Uçucu Kül ve Akışkanlaştırıcı Katkılı Derin Karıştırma Kolonlarının Performansını Etkileyen Faktörlerin Model Deneylerle Araştırılması

4 9

Proje Grubu: MAG Sayfa Sayısı: 443 Proje No: 217M946 Proje Bitiş Tarihi: 01.05.2020 Metin Dili: Türkçe İndeks Tarihi: 29-03-2021

Uçucu Kül ve Akışkanlaştırıcı Katkılı Derin Karıştırma Kolonlarının Performansını Etkileyen Faktörlerin Model Deneylerle Araştırılması

Öz:
Bu proje ile killi bir zeminde imal edilen uçucu kül katkılı derin karıstırma kolonlarının (DKK) performansını etkileyen parametreler arastırılmıstır. Deneysel çalısmalar, derin karıstırma makinesiyle imal edilen kolonlar (büyük ölçekli DKK) ve mikserle hazırlanan zemin-enjeksiyon karısımları (küçük ölçekli DKK) üzerinde yürütülmüstür. Deneysel çalısmaların tasarımı Taguchi yöntemi kullanılarak yapılmıstır. Her bir arastırma alanında ve ilgili kür süreleri sonunda DKK?nın performans degerleri belirlenerek elde edilen sonuçlar S/N ve çok degiskenli varyans analizleri (ANOVA) ile degerlendirilmis, regresyon analizleri ile matematiksel modeller kurulmus, sonrasında optimizasyon çalısmaları yürütülmüstür. Büyük ölçekli DKK imalatlarının yapılabilmesi için öncesinde homojen ve sürekli DKK olusumu için gerekli imalat parametreleri arastırılmıstır. Optimum imalat parametreleri olarak; çimento dozajı 325 kg/m3, karıstırma bıçaklarının dönme hızı 80 devir/dk, enjeksiyon deliklerinin çapı 3 mm ve zeminin likitlik indisi 1 seklinde belirlenmistir. Uçucu kül katkılı DKK tasarımlarında 7, 28 ve 56 gün kür süreleri sonunda DKK?nın serbest basınç (qu) ve üç eksenli basınç dayanımları (quu), zemin iyilestirme derecesi (RI), sıkısma indisi (Cc) ve permeabilite katsayısı (k) degerleri belirlenmistir. DKK performansının en iyi oldugu durum için optimum imalat parametreleri; baglayıcı dozajı 425 kg/m3, uçucu kül oranı %40, süper akıskanlastırıcı katkı oranı %3, su/baglayıcı oranı 0.8 ve zeminin likitlik indisi 1 olarak belirlenmistir. DKK uygulamalarında %40 uçucu kül kullanılması ile çimento kullanımı ve enjeksiyon maliyeti %40 oranında azalmıs olacaktır. Küçük ölçekli DKK?nın dayanım performansı büyük ölçekli DKK?nın performansına göre qu ve quu degerleri bakımından sırasıyla %40 ve %30 daha fazla iken, konsolidasyon ve permeabilite özelliklerini temsil eden Cc ve k degerlerine göre sırasıyla %20 ve %45 daha az elde edilmistir. Küçük ve büyük ölçekli DKK tasarımlarında; kür süresi (t), baglayıcı faktörü (?) ve içerigi (aw) arttıgında qu, quu ve RI artarken, Cc ve k azalmaktadır. Karısımın toplam su/baglayıcı oranı (WT:Wb) ve/veya likitlik indisi (IL,mix) arttıkça qu ve quu azalırken, Cc ve k artmaktadır. DKK performansının en iyi oldugu durum IL,mix=(1.2-1.3)IL oldugunda elde edilmistir. SEM görüntüleri ile DKK içyapısındaki boslukların durumu, C-S-H, C-A-H jelleri, CH plakaları ve etrenjit ignelerinin olusumu gözlenerek DKK performansı ile iliskilendirilmistir. Deneysel ve istatistiki çalısmalardan elde edilen sonuçlar literatürle uyumlu olmustur.
Anahtar Kelime: kil uçucu kül taguchi yöntemi optimizasyon derin karıstırma kolonu

Konular: İnşaat Mühendisliği
Erişim Türü: Erişime Açık
  • ACI (American Concrete Institute), 2014, ACI Committee 232.3R-14: Report on high-volume fly ash concrete for structural applications, American Concrete Institute, Farmington Hills, MI, USA.
  • Alaka, H. A. ve Oyedele, L. O., 2016, High volume fly ash concrete: The practical impact of using superabundant dose of high range water reducer, Journal of Building Engineering, 8:81.90.
  • Al-Tabba, A. and Evans, C. W., 1998, Pilot in situ auger mixing treatment of a contaminated site.Part I: Treatability study, Proceedings of Institution of Civil Engineers, Journal of Geotechnical Engineering, Vol. 131, No. 1, pp. 52.59.
  • ASTM C128-15, 2015, Standard test method for relative density (specific gravity) and absorption of fine aggregate, ASTM International, West Conshohocken, PA. ASTM C150/C150M-17, 2017, Standard specification for portland cement, ASTM International, West Conshohocken, PA.
  • ASTM C191-13, 2013, Standard test methods for time of setting of hydraulic cement by vicat needle, ASTM International, West Conshohocken, PA.
  • ASTM C219-19a, 2019, Standard terminology relating to hydraulic and other inorganic cements, ASTM International, West Conshohocken, PA.
  • ASTM C511-13, 2013, Standard specification for mixing rooms, moist cabinets, moist rooms, and water storage tanks used in the testing of hydraulic cements and concretes, ASTM International, West Conshohocken, PA.
  • ASTM C618-19, 2019, Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete, ASTM International, West Conshohocken, PA.
  • ASTM D698-12e2, 2012, Standard test methods for laboratory compaction characteristics of soil using standard effort (12 400 ft-lbf/ft3 (600 kN-m/m3)), ASTM International, West Conshohocken, PA.
  • ASTM C940-16, 2016, Standard test method for expansion and bleeding of freshly mixed grouts for preplaced-aggregate concrete in the laboratory, ASTM International, West Conshohocken, PA.
  • ASTM D6910/D6910M-19, 2019, Standard test method for marsh funnel viscosity of construction slurries, ASTM International, West Conshohocken, PA.
