Detailed geochemistry and K-Ar geochronology of the metamorphic sole rocks and their mafic dykes from the Mersin ophiolite, Southern Turkey

Yıl: 2008 Cilt: 17 Sayı: 4 Sayfa Aralığı: 685 - 708 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Detailed geochemistry and K-Ar geochronology of the metamorphic sole rocks and their mafic dykes from the Mersin ophiolite, Southern Turkey

Öz:
Mersin ofiyolitine ait manto peridotitlerinin tabanında yer alan metamorfik taban kayaçları amfibolitlerden ve metasedimanter litolojilerden meydana gelir. Metamorfik taban kayaçları içerisindeki mineral birliktelikleri, bu kayaçların amfibolit ve yeşilşist fasiyesi toplulukları olduğunu gösterir. Mineral topluluklarına ve minerallerin kimyasal bileşimlerine dayalı jeotermobarometre çalışmaları, metamorfizma esnasındaki metamorfik sıcaklığın 522 ± 15 °C ve basıncın 5 kb’dan az olduğuna işaret eder. