Yıl: 2007 Cilt: 6 Sayı: 2 Sayfa Aralığı: 99 - 107 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Epigenetic activation of genomic retrotransposons

Öz:
Retrotranspozonlar büyük bitki genomlarındaki genlerden sayıca fazladırlar, bu yüzden de genomun önemli bir bölümünü oluştururlar. Gelişim sürecinde çoğu zaman etkisiz olup, stres koşullarında etkin hale geçerler. Bu öğeler; RNA transkripsiyonu, cDNA ters transkripsiyonu ve kopyalanmış parçanın genomda yeni bir konuma yeniden eklenmesi aşamalarından oluşan retrotranspozisyon işlemi sayesinde genom boyunca yayılmışlardır. Biyotik ve abiyotik stresler bitkilerin sıkça karşılaştıkları durumlardır. Aynı şekilde, hem retrotranspozonlar hem de retrovirüsler stres yoluyla etkin hale geçebilirler. Retrotranspozlanabilir elementlerin aktivasyonu çeşitli stresler tarafından gerçekleştirilebilir. Özellikle birçok bitki türünde bulunan uzun uç tekrarlı (LTR) retrotranspozonlar, transkripsiyonda rol oynayan LTR dizilerindeki yüksek değişkenlik derecesi ile karakterize edilirler ve farklı stres uyarılarına cevap vermekle ilişkili yeni ekspresyon şekilleri kazanarak evrimleşmişlerdir. Bitki LTR retrotranspozonlarının birçoğu, biyotik ve abiyotik stres uyarılarına cevap olarak daha geniş transkript havuzları üretirler. Yakın bir zaman önce, bu hareketli elementlerin epigenetik aktivasyonunun bitişik genlerin ekpresyonunu etkilediği ortaya çıkartılmıştır. Kodlayan bölgelerde ya da yakındaki bir bölgedeki yeni dizi eklenmeleri, gen ifadesini değiştirecek ve genomu hem yapısalhem de işlevsel olarak yeniden yapılandıracak mutasyonlara sebep olmaktadır. Bu yüzden, LTR retrotranspozlanabilir elementlerin aktivasyonu bitki gelişimi ve evriminde önemli bir rol oynayabilir.
Anahtar Kelime: stres stres yanıtı retrotranspozon hareketli DNA elementleri transpozisyon epigenetik genetik farklılık

Konular: Biyokimya ve Moleküler Biyoloji

Genomik retrotranspozonların epigenetik aktivasyonu

Öz:
Retrotransposons outnumber the genes in large plant genomes, thereby comprising the bulk of the genome. They are largely quiescent during development, but become more active under stress conditions. These elements spread throughout the genome by a process termed retrotransposition, which includes transcription of an element into RNA, reverse transcription into cDNA, and reinsertion of the copied element into a new genomic location. Biotic and abiotic stresses are regular phenomena facing plants. Likewise, both retrotransposons and retroviruses can be stress-activated. Activation of retrotransposable elements can be induced by various stresses. In particular, long terminal repeat (LTR) retrotransposons, which were found in most plant species, are characterized by a high level of variability in the LTR sequences involved in transcription, and have evolved by gaining new expression patterns mostly associated with responses to diverse stress stimuli. Most of the plant LTR retrotransposons produce larger pools of transcripts in response to biotic and abiotic stress. Recently it was shown that the epigenetic activation of these mobile elements alters the expression of adjacent genes. The new insertions in or next to coding regions generate mutations that can lead to changes in gene expression and reshape the genome, both structurally and functionally. Thus, activation of LTR retrotransposable elements can play an essential role in plant development and evolution.
Anahtar Kelime: genetic diversity stress stress response retrotransposons transposable elements transposition epigenetics

Konular: Biyokimya ve Moleküler Biyoloji
Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • Ansari IK, Walter S, Brennan MJ, Lemmens M, Kessans S, McGahern A, Egan D and Doohan MF. Retrotransposon and gene activation in wheat in response to mycotoxigenic and nonmycotoxigenic- associated Fusarium stress. Theor. Appl. Genet. 114: 927-937, 2007.