  • ASTM D1140-17, 2017, Standard test methods for determining the amount of material finer than 75-ƒÊm (No. 200) sieve in soils by washing, ASTM International, West Conshohocken, PA.
  • ASTM D2166/D2166M-16, 2016, Standard test method for unconfined compressive strength of cohesive soil, ASTM International, West Conshohocken, PA.
  • ASTM D2216-19, 2019, Standard test methods for laboratory determination of water (moisture) content of soil and rock by mass, ASTM International, West Conshohocken, PA.
  • ASTM D2435/D2435M-11, 2011, Standard test methods for one-dimensional consolidation properties of soils using .ncremental loading, ASTM International, West Conshohocken, PA.
  • ASTM D2487-11, 2011, Standard practice for classification of soils for engineering purposes (Unified Soil Classification System), ASTM International, West Conshohocken, PA.
  • ASTM D2850-15, 2015, Standard test method for unconsolidated-undrained triaxial compression test on cohesive soils, ASTM International, West Conshohocken, PA.
  • ASTM D4318-17e1, 2017, Standard test methods for liquid limit, plastic limit, and plasticity .ndex of soils, ASTM International, West Conshohocken, PA.
  • ASTM D5084-10, 2010, Standard test methods for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter, ASTM International, West Conshohocken, PA.
  • ASTM D6910/D6910M-19, 2019, Standard test method for marsh funnel viscosity of construction slurries, ASTM International, West Conshohocken, PA.
  • ASTM D6913/D6913M-17, 2017, Standard test methods for particle-size distribution (gradation) of soils using sieve analysis, ASTM International, West Conshohocken, PA.
  • ASTM D7928-17, 2017, Standard test method for particle-size distribution (gradation) of finegrained soils using the sedimentation (hydrometer) analysis, ASTM International, West Conshohocken, PA.
  • Baker, S., 2000, Deformation Behaviour of Lime/Cement Column Stabilized Clay, Swedish Deep Stabilization Research Centre, Linkoping, Sweden.
  • Bergado, D. T. and Lorenzo, G. A., 2002, Recent developments of ground improvement in soft Bangkok clay, Proceedings of the International Symposium on Lowland Technology, Saga University, Japan, 17-26.
  • Bergado, D. T., Anderson, L. R., Miura, N., and Balasubramaniam, A. S., 1996, Soft ground improvement in lowland and other environments, American Society of Civil Engineers, New York.
  • Bergado, D. T. and Lorenzo, G. A., 2005, Economical Mixing Method for Cement Deep Mixing, Innovations in Grouting & Soil Improvement, 1-10.
  • Bhadriraju, V., Puppala, A. J., Madhyannapu, R. S. and Williammee, R., 2007, Laboratory procedure to obtain well-mixed soil binder samples of medium stiff to stiff expansive clayey soil for deep soil mixing simulation, Geotechnical Testing Journal, Vol. 31, No. 3, 225-238.
  • Bilodeau, A. and Malhotra, V. M., 2000, High volume fly ash system, Concrete Solution for Sustainable Development, 97(1), 41-48.
  • Boehm, D. W., 2012, Dry deep and mass mixing.current methods and applications, Proc. Deep soil mixing specialty short course, 4th International conference on Grouting and Deep Mixing, Marriott New Orleans, LA (USA).
  • Bruce, D. A., 2000a, An introduction to the deep mixing method as used in geotechnical applications, Report No. FHWA-RD-99-138, Federal Highway Administration, Washington, DC.
  • Bruce, D. A., 2000b, Supplemental reference appendices for an introduction to the deep mixing method as used in geotechnical applications, Volume II: Appendices, Report No. FHWA-RD-99-144, Federal Highway Administration, Washington, DC.
  • Broms, B. B, 1999, Keynote Lecture: Design of lime, lime/cement and cement columns, International Conference on Dry Mix Methods: Dry Mix Methods for Deep Soil Stabilization, 125.153, Balkema, Rotterdam, Netherlands.
  • Broms, B. B., 2003, Deep soil stabilization: Design and construction of lime and lime/cement columns, Royal Institute of Technology, Stockholm, Sweden.
  • Burke, G. K., Sehn, A. L., Hussin, J. D., Hull, V. E., and Mann, J. A., 2007, Dry soil mixing at jewfish creek, Soil Improvement, GeoDenver Conference, 1.11, American Society of Civil Engineers, Reston, VA.
  • Bushra, I. and Robinson, R. G., 2013, Effect of fly ash on cement admixture for a low plasticity marine soil, Advances in Civil Engineering Materials, 2(1), 608-621.
  • Chai, J. C., Miura, N., and Koga, H., 2005, Lateral displacement of ground caused by soilecement column installation, J. Geotech. Geoenviron. Eng., 131(5), 623e632.
  • Chai, J. C., Carter, J. P., Miura, N., and Zhu, H. H., 2009, Improved prediction of lateral deformations due to installation of soil cement columns, J. Geotech. Geoenviron. Eng., 135(12), 1836e1845.
  • Chen, J., Zhang, L., Zhang, J., Zhu, Y. and Wang, J., 2013, Field tests, modification, and application of deep soil mixing method in soft clay, J. Geotech. Geoenviron. Eng., (1), 24.
  • Chew, S. H., Kamruzzaman, A. H. M. and Lee, F. H., 2004, Physicochemical and engineering behavior of cement treated clays, J. Geotech. Geoenviron. Eng., 130 (7), 696.706.
  • Chittoori, B. C. S., 2008, Clay minerology effects on long term performance of chemically treated expansive clays, PhD Thesis, Faculty of the Graduate School, The University of Texas At Arlington.
  • Chu, J., Varaksin, S., Klotz, U. and Menge, P., 2009, Construction Processes, Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering, 3006-3135.
  • CDIT (Coastal Development Institute of Technology), 2002, The Deep Mixing Method: Principle, Design, and Construction, Balkema, Lisse, Netherlands.
  • Collins, K., 1984, Characterization of expansive soil microfabric, In Proceedings of the 5th International Conference on Expansive Soils, Adelaide, South Australia, pp. 37- 41.
  • Cross, D., Stephens, J. and Vollmer, J., 2005, Structural applications of 100 percent fly ash concrete, In Proceedings of the World of Coal Ash (WOCA), pp. 1.9, Springer, Lexington, Kentucky, USA.
