve Structures, 42 (13) (June), 3918–3952 (2005).
  • OGURTANI T.O. "Mesoscopic nonequilibrium thermodynamics of solid surfaces & interfaces with triple junction singularities under the capillary and electromigration forces in anisotropic 3-D space", The Journal of Chemical Phys., 124 (14), 144706, 1-12 (2006).
  • OGURTANI T.O., Celik A., Oren E.E. "Morphological evolution in a strained-heteroepitaxial solid droplet on a rigid substrate: dynamical simulations", Journal of Applied Physics, 108 (6), 063527, 1-16 (2010a).
  • OGURTANI T.O., Celik A., Oren E.E. "Generic role of the anisotropic surface free energy on the morphological evolution in a strained-heteroepitaxial solid droplet on a rigid substrate", Journal of Applied Physics, 108 (6), 103516, 1-14 (2010b).
  • OZKAN C.S., Nix W.D., Gao H.J. "Strain relaxation and defect formation in heteroepitaxial Si1-xGex films via surface roughening induced by controlled annealing experiments", Applied Physics Letters, 70, 17, 2247-2249 (1997).
  • PARİS F., Canas J., (2001) , "Boundary Element Method : Fundamentals and Applications"
  • PATELLA F., Arciprete F., Fanfoni M., Balzarotti A., Placidi E. "Apparent critical thickness vs temperature for InAs quantum dot growth on GaAs(001), Applied Physics Letters, 88 (16), 161903, 1-3 (2006).
  • PETROFF P.M. "Toward quantum well wires: fabrication and optical properties.” Applied Physics Letters, 41 (7), 635-638 (1982).
  • PLASS R.A., Bartelt N.C., Kellogg G.L. "Self assembly in the Pb on Cu(111) surface system", The American Chemical Society, 222, U22-U22, 2 (2001).
  • POHL K., Figuera J., Bartelt J.H., Hwang R.Q., Thermal vibrations of a two-dimensional vacancy island crystal in a strained metal film", Surface Science, 433, 506-511 (1999).
  • POLITI P., Grenet G., Marty A., Ponchet A., Villain J. "Instabilities in crystal growth by atomic or molecular beams", Physics Reports, 324, 271-404 (2000).
  • POPESCU V., Bester G., Hanna M.C., Norman A.G., Zunger A. "Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In,Ga)As/Ga(As,P) quantum dot solar cells", Physical Review B, 78, 205321 (2008).
  • RAFFAELLE R.P., Sinharoy S., Andersen J., Wilt D., Bailey S.G. "Multi-junction solar cell spectral tuning with quantum dots", Proceedings of the IEEE World Conference on Photovoltaic Energy Conversion, New York, 1, 162–166 (2006).
  • RAVISWARAN A., Chuan-Pu L., Kim J., Cahill D., Gibson J. "Evolution of coherent islands during strained-layer Volmer-Weber growth of Si on Ge(111)", Physical Review B, 63 (12), 125314, 1-5 (2001).
  • REED M.A., Randall J.N., Aggarwal R.J., Matyi R.J. Moore T.M., Wetsel A.E. "Observation of discrete electronic states in zero-dimensional semiconductor nanostructure", Physical Review Letters, 60 (6), 535-537 (1988).
  • ROSS F.M., Tersoff J., Tromp R.M. "Coarsening of self-assembled Ge quantum dots on Si(001)" Phys. Rev. Lett., 80, 984-987 (1998).
  • SCALARI G, Walther, C., Fischer, M., Terazzi, R., Beere, H., Ritchie, D., Faist, J., “THz and sub-THz quantum cascade lasers”, Laser & Photonics Reviews, 3 (1-2) 45-66 (2009).
  • SCHALLER R.D., Klimov, V.I., "High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion, Physical Review Letters, 92, 186601 (2004).
  • SFYRIS G.I., Gungor M.R., Maroudas D. "The effect of a compliant substrate on the electromigration-driven surface morphological stabilization of an epitaxial thin film, Journal of Applied Physics, 111, 2 (2012).
  • SHALEEV M.V., Novikov A.V., Yurasov D.V. "Transition from the two-to three-dimensional growth of Ge films upon deposition onto relaxed SiGe/Si (001) buffer layers, Semiconductors, 47 (3), 427-432 (2013).
  • SHKLYAEV A.A., Budazhapova A.E. “Critical conditions for SiGe island formation during Ge deposition on Si(100) at high temperatures”, Materials Science in Semiconductor Processing, 57 18-23 (2017).
  • SITNIKOV S.V., Kosolobov S.S., Latyshev, A.V. “Nucleation of two-dimensional islands on Si (111) during high-temperature epitaxial growth”, Semiconductors, 51 (2), 203–206 (2017).