  • Beguiristain T, Grandbastien MA, Puigdomènech P and Casacuberta JM. Three Tnt1 Subfamilies Show Different Stress-Associated Patterns of Expression in Tobacco. Consequences for Retrotransposon Control and Evolution in Plants. Plant Physiol. 127: 212-221, 2001.
  • Casacuberta JM and Santiago N. Plant LTRretrotransposons and MITEs: control of transposition and impact on the evolution of plant genes and genomes. Gene. 311: 1-11, 2003.
  • Cheng C, Daigen M, Hirochika H. Epigenetic regulation of the rice retrotransposon Tos17. Mol Genet Genomic 276(4): 378-390, 2006.
  • Dellaporta SL, Chomet PS, Mottinger JP, Wood JA, Yu SM and Hicks JB. Endogenous transposable element associated with virus infection in maize. Cold Spring Harbor Symp Quant Biol. 49: 321-328, 1984.
  • Feschotte C, Jiang N and Wessler SR. Plant transposable elements: where
  • Genetics meets genomics. Nat. Rev. Genet. 3: 329- 341, 2002.
  • Grandbastien MA, Audeon CE, Bonnivard JM, Casacuberta B, Chalhoub APP, Costa QH, Lea D, Melayah M, Petit C, Poncet SM, Tam MA, Van Sluys C and Mhiria. Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae. Cytogenet Genome Res. 110: 229- 241, 2005.
  • Grandbastien MA. Stress activation and genomic impact of plant retrotransposons. J Soc Biol. 198(4): 425-32, 2004.
  • Grandbastien MA. Activation of plant retrotransposons under stress conditions. Trends Plant Sci 3: 181-187, 1998.
  • Grandbastien MA, Lucas H, Mhiri C, Morel JB, Vernhettes S, Casacuberta JM. The expression of the tobacco Tnt1 retrotransposon is linked to the plant defense response. Genetica. 100: 241- 252, 1997.
  • Hagan CR and Rudin CM. Mobile genetic element activation and genotoxic cancer therapy: potential clinical implications. Am. J. Pharmacogenomics. 2(1): 25-35, 2002.
  • Hagan CR, Sheffield RF and Rudin CM. Human Alu elements retrotransposition induced by genotoxic stress. Nature Genet. 35: 219-220, 2003.
  • Hirochika H. Activation of plant retrotransposons by stress, in Oono K, Takaiwa F (eds): Modification of Gene Expression and Non-Mendelien Inheritance, pp 15-21, National Institute of Agrobiological Resources, Tsukuba, 1995.
  • Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H. and Kanda M. Retrotransposons of rice involved in mutations induced by tissue culture. Proc. Natl. Acad. Sci. USA. 93: 7783-7788, 1996.
  • Hirochika H, Okamoto H, Kakutani T. Silencing of retrotransposons in Arabidopsis and reactivation by the ddm1 mutation. Plant Cell. 12: 357-369, 2000.
  • IHGSC (International Human Genome Sequencing Consortium): Initial sequencing and analysis of the human genome. Nature. 409: 860- 921, 2001.
  • Ikeda K, Nakayashiki H, Takagi M, Tosa Y and Mayama S. Heat shock, copper sulfate and oxidative stress activate the retrotransposon MAGGY resident in the plant pathogenic fungus Magnaporthe grisea. Mol. Genet. Genomics. 266: 318-325, 2001.
  • Ivashuta S, Naumkina M, Gau M, Uchiyama K, Isobe S, Mizukami Y, Shimamoto Y. Genotype- dependent transcriptional activation of novel repetitive elements during cold acclimation of alfalfa (Medicago sativa). Plant J. 31: 615-627, 2002.
  • Jensen S, Gassama MP, Heidmann T. Taming of transposable elements by homologydependent gene silencing. Nat Genet. 21: 209- 212,1999.
  • Jurka J, Kapitonov VV, Kohany O and Jurka MV. Repetitive Sequences in Complex Genomes: Structure and Evolution. Annu. Rev. Genomics Hum. Genet. 8: 241-259, 2007.