  • Cak.r, M., 1999, Ucucu kul ile zemin stabilizasyonu, Yuksek lisans tezi, .TU Fen Bilimleri Enstitusu.
  • Cetiner, S. I., 2004, Stabilization of expansive soils by Cay.rhan fly ash and Desulphogypsum, Master Thesis, The Graduate School of Natural And Applied Sciences of The Middle East Technical University.
  • Das, B. M., 2005, Fundamentals of geotechnical engineering, Publisher: Chris Carson, pp 270-272.
  • Dasenbrock, D., 2005, Application of deep mixing method to a challenging bridge construction project: the glen road .nterchange,h Innovations in Grouting and Soil Improvement, Geotechnical Special Publication 136, 1.10, American Society of Civil Engineers, Reston, VA.
  • Dean, R. B. and Dixon, W. J., 1951, Simplified statistics for small numbers of observations, Anal. Chem, 1951, 23 (4), 636.638. DOI: 10.1021/ac60052a025.
  • Demiral, T. O., 2017, Sulfatl. su icerikli kum zeminlerde portland cimentosu ve sulfata dayan.kl. cimento kullan.larak olu.turulan jet-grout kolonlar.n.n ta..ma gucune sulfat.n etkisi, Yuksek lisans tezi, Selcuk Universitesi.
  • Deng, Y.-F., Liu, S.-Y., and Hong, Z.-S., 2006, In-situ soil strength after deep mixed columns installation, GeoCongress 2006: Geotechnical Engineering in the Information Technology Age, 253. https://doi.org/10.1061/40803(187)253
  • Dhir, R. K., McCarthy, M. J., and Paine, K. A., 2002, Use of fly ash to BS EN 450 in structural concreteh, Thomas Telford.
  • Diamond, S., and Kinter, E. B., 1965, Mechanism of soil-lime stabilization.An interpretative review, Highw. Res. Rec., 92, 83.102.
  • Dong, J., Hiroi, K., and Nakamura, K., 1996, Experimental study on behavior of composite ground improved by deep mixing method under lateral earth pressure, grouting and deep mixing, Proceedings of IS-Tokyo f96, The 2nd International Conference on Ground Improvement Geosystems, 14.17 May, Balkema, Tokyo, pp. 585.590.
  • Elias, V., Welsh, J., Warren, J., Lukas, R., Collin, J. G., and Berg, R. B., 2006, Ground Improvement Methods Volume II, Report No. FHWA-NHI-06-020, Federal Highway Administration, Washington, DC.
  • EuroSoilStab, 2002, Development of Design and Construction Methods to Stabilise Soft Organic Soils.Design Guide: Soft Soil Stabilization, CT97-0351, Project No. BE 96- 3177, IHS BRE Press, Watford, UK.
  • Fang, Z., and Yin, J. H., 2007, Responses of excess porewater pressure in soft marine clay around a soil-ement column, Int. J. Geomech., 7(3), 167e175.
  • FHWA (Federal Highway Administration), 2000a, An introduction to the deep mixing method as used in geotechnical applications, Prepared by Geosystems, L.P., Document No. FHWA-RD-99-138, March, 143 p.
  • FHWA (Federal Highway Administration), 2000b, Supplemental reference appendices for an introduction to the deep mixing method as used in geotechnical applications, Prepared by Geosystems, L.P., Document No. FHWA-RD-99-144, December, 295 p.
  • FHWA (Federal Highway Administration), 2001, An introduction to the deep mixing method as used in geotechnical applications: Verification and properties of treated soil, Prepared by Geosystems, L.P., Document No. FHWA-RD-99-167, October, 455 p.
  • FHWA (Federal Highway Administration), 2013, Federal Highway Administration Design Manual: Deep mixing for embankment and foundation support. Report No. FHWAHRT- 13-046, Federal Highway Administration, Washington, DC.
  • Filz, G. M., Hodges, D. E., Weatherby, D. E., and Marr, W. A., 2005, Standardized definitions and laboratory procedures for soil-cement specimens applicable to the wet method of deep mixing, Innovations in Grouting and Soil Improvement, GSP No. 136 (CD-ROM), ASCE, Reston, VA. 13 p.
  • Filz, G., Adams, T., Navin, M., and Templeton, A. E., 2012, Design of deep mixing for support of levees and floodwalls,h Grouting and Deep Mixing: 4th International 216 Conference on Grouting and Deep Mixing, Geotechnical Special Publication 228, 89. 133, American Society of Civil Engineers, Reston, VA.
  • Grisolia, M., Kitazume, M., Leder, E., Marzano, I.P., and Morikawa, Y., 2012, Laboratory study on the applicability of molding procedures for the preparation of cement stabilized specimens, In: Proceedings of the IS-GI Brussels 2012, Belgium.
  • Grisolia, M., Leder, E., and Marzano, I. P., 2013, Standardization of the molding procedures for stabilized soil specimens as used for QC/QA in deep mixing application, In: Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering.
  • Hassan, K. E., Cabrera, J. G., and Maliehe, R. S., 2000, The effect of mineral admixtures on the properties of high-performance concrete, Cement and Concrete Composites, 22(4), 267-271.
  • Hayashi, H., Nishikawa, J., Ohishi, K., and Terashi, M., 2003, Field observation of long-term strength of cement treated soil, Grouting and Ground Treatment, GSP No. 120, 598- 609.
  • Herrin, M., and Mitchell, H., 1961, Lime-soil mixture, Bulletin 304, Highway Research Board, National Research Council, Washington, D.C.
  • Herzog, A. and Mitchell, J. K., 1963, Reaction accompanying stabilization of clay with cement, Highway Research Board Record, No. 36, 1963, pp.146-171
  • Hodges, D. K., Filz, G. M., and Weatherby, D. E., 2008, Laboratory mixing, curing, and strength testing of soil-cement specimens applicable to the wet method of deep mixing, CGPR Report No. 48, Virginia Tech Center for Geotechnical Practice and Research, Blacksburg, VA.
  • Horpibulsuk, S., Miura, N., and Nagara, T. S., 2003, Assessment of strength development in cement-admixed high water content clays with Abramsf law as a basis, Geotechnique, 53(4): 439-444.