  • SNYDER C.W., Orr B.G., Kessler D., Sander L.M. "Effect of strain on surface morphology in highly strained InGaAs films", Phys. Rev. Lett., 66 (23), 3032-3035 (1991).
  • SPENCER B.J. "Asymptotic derivation of the glued-wetting-layer model and contact-angle condition for Stranski-Krastanow islands" Phys. Rev. B, 59 (3), 2011-2017 (1999).
  • SPENCER B.J., Tersoff J. “Symmetry breaking in shape transitions of epitaxial quantum dots", Physical Review B, 87 (16), 161301, 1-5 (2013).
  • SROLOVITZ D.J. "On the stability of surfaces of stressed solids", Acta Metallurgica, 37 (2), 621–625 (1989).
  • STANGL J., Holy V., Bauer G. "Structural properties of self-organized semiconductor nanostructures", Reviews of Modern Physics, 76, 725-783 (2004).
  • SURRENTE A., Carron R., Gallo P., Rudra A., Dwir B., Kapon E. “Self-formation of hexagonal nanotemplates for growth of pyramidal quantum dots by metalorganic vapor phase epitaxy on patterned substrates”, Nano Research, 9 (11): 3279–3290 (2016).
  • SZWEDA R., "Trends in the market for diode laser substrates", The Advanced Semiconductor Magazine, 14, 9 (2001).
  • TANG M.C., Chen S.M., Wu J., Jiang Q., Kennedy K., Jurczak P., Liao M.Y., Beanland R., Seeds A., Liu H.Y. `Optimizations of defect filter layers for 1.3-mu InAs/GaAs quantumdot lasers monolithically grown on Si substrates, IEEE Journal Of Selected Topics In Quantum Electronics, 22, 6 (2016).
  • TEKALIGN W.T., Spencer B.J. "Evolution equation for a thin epitaxial film on a deformable substrate", Journal of Applied Physics, 96 (10), 5505-5512 (2004).
  • TEKALIGN W.T., Spencer B.J. "Thin-film evolution equation for a strained solid film on a deformable substrate: Numerical steady states, Journal of Applied Physics, 102 (7), 073503, 1-7 (2007).
  • TERSOFF J., LeGoues F.K. "Competing relaxation mechanism in strained layers", Physical Review Letters, 72 (22), 3570–3574 (1994).
  • TOKAR V.I., Dreyssé H. "Nucleation of size calibrated three-dimensional nanodots in atomistic model of strained epitaxy: a Monte Carlo study", Journal of Physics: Condensed Matter, 25, 045001, 1-10 (2013).
  • TOMITORI M., Watanabe K., Kobayashi M. "Layered heteroepitaxial growth of germanium on Si (015) observed by scanning tunneling microscopy", Surface Science, 6028 (113), 214-222 (1994).
  • TOMIC S., Quantum Dot solar Cells, Springer (2014).
  • TÓTH G., Craig S.L. "Quantum computing with quantum-dot cellular automata, Physical Review A, 63 (5), 052315, 1-4 (2001).
  • TROMP R.M., Ross F.M., Reuter M.C. "Instability-driven SiGe island growth, Physical Review Letters, 84, 4641-4644, (2000).
  • VASTOLA G., Zhang Y.W., Shenoy B.J. "Experiments and modeling of alloying in selfassembled quantum dots", Current Opinion in Solid State and Materials Science, 16 (2) (April), 64–70 (2012).
  • VOSSMEYER T., Katsikas L., Giersig M., Popovich G., Diesner K., Chemseddine A., Eychmüller A., Weller H. “CdS nanoclusters: synthesis, characterization, size dependant oscillator strenght, temperature shift of the excitonic transition energy and reversible absorbance shift”, The Journal of Physical Chemistry, 98, 7665-7673 (1994).
  • WANG G., Fafard S., Leonard D., Bowers J.E., Merz J.L., Petroff P.M. "Time resolved optical characterization of InGaAs/GaAs quantum dots, Appl. Phys. Lett., 64 (21), 2815-2817 (1994).
  • WEI C., Spencer B.J. “Asymmetric shape transitions of epitaxial quantum dots” Proceedings of the Royal Society A 472, 20160262 (2016).
  • WIEBACH T., Schmidbauer M., Hanke M., "Strain and composition in SiGe nanoscale islands studied by x-ray scattering", Physical Review B, 61 (8), 5571–5578 (2000).
  • XU X., Aqua J.N., Frisch T., "Growth of a strained epitaxial film on a patterned substrate", Comptes Rendus Physique, 14, 199-207 (2013).
  • XU X., Aqua J.N., "Quantum dot growth on a stripe-pattern", Thin Solid Films, 543, 7–10 (2013).
  • YIN Y., Alivisatos A.P., "Colloidal nanocrystal synthesis and the organic-inorganic interface", Nature, 437, 664-670 (2005).