  • Kalendar R, Tanskanen J, Immonen S, Nevo E and Schulman AH. Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. PNAS. 97 (12): 6603-6607, 2000.
  • Kashkush K, Feldman M and Levy AA. Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics. 160: 1651-1659, 2002.
  • Kashkush K, Feldman M and Levy AA. Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat. Genet. 33: 102-106, 2003.
  • Kidwell MG and Lisch DR. Transposable elements and host genome evolution. Trends Ecol Evol. 15: 95-99, 2000.
  • Kuff EL and Lueders KK. The intraciste rnal Aparticle gene family: structure and functional aspects. Adv. Cancer Res. 51: 183-276,1988.
  • Kumar A and Bennetzen JL. Plant retrotransposons. Annu. Rev Genet. 33: 479-532, 1999.
  • Lesage P and Todeschini AL. Happy together: the life and times of Ty retrotransposons and their hosts. Cytogenet Genome Res.110(14): 70-90, 2005.
  • Liu ZL, Han FP, Tan M, Shan XH, Dong YZ, Wang XZ, Fedak G, Hao S and Liu B. Activation of a rice endogenous retrotransposon Tos17 in tissue culture is accompanied by cytosine demethylation and causes heritable alteration in methylation pattern of flanking genomic regions. Theor Appl Genet.109(1): 200-209, 2004.
  • McClintock B. The significance of responses of the genome to challenge. Science. 226: 792-801, 1984.
  • Martienssen R, Barkan A, Taylor WC and Freeling M. Somatically heritable switches in the DNA modification of Mu transposable elements monitored with a suppressible mutant in maize. Genes. Dev. 4: 331-343, 1990.
  • Masson P, Surosky R, Kingsbury JA and Fedoroff NV. Genetic and molecular analysis of the Spm-dependent a-m2 alleles of the maize a locus. Genetics. 117: 117-137, 1987.
  • Melayah D, Bonnivard E, Chalhoub B, Audeon C and Grandbastien MA. The mobility of the tobacco Tnt1 retrotransposon correlates with its transcriptional activation by fungal factors. Plant J. 28(2): 159-68, 2001.
  • Nellaker C, Yao Y, Jones-Brando L, Mallet F, Yolken RH and Karlsson H. Transactivation of elements in the human endogenous retrovirus W family by viral infection. Retrovirology. 6: 30-44, 2006.
  • Okamoto H and Hirohiko H. Silencing of transposable elements in plants. Trends in Plant Science. 6(11): 527-534, 2001.
  • Pouteau S, Huttner E, Grandbastien MA and Caboche M. Specific expression of the tobacco Tnt1 retrotransposon in protoplasts. EMBO J. 10: 1911-1918, 1991.
  • Sabot F. and Schulman AH. Parasitism and the retrotransposon life cycle in plants: a hitchhiker’s guide to the genome. Heredity. 97: 381- 388, 2006.
  • Sacerdot C, Mercier G, Todeschini AL, Dutreix M, Springer M and Lesage P. Impact of ionizing radiation on the life cycle of Saccharomyces cerevisiae Ty1 retrotransposon. Yeast. 22(6): 441- 55, 2005.
  • Salazar M, González E, Casaretto JA, Casacuberta JM and Ruiz-Lara S. The promoter of the TLC1.1 retrotransposon from Solanum chilense is activated by multiple stress-related signaling molecules. Plant Cell Rep. 26(10): 1861-1868, 2007.
  • Sha AH, Huang JB and Zhang DP. Relationship of activation of Tos17 and rice adult plant resistance to bacterial blight. Yi Chuan. 27(2): 181-184, 2005.
  • Shan X, Liu Z, Dong Z, Wang Y, Chen Y, Lin X, Long L, Han F, Dong Y and Liu B. Mobilization of the Active MITE Transposons mPing and Pong in Rice by Introgression from Wild Rice (Zizania latifolia Griseb.). Mol. Biol. Evol. 22(4): 976-990, 2005.