  • Horpibulsuk, S., Miura, N., and Nagaraj, T. S., 2005, Clay.water.cement ratio identity for cement admixed soft clays, Journal of Geotechnical and Geoenvironmental Engineering, 131(2), 187-192. doi:10.1061/(asce)1090-0241(2005)131:2(187)
  • Horpibulsuk, S., Rachan, R., and Raksachon, Y., 2009, Role of fly ash on strength and microstructure development in blended cement stabilized silty clay, Soils and Foundations, 49(1), 85.98. doi:10.3208/sandf.49.85
  • Huang, C. H., Lin, S. K., Chang, C. S. and Chen, H. J., 2013, Mix proportions and mechanical properties of concrete containing very high-volume of Class F fly ash, Construction and Building Materials, vol. 46, pp. 71.78.
  • Ignjatovic, I., Sas, Z., Dragas, J. Somlai, J. and Kovacs, T., 2017, Radiological and material characterization of high volume fly ash concrete, Journal of Environmental Radioactivity, 168:38-45.
  • Ino, K., Udagawa, I., Iwabata, K., Takakusagi, Y., Kubota, M,, Arai, K. et al., 2011, Heterogeneous nucleation of protein crystals on fluorinated layered silicate, PLoS ONE, 6(7), e22582. DOI: 10.1371/journal.pone.0022582
  • Jacobson, J., 2002, Factors affecting strength gain in lime-cement columns and development of a laboratory testing procedure, MS Thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 83 pages.
  • Jacobson, J. R., Filz, G. M., and Mitchell, J. K., 2003, Factors affecting strength gain in limecement columns and development of a laboratory testing procedure, Virginia Transportation Research Council, Charlottesville, VA.
  • Jacobson, J. R., Filz, G. M., and Mitchell, J. K., 2005, Factors affecting strength of limecement columns based on a laboratory study of three organic soils, Proc. Int. Conf. Deep Mixing . Best Practice and Recent Advances, Deep Mixingf05, SD Report 13 (CD-ROM), Swedish Geotechnical Institute, Linkoping, 87-94.
  • Japonya Geoteknik Birli.i, 2000, Practice for making and curing stabilized soil specimens without compaction, JGS T 0821-2000, Japanese Geotechnical Society, Tokyo, Japan.
  • Kim, J.-E., Park, W.-S., and Jang, Y.-I., 2016, Mechanical properties of energy efficient concretes made with binary, ternary, and quaternary cementitious blends of flyash, blast furnace slag, and silica fume, International Journal of Concrete Structures and Materials, vol. 10, no. 3, pp. 97.108.
  • Kitazume, M., Grisolia, M., Leder, E., Marzano, I. P., Correia, A. A. S., Oliveira, P. J. V., Ahnberg, H. and Andersson, M., 2015, Applicability of molding procedures in laboratory mix tests for quality control and assurance of the deep mixing method, Soils and Foundations, 55(4), 761.777. doi:10.1016/j.sandf.2015.06.009
  • Kosmatka, S. H., Voigt, G. F., and Taylor, P., 2006, Integrated materials and construction practices for concrete pavement: A state-of-the-practice manual, Center for Transportation Research and Education Iowa State University, p.69-104
  • Lambrechts, J. R., Ganse, M. A., and Layhee, C. A., 2003, Soil mixing to stabilize organic clay for I-95 widening, Alexandria, VA, Grouting and Ground Treatment, Proceedings of the 3rd International Conference, New Orleans, 575-585.
  • Lambrechts, J. R., 2005, Design guidelines manual for support of embankments on soft soils by deep mixing, National Deep Mixing Program, Boston, MA.
  • Larsson, S., 2005a, State of Practice Report . Execution, monitoring and quality controlh. Proc. International Conference on Deep Mixing-Recent Advances and Best practice, Stockholm, Sweden.
  • Larsson, S., Dahlstrom, M., and Nilsson, B., 2005b, Uniformity of lime-cement columns for deep mixing: a field study. Proceedings of the Institution of Civil Engineers-Ground Improvement, 9(1), 1.15.
  • Larsson, S., and Kosche, M., 2005, A laboratory study on the transition zone around limecement columns, Proc., Int. Conf. on Deep Mixing, Best Practice and Recent Advances, Vol. 1, Swedish Geotechnical Institute, Linkoping, 111.118.
  • Lee, F. H., Lee, C. H. and Dasari G. R., 2006, Centrifuge modelling of wet deep mixing processes in soft clays, Geotechnique, 56(10): 677-691.
  • Lee, F. H., Lee, C. H., and Dasari, G. R., 2008, Centrifuge study on uniformity of wet deep mixing, Int. J. Physical Modelling in Geotechnics, 8(1): 1-20.
  • Lee, T., Jenevein, D., and Fong, M., 2012, Unique design and quality control of cement deep soil mixing for water cutoff: BART Warm Springs Extension (WSX) Project, Fremont, CAh GeoCongress 2012, 3583.3592.
  • Little, D. N., 1995, Handbook for stabilization of pavement subgrades and base courses with lime.h National Lime Association, Kendall/Hunt Publishing Company, Dubuque, Iowa.
  • Liu, S.-Y., Du, Y.-J., Yi, Y.-L., and Puppala, A. J., 2012, Field Investigations on Performance of T-Shaped Deep Mixed Soil Cement Column.Supported Embankments over Soft Ground, Journal of Geotechnical and Geoenvironmental Engineering, 138(6), 718. 727. doi:10.1061/(asce)gt.1943-5606.0000625
  • Lorenzo, G. A. and Bergado, D. T., 2003, New Consolidation Equation for Soil-Cement Pile Improved Ground, Canadian Geotechnical Journal, 40, 265.275.
  • Lorenzo, G. A. and Bergado, D. T., 2004, Fundamental parameters of cement-admixed clay.new approach, Journal of Geotechnical and Geoenvironmental Engineering, 130(10), 1042.1050.
  • Lorenzo, G. A. and Bergado, D. T., 2006, Fundamental characteristics of cement-admixed clay in deep mixing, Journal of Materials in Civil Engineering, 18(2), 161.174. doi:10.1061/(asce)0899-1561(2006)18:2(161).