  • YOUNG T. "An essay on the cohesion of fluids", Philos. Trans. R. Soc. London, 95, 65-87 (1805).
  • ZELA V, Pietzonka I., Sass T., Thelander C., Jeppesen S., Seifert W. "Unimodal domeshaped island population of Ge/Si by step-wise growth in UHV-CVD", Physica E: LowDimensional Systems ve Nanostructures, 13 (2-4), 1013–1017 (2002).
  • ZHANG Y.W., Bower F., "Three-dimensional analysis of shape transitions in strainedheteroepitaxial islands", Applied Physics Letters, 78 (18), 2706-2713 (2001).
  • ZHANG Y.W., Bower F., "Numerical simulations of island formation in a coherent strained epitaxial thin film system", Journal of the Mechanics ve Physics of Solids, 47, 2273– 2297 (1999).
  • ZHOU P., Wise S., Li X., Lowengrub J., "Coarsening of elastically stressed, strongly anisotropic driven thin films, Physical Review E, 85 (6), 061605, 1-17 (2012).
APA ÖREN E, OĞURTANI Ö, ÇELİK A (2018). Kristalli Katı Yüzeylerde Kuantum Nokta Oluşumlarının Elektrik ve Gerinim Alanları Altında Modellenmesi. , 1 - 0.
Chicago ÖREN Ersin Emre,OĞURTANI Ömer Tarık,ÇELİK Aytaç Kristalli Katı Yüzeylerde Kuantum Nokta Oluşumlarının Elektrik ve Gerinim Alanları Altında Modellenmesi. (2018): 1 - 0.
MLA ÖREN Ersin Emre,OĞURTANI Ömer Tarık,ÇELİK Aytaç Kristalli Katı Yüzeylerde Kuantum Nokta Oluşumlarının Elektrik ve Gerinim Alanları Altında Modellenmesi. , 2018, ss.1 - 0.
AMA ÖREN E,OĞURTANI Ö,ÇELİK A Kristalli Katı Yüzeylerde Kuantum Nokta Oluşumlarının Elektrik ve Gerinim Alanları Altında Modellenmesi. . 2018; 1 - 0.
Vancouver ÖREN E,OĞURTANI Ö,ÇELİK A Kristalli Katı Yüzeylerde Kuantum Nokta Oluşumlarının Elektrik ve Gerinim Alanları Altında Modellenmesi. . 2018; 1 - 0.
IEEE ÖREN E,OĞURTANI Ö,ÇELİK A "Kristalli Katı Yüzeylerde Kuantum Nokta Oluşumlarının Elektrik ve Gerinim Alanları Altında Modellenmesi." , ss.1 - 0, 2018.
ISNAD ÖREN, Ersin Emre vd. "Kristalli Katı Yüzeylerde Kuantum Nokta Oluşumlarının Elektrik ve Gerinim Alanları Altında Modellenmesi". (2018), 1-0.
APA ÖREN E, OĞURTANI Ö, ÇELİK A (2018). Kristalli Katı Yüzeylerde Kuantum Nokta Oluşumlarının Elektrik ve Gerinim Alanları Altında Modellenmesi. , 1 - 0.
Chicago ÖREN Ersin Emre,OĞURTANI Ömer Tarık,ÇELİK Aytaç Kristalli Katı Yüzeylerde Kuantum Nokta Oluşumlarının Elektrik ve Gerinim Alanları Altında Modellenmesi. (2018): 1 - 0.
MLA ÖREN Ersin Emre,OĞURTANI Ömer Tarık,ÇELİK Aytaç Kristalli Katı Yüzeylerde Kuantum Nokta Oluşumlarının Elektrik ve Gerinim Alanları Altında Modellenmesi. , 2018, ss.1 - 0.
AMA ÖREN E,OĞURTANI Ö,ÇELİK A Kristalli Katı Yüzeylerde Kuantum Nokta Oluşumlarının Elektrik ve Gerinim Alanları Altında Modellenmesi. . 2018; 1 - 0.
Vancouver ÖREN E,OĞURTANI Ö,ÇELİK A Kristalli Katı Yüzeylerde Kuantum Nokta Oluşumlarının Elektrik ve Gerinim Alanları Altında Modellenmesi. . 2018; 1 - 0.
IEEE ÖREN E,OĞURTANI Ö,ÇELİK A "Kristalli Katı Yüzeylerde Kuantum Nokta Oluşumlarının Elektrik ve Gerinim Alanları Altında Modellenmesi." , ss.1 - 0, 2018.
ISNAD ÖREN, Ersin Emre vd. "Kristalli Katı Yüzeylerde Kuantum Nokta Oluşumlarının Elektrik ve Gerinim Alanları Altında Modellenmesi". (2018), 1-0.