  • Steward N, Ito M, Yamaguchi Y, Koizumi N and Sano H. Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J Biol Chem. 277: 37741- 37746, 2002.
  • Stribinskis V and Ramos KS. Activation of human long interspersed nuclear element 1 retrotransposition by benzo(a)pyrene, an ubiquitous environmental carcinogen. Cancer Res. 66(5): 2616-2620, 2006.
  • Takeda S, Sugimoto K, Kakutani T and Hirochika H. Linear DNA intermediates of the Tto1 retrotransposon in Gag particles accumulated in stressed tobacco and Arabidopsis thaliana. Plant J. 28(3): 307-17, 2001.
  • Tapia G, Verdugo I, Yanez M, Ahumada I, Theoduloz C, Cordero C, Poblete F, Gonzalez E and Ruiz-Lara S. Involvement of ethylene in stress-induced expression of the TLC1.1 retrotransposon from Lycopersicon chilense Dun. Plant Physiol.138(4): 2075-2086, 2005.
  • Todeschini AL, Morillon A, Springer M and Lesage P. Severe adenine starvation activates Ty1 transcription and retrotransposition in Saccharomyces cerevisiae. Mol. Cell Biol. 25(17): 7459-72, 2005.
  • Vance V and Vaucheret H. RNA silencing in plants-defense and counterdefense. Science. 292: 2277-2280, 2002.
  • Vicient CM, Suoniemi A, Anamthawat-Jo´nsson K, Tanskanen J, Beharav A, Nevo E and Schulman AH. Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. Plant Cell. 11: 1769-1780, 1999.
  • Vitte C and Panaud O. LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model. Cytogenet Genome Res. 110: 91-107, 2005.
  • Wessler SR. Plant retrotransposons: turned on by stress. Curr. Biol. 6: 959-961, 1996.
  • White SE, Habera LF and Wessler SR. Retrotransposons in the flanking regions of normal plant genes: a role for copia-like elements in the evolution of gene structure and expression. Proc. Natl. Acad. Sci. USA. 91: 11792-11796, 1994.
APA MANSOUR A (2007). Epigenetic activation of genomic retrotransposons. , 99 - 107.
Chicago MANSOUR Ahmet Epigenetic activation of genomic retrotransposons. (2007): 99 - 107.
MLA MANSOUR Ahmet Epigenetic activation of genomic retrotransposons. , 2007, ss.99 - 107.
AMA MANSOUR A Epigenetic activation of genomic retrotransposons. . 2007; 99 - 107.
Vancouver MANSOUR A Epigenetic activation of genomic retrotransposons. . 2007; 99 - 107.
IEEE MANSOUR A "Epigenetic activation of genomic retrotransposons." , ss.99 - 107, 2007.
ISNAD MANSOUR, Ahmet. "Epigenetic activation of genomic retrotransposons". (2007), 99-107.
APA MANSOUR A (2007). Epigenetic activation of genomic retrotransposons. Journal of Cell and Molecular Biology, 6(2), 99 - 107.
Chicago MANSOUR Ahmet Epigenetic activation of genomic retrotransposons. Journal of Cell and Molecular Biology 6, no.2 (2007): 99 - 107.
MLA MANSOUR Ahmet Epigenetic activation of genomic retrotransposons. Journal of Cell and Molecular Biology, vol.6, no.2, 2007, ss.99 - 107.
AMA MANSOUR A Epigenetic activation of genomic retrotransposons. Journal of Cell and Molecular Biology. 2007; 6(2): 99 - 107.
Vancouver MANSOUR A Epigenetic activation of genomic retrotransposons. Journal of Cell and Molecular Biology. 2007; 6(2): 99 - 107.
IEEE MANSOUR A "Epigenetic activation of genomic retrotransposons." Journal of Cell and Molecular Biology, 6, ss.99 - 107, 2007.
ISNAD MANSOUR, Ahmet. "Epigenetic activation of genomic retrotransposons". Journal of Cell and Molecular Biology 6/2 (2007), 99-107.