  • Madhyannapu, R. S., Puppala, A. J., Nazarian, S., and Deren Yuan., 2010, Quality assessment and quality control of deep soil mixing construction for stabilizing expansive subsoils, Journal of Geotechnical & Geoenvironmental Engineering, 136(1), 119.128. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000188
  • Maher, A., Douglas, W. S., Yang, D., Jafari, F., and Schaefer, V. R., 2007, Cement deep soil mixing (CDSM) for solidification of soft estuarine sedimentsh, Marine Georesources & Geotechnology, 25(3/4), 221.235. https://doi.org/10.1080/10641190701699319
  • Mala, K., Mullick, A. K., Jain, K. K. and Singh, P. K., 2013, Effect of relative levels of mineral admixtures on strength of concrete with ternary cement blend, International Journal of Concrete Structures and Materials, vol. 7, no. 3, pp. 239.249.
  • Malhotra, V. M., 1990, Durability of concrete incorporating highvolume of low-calcium (ASTM Class F) fly ash, Cement and Concrete Composites, vol. 12, no. 4, pp. 271.277.
  • Mallela, J., Von Quintus, H., Kelly, P. E., Smith, L., 2004, Consideration of Lime Stabilized Layer, Mechanistic-Emprical Pavement Design, National Lime Assosiciation, Arlington, 38p. Virginia.
  • Mamlouk, M. S. and Zaniewski, J. P., 2011, Materials for Civil and Construction Engineers, 3rd Ed., Upper Saddle River: Prentice Hall.
  • Marzano, I. P., Leder, E., Grisolia, M., and Danisi, C., 2012, Laboratory study on the molding techniques for QC/QA process of a Deep Mixing work. In: Proceedings of the 3rd International Conference on New Developments in Soil Mechanics and Geotechnical Engineering, Near East University, Nicosia, North Cyprus. ISBN 975-8359-28-2.
  • Masike, N., 2019, Silis duman. ilaveli derin kar..t.rma kolonlar.n.n uc eksenli bas.nc dayan.m. ve konsolidasyon ozelliklerinin ara.t.r.lmas., Yuksek lisans tezi, Fen Bilimleri Enstitusu, Selcuk Universitesi.
  • Matsuo, T., Nisibayashi, K. and Hosoya, Y., 1996, Studies on soil improvement adjusted at low compressive strength in Deep Mixing Method, Proceedings of IS-Tokyo f96, The 2nd International Conference on Ground Improvement Geosystems, 14-17 May 1996, Tokyo, pp. 807-824. Balkema. 1996.
  • Matsuo, O., 2002, Determination of design parameters for deep mixing, Proc. Tokyo Workshop 2002 on Deep Mixing, Coastal Development Institute of Technology, Tokyo, 75-79.
  • Mayne, P. W., Christopher, B. R., and DeJong, J., 2001, Subsurface Investigations, Report No. FHWA-NHI-01-031, Federal Highway Administration, Washington, DC. McCarthy, M. J. and Dhir, R. K., 2005, Development of high volume fly ash cements for use in concrete construction, Fuel, 84, 1423-1432.
  • McGinn, A. J. and O'Rourke, T. D., 2003, Performance of deep mixing methods at Fort Point Channel. Report to Massachusetts Turnpike Authority, Federal Highway Administration, and Bechtel/Parsons Brinckerhoff, Cornell University.
  • Medhani, R., 1982, Stabilization of Ponca City Shale, Ph. D. Dissertation, August 1982. Meyersohn, D., 2007, Use of Soil-Cement Piles for Bridge Support, Presented at the GeoDenver Conference, American Society of Civil Engineers, Denver, CO. 30.
  • Mirza, J., Mirza, M. S., Roy, V. and Saleh, K., 2002, Basic rheological and mechanical properties of high-volume fly ash grouts, Constr. Build. Mater, 16(6):353.363.
  • Mitchell, J. K., 1981, Soil improvement.state of the art reporth Proceedings of the 12th International Conference on Soil Mechanics and Geotechnical Engineering 509-565.
  • Mitchell, J. K., 1993, Fundamentals o f Soil Behavior, John Wiley & Sons, New York. Mitchell, J. K., and Soga, K., 2005, Fundamentals of soil behavior, 3rd Edition, John Wiley and Sons Inc., Hoboken, New Jersey.
  • Miura, N. and Nishida, K., 1998, Energy considerations on soft Bangkok clay improvement by dry jet mixing (DJM) method, Proceedings of the Geotechnical Engineering Conference, Bangkok, Thailand, 1, 132-140.
  • Miura, N., Horpibulsuk, S., and Nagaraj, T. S., 2002, Engineering behavior of cement stabilized clay at high water content, Soils and Foundations. Japanese Geotechnical Society. 41(5): 33-45.
  • Mizuno, Y., Kamura, K., and Matumoto, J., 1988, Experiment on the Improvement of Sandy Soil Using the Deep Mixing Method, Proceedings of the 23rd Annual Meeting of JSSMFE, 2301.2304, Tokyo, Japan (in Japanese).
  • Mullins, G. and Gunaratne, M., 2015, Soil mixing design methods and construction techniques for use in high organic soils, Rapor No: BDV25-977-14, University of South Florida.
  • Mohammed, A., Arslan, F., Annayev, M., Toka, E. B., Yenginar, Y. and Olgun, M., 2018, Using of fly ash into grouting mixture, International Symposium for Environmental Science and Engineering Research (ISESER-2018), Konya, TURKEY.
  • Nagaraj, T. S., Srinivasa Murthy, B. R., and Vatsala, A., 1990, Discussion on eChange in pore size distribution due to consolidation of clays,f by Griffiths Joshi.h Geotechnique, 40(2), 303.305.
  • Nagaraj, T. S., and Miura, N., 2001, Soft clay behaviour.Analysis and assessment, AA Balkema, Rotterdam, The Netherlands.
  • Naik, T. R., Ramme, B.W. and Tews, J. H., 1994, Use of high volumes of Class C and Class F fly ash in concrete, Cement, Concrete and Aggregates, vol. 16, no. 1, pp. 12.20.
  • Navin, M. P. and Filz, G. M., 2006, Simplified reliability-based procedures for design and construction quality assurance of foundations improved by the deep mixing method, Federal Highway Administration, Washington, DC.
  • Noori, M. A., 2019, Katk. icerikli derin kar..t.rma kolonlar. performans ozelliklerinin model deneylerle ara.t.r.lmas., Yuksek lisans tezi, Fen Bilimleri Enstitusu, Selcuk Universitesi.
  • OfRourke, T. D. and McGinn, A. J., 2004, Case history of deep mixing soil stabilization for Boston Central Artery, Geotechnical Engineering for Transportation Projects, 77-136. doi:10.1061/40744(154)3
  • Our, C., Wu, T., and Hsieh, H., 1996, Analysis of deep excavation with column type of ground .mprovement in soft clay, Journal of Geotechnical Engineering, 122(9), 709. 716.
  • Paine, K. A., Zheng, L. ve Dhir, R. K., 2005, Experimental study and modeling of heat evolution of blended cements, Advances in Cement Research, 17, 121-132.
  • Parmantier, D. M., Fassett, R. A., and Porbaha, A., 2005, Reinforced deep mixed columns for a bridge ramp foundation in the San Francisco Bay Area, Presented at the International Conference on Deep Mixing, Swedish Geotechnical Institute, Stockholm Sweden.
  • Pooranampillai, S., Parmantier, D., Dawson, K., and Shin, S., 2012, A case history on the design, construction, and field quality control of cement deep soil mixing, Presented at the 37th Annual Conference on Deep Foundations, Houston, TX.
  • Porbaha, A., Shibuya, S. and Kishida, T., 2000, State of the art in deep mixing technology: Part III: geomaterial characterization, Ground Improvement, 3, 91-110.
  • Porbaha, A., Raybaut, J.L. and Nicholson, P., 2001, State of the art in construction aspects of deep mixing technology, Ground Improvement, 5(3): 123-140.
  • Porbaha, A., 2002, State of the art in quality assessment of deep mixing technology, Ground Improvement, 6(3): 91-110.
  • Porbaha, A., Weatherby, D., Macnab, A., Lambrechts, J., Burke, G., Yang, D., and Puppala, A.J., 2005, Regional Report: North American practice of deep mixing technology, International Conference on Deep Mixing Best Practice and Recent Advances, R47.
  • R73, Swedish Deep Stabilization Research Centre, Stockholm, Sweden.
  • Push, R., 1979, Unfrozen water as a function of clay microstructure, Engineering Geology, Vol. 13, pp. 157-162.
  • Pye, N., OfBrien, A., Essler, R., and Adams, D., 2012, Deep dry soil mixing to stabilize a live railway embankment across Thrandeston Bog, Geotechnical Special Publication, (228 GSP), 543.553.
  • Rafalko, S. D., Filz, G. M., Brandon, T. L., and Mitchell, J. K., 2008, Rapid Chemical Stabilization of Soft Clay Soils, Transportation Research Record 2026, 39.46, Transportation Research Board, Washington, DC.
  • Rajasekaran, G., and Rao, S. N., 1997, Lime stabilization technique for the improvement of marine clay, Soils Found., 37(2), 97.104.
  • Rogers, C. D. F., Glendinning, S., and Troughton, V. M., 2000, The use of additives to enhance the performance of lime piles, Proc. GIGS 2000, Helsinki, 127.134.
  • Rowe, R. K., and Booker, J. R., 1991, Pollutant migration through a liner underlain by fractured soil, J. Geotech. Engrg., 118(7), 1031.1046.
  • Sabatini, P. J., Bachus, R. C., Mayne, P. W., Schneider, J. A., and Zettler, T. E., 2002, Evaluation of soil and rock properties, Geotechnical Engineering Circular No. 5, Report No. FHWA-IF-02-034, Federal Highway Administration, Washington, DC.
  • Samtani, N. C. and Nowatzki, E. A., 2006a, Soils and Foundations Reference Manual Volume 1, Report No. FHWA-NHI-06-088, Federal Highway Administration, Washington, DC.
  • Samtani, N. C. and Nowatzki, E. A., 2006b, Soils and Foundations Reference Manual Volume 2, Report No. FHWA-NHI-06-089, Federal Highway Administration, Washington, DC.
  • Sen, K. K. and Evans, A., 2010, Innovative construction techniques used at North Shore construction project,h The Journal of the Deep Foundations Institute, 4(2), 20.30.
  • Sha, F., Li, S., Liu, R., Li, Z. and Zhang, Q., 2018, Experimental study on performance of cement-based grouts admixed with fly ash, bentonite, superplasticizer and water glass, Construction and Building Materials, 161: 282.291.
  • Sharp, J. H., Gartner, E. M. and Macphee, D. E., 2010, Novel cement systems (sustainability), Session 2 of the Fred Glasser Cement Science Symposium, Adv. Cem. Res., 22, 195.202.
  • Shen, S. L., and Miura, N., 1999, Soil fracturing the surrounding clay during deep mixing column installation, Soils Found., 39(5), 13.22.
  • Shen, S. L., Miura, N. and Koga, H., 2003a, Interaction mechanism between deep mixing column and surrounding clay during installation, Can. Geotech. J., 40(2), 293e307.
  • Shen, S. L., Han, J., Huang, X. C. and Du, S. J., 2003b, Laboratory studies on property changes in surrounding clays due to installation of deep mixing columns, Marine Georesources & Geotechnology., 21_3_, 15.35.
  • Shen, S. L., Miura, N., Han, J. and Koga, H., 2003c, Evaluation of property changes in surrounding clays due to installation of deep mixing columns, Grouting and ground treatment, Geotechnical Special Publication No. 120, L. F. Johnsen, D. A. Bruce, and M. J. Byle, eds., Vol. 1, ASCE, Reston, Va., 634.645.
  • Shen, S. L., Han, J. and Miura, N., 2004, Laboratory evaluation of mixing energy consumption and its influence on soil-cement strength, Transp. Res. Rec., Transportation Research Board, National Research Council, Washington, DC, pp. 23. 30.
  • Shen, S. L., Han, J. and Hong, Z. S., 2005, Installation effects on properties of surrounding clays by different deep mixing methods, Geotechnical Special Publication No. 136, ASCE, CD ROM Proceedings, Austin, TX.
  • Shen, S. L., Han, J. and Du, Y. J., 2008, Deep mixing induced property changes in surrounding sensitive marine clays, J. Geotech. Geoenviron. Eng., 134(6), 845e854.
  • Shiells, D. P., Pelnik, T. W. and Filz, G. M., 2003, Deep mixing: An owner's perspective, Grouting and Ground Treatment, Proc. 3rd Int. Conf., ASCE, Reston, VA: 489-500.
  • Siddique, R., 2004, Performance characteristics of high-volume Class F fly ash concrete, Cement and Concrete Research, vol. 34, no. 3, pp. 487.493.
  • Skempton, A. W., 1948, A possible relationship between true cohesion and the mineralogy of clays. Proc. 2nd Int. Conf. S.M., Vol. 7, p. 45.
  • Skempton, A. W., 1953, Soil mechanics in relation to geology, Proceedings of the Yorkshire Geological Society, 29, 33-62, https://doi.org/10.1144/pygs.29.1.33
  • Skempton, A. W., 1954, The pore water coefficients A and B, Geotechnique, Vol. 4, 143-147. Tabet, W. E., 2015, Characterization of cement-stabilized clay using experimental and analytical techniques, PhD Thesis, University of Oklahoma.
  • Tan, O. ve .yisan, R., 1996, Ucucu kul ile zemin stabilizasyonu, ZMTM 6. Ulusal Kongresi, Dokuz Eylul Universitesi, .zmir, 417-426.
  • Tan, O. ve Zaimo.lu, A. .., 2004, Cimento enjeksiyonlar.nda kullan.lan katk. malzemelerinin reolojik ozelliklere etkilerinin ara.t.r.lmas., Pamukkale Universitesi Muhendislik Fakultesi Muhendislik Bilimleri Dergisi, 10(2): 275-281.
  • Tan, O., Y.ld.z M. ve Olgun. M., 2018, Selcuk Universitesi Sanayi Kampusu .n.aat Alan.na Ait Geoteknik De.erlendirme Raporu, Selcuk Universitesi, Haziran, 2018, Konya.
  • Tan, O., Yenginar, Y. and Olgun, M., 2018, Effects of fly ash and super plasticizer on strength of soil-cement mixing materials, International Symposium for Environmental Science and Engineering Research (ISESER-2018), Konya, TURKEY.
  • Tan, T.-S., Goh, T.-L. and Yong, K.-Y., 2002, Properties of Singapore marine clays improved by cement mixing, Geotechnical Testing Journal, 25 (4), 422-433.
  • Taki, O., and Yang, D. S., 1990, Soil-cement mixed wall technique, ASCE, Geotechnical Engineering Congress, Denver, CO. pp 298-309.
  • Tatsuoka, F., Kohata, Y., Uchida, K., and Imai, K., 1996, Deformation and strength characteristics of cement-treated soils in Trans-Tokyo Bay Highway Project, Grouting and Deep Mixing: Proceedings of IS-Tokyo 96 2nd International Conference on Ground Improvement Geosystems, 453.459, Tokyo, Japan.
  • Tekin, E. ve Mollamahmuto.lu, M., 2010, Cok ince taneli cimento (Rheocem 900) enjeksiyonu ile fakl. gradasyona sahip kumlar.n enjekte edilebilirli.i, Gazi Un. Muh. Mim. Fak. Dergisi, 25(3):533-539.
  • Terashi, M., 1983, Problems and research orientation of the deep mixing method,h Proceedings of the Journal of Japanese Society of Soil Mechanics and Foundation Engineering, Tsuchi To Kiso, 31(8), 75.83.
  • Terashi, M., 1997, Deep mixing method.brief state of the art, Presented at the 17th International Conference on Soil Mechanics and Foundation Engineering, Hamburg, Germany.
  • Terashi, M., 2003, The state of practice in deep mixing methods, Grouting and Ground Treatment: Proceedings of the Third International Conference, Geotechnical Special Publication 120, 25.49, American Society of Civil Engineers, Reston, VA.
  • Terashi, M. and Tanaka, H., 1983, Fundamental properties of lime and cement treated soil (3rd Report), Rep. Port Harb. Res. Inst. 22 (1), 69.96.
  • Terrei, R., Epps J., Barenberg, E., Mitchell, J. and Thompson M., 1984, Soil stabilization in pavement structures-A user's manual, Vol. 2, Moisture design consideration, Federal Highway Administration, Washington, DC.
  • Thomas, M. D. A., Shehata, M. H., Shashiprakash, S. G., Hopkins, D. S. and Cail, K., 1999, Use of ternary cementitious systems containing silica fume and fly ash in concrete, Cement and Concrete Research, 29(8), 1207-1214.
  • Topcu, .. B. ve Canbaz, M., 2001, Ucucu kul kullan.m.n.n betondaki etkileri, Osmangazi Universitesi Muh. Mim. Fakultesi Dergisi, 14(2), 11-23.
  • Topolnicki, M., 2004, In Situ Soil Mixing, Ground Improvement, 3rd Ed., CRC Press, New York, NY.
  • Topolnicki, M., 2009, Design and execution practice of wet soil mixing in Poland, International Symposium on Deep Mixing & Admixture Stabilization, Okinawa, 19-21 May, pp 195-202.
  • Tosun, K., 2007, Farkl. cimento tiplerinin gecikmi. etrenjit olu.umu uzerindeki etkileri, Doktora tezi, Dokuz Eylul Universitesi.
  • Turk, K., Karata., M. ve Ulucan, Z. C., 2006, Farkl. oranlarda F s.n.f. ucucu kul iceren kendili.inden s.k..an betonun dayan.m ozellikleri, F.rat Un. Fen ve Muh. Dergisi, 18(4):513-520.
  • Turker, P., Erdo.an, B., Katna., F. ve Ye.inobal., A., 2009, Turkiyefdeki ucucu kullerin s.n.fland.r.lmas. ve ozellikleri, Turkiye Cimento Mustahsilleri Birli.i Ar-Ge Enstitusu, Rapor No: Y03.03, Ankara.
  • Turkoz, M., 2009, S.k..t.r.lm.. .i.en killerin mikroyap.sal de.i.iminde .i.me-buzulme cevrimin etkisi, Journal of Engineering and Architecture Faculty of Eski.ehir Osmangazi University, Vol: XXII, No:1.
  • TS EN 197-1, 2002, Cimento- Bolum 1: Genel cimentolar- Bile.im, ozellikler ve uygunluk kriterleri, Turk Standardlar. Enstitusu, Ankara.
  • TS EN 450, 1998, Ucucu kul-Betonda kullan.lan-Tarifler, ozellikler ve kalite control, Turk Standardlar. Enstitusu, Ankara.
  • TS 639, 1975, Ucucu kuller-Cimentoda kullan.lan, Turk Standardlar. Enstitusu, Ankara. TS EN 14679, 2006, Ozel jeoteknik uygulamalar-derin kar..t.rma, Turk Standardlar. Enstitusu, Ankara.
  • Vargas, J. A., 2007, A designerfs view of fly ash concrete, Concr. Int. ACI, 29 (2), 43.46. Wasti, Y., 1987, Liquid and plastic limits as determined from the fall cone and the casagrande methods, Geotechnical Testing Journal, 10, no. 1: 26-30. https://doi.org/10.1520/GTJ10135J
  • Yamadera, A., 1999, Microstructural study of geotechnical characteristics of marine clays, PhD dissertation, Saga University, Saga, Japan.
  • Yang, D. S., Scheibel, L. L., Lobedan, F. and Nagata, C., 2001, Oakland airport roadway Project, Soil Mixing Specialty Seminar, 26th DFI Annual Conference, St. Louis, Missouri: 55-71.
  • Yenginar, Y. and Olgun, M., 2017, Triaxial compression test results on DMC manufactured by fly ash and plasticizer in silty soils, 3rd International Conference on Civil and Environmental Engineering, Izmir, Turkey, 535-542.
  • Yenginar, Y. and Olgun, M., 2017, Effect of fly ash and super plasticizer on permeability of soil-cement mixing materials, International Conference on Engineering Technologies (ICENTEf17), Konya, Turkey, 723-727.
  • Yenginar, Y., Olgun, M. ve Tan, O., 2017, Siltli zeminde olu.turulan derin kar..t.rma kolonlar.n.n dayan.m ozelliklerinin ara.t.r.lmas., 7. Geoteknik Sempozyumu, .stanbul, Turkiye, 535-546.
  • Yenginar, Y. and Olgun, M., 2019, Optimizing construction parameters of DMC in high plasticity soils, 8th Geotechnical Symposium, Istanbul, TURKEY.
  • Yenginar, Y. and Olgun, M., 2019, Triaxial compression test results on DMC samples prepared by using different soil types, Global Journal of Earth Science and Engineering, 6, 16-22. https://doi.org/10.15377/2409-5710.2019.06.3
  • Y.lmaz, F., 2006, Zemin stabilizasyonunda ucucu kul kullan.m., 3rd International Symposium on Environment an Morality, Alanya, Turkiye, 1175-1181.
  • Young, J. F., 1981, Hydration of portland cement, J. Educ. Modules Mater. Sci. Eng., 3(3), 403-28.
  • Yoo, S., Choi, Y. C. and Choi, W., 2017, Compression behavior of confined columns with high-volume fly ash concrete, Advances in Materials Science and Engineering, Volume 2017, 1-11.
  • Yamata, J., 1985, Easy understanding knowledge of cement and concrete, 8th edition, Carcima Book Co., Tokyo, 1985.
  • Zhang, Y. M., Sun, W. and Yan, H. D., 2000, Hydration of high-volume fly ash cement pastes, Cement Concr. Compos., 22(6):445.452.
APA OLGUN M (2020). Uçucu Kül ve Akışkanlaştırıcı Katkılı Derin Karıştırma Kolonlarının Performansını Etkileyen Faktörlerin Model Deneylerle Araştırılması. , 1 - 443.
Chicago OLGUN Murat Uçucu Kül ve Akışkanlaştırıcı Katkılı Derin Karıştırma Kolonlarının Performansını Etkileyen Faktörlerin Model Deneylerle Araştırılması. (2020): 1 - 443.
MLA OLGUN Murat Uçucu Kül ve Akışkanlaştırıcı Katkılı Derin Karıştırma Kolonlarının Performansını Etkileyen Faktörlerin Model Deneylerle Araştırılması. , 2020, ss.1 - 443.
AMA OLGUN M Uçucu Kül ve Akışkanlaştırıcı Katkılı Derin Karıştırma Kolonlarının Performansını Etkileyen Faktörlerin Model Deneylerle Araştırılması. . 2020; 1 - 443.
Vancouver OLGUN M Uçucu Kül ve Akışkanlaştırıcı Katkılı Derin Karıştırma Kolonlarının Performansını Etkileyen Faktörlerin Model Deneylerle Araştırılması. . 2020; 1 - 443.
IEEE OLGUN M "Uçucu Kül ve Akışkanlaştırıcı Katkılı Derin Karıştırma Kolonlarının Performansını Etkileyen Faktörlerin Model Deneylerle Araştırılması." , ss.1 - 443, 2020.
ISNAD OLGUN, Murat. "Uçucu Kül ve Akışkanlaştırıcı Katkılı Derin Karıştırma Kolonlarının Performansını Etkileyen Faktörlerin Model Deneylerle Araştırılması". (2020), 1-443.
APA OLGUN M (2020). Uçucu Kül ve Akışkanlaştırıcı Katkılı Derin Karıştırma Kolonlarının Performansını Etkileyen Faktörlerin Model Deneylerle Araştırılması. , 1 - 443.
Chicago OLGUN Murat Uçucu Kül ve Akışkanlaştırıcı Katkılı Derin Karıştırma Kolonlarının Performansını Etkileyen Faktörlerin Model Deneylerle Araştırılması. (2020): 1 - 443.
MLA OLGUN Murat Uçucu Kül ve Akışkanlaştırıcı Katkılı Derin Karıştırma Kolonlarının Performansını Etkileyen Faktörlerin Model Deneylerle Araştırılması. , 2020, ss.1 - 443.
AMA OLGUN M Uçucu Kül ve Akışkanlaştırıcı Katkılı Derin Karıştırma Kolonlarının Performansını Etkileyen Faktörlerin Model Deneylerle Araştırılması. . 2020; 1 - 443.
Vancouver OLGUN M Uçucu Kül ve Akışkanlaştırıcı Katkılı Derin Karıştırma Kolonlarının Performansını Etkileyen Faktörlerin Model Deneylerle Araştırılması. . 2020; 1 - 443.
IEEE OLGUN M "Uçucu Kül ve Akışkanlaştırıcı Katkılı Derin Karıştırma Kolonlarının Performansını Etkileyen Faktörlerin Model Deneylerle Araştırılması." , ss.1 - 443, 2020.
ISNAD OLGUN, Murat. "Uçucu Kül ve Akışkanlaştırıcı Katkılı Derin Karıştırma Kolonlarının Performansını Etkileyen Faktörlerin Model Deneylerle Araştırılması". (2020), 1-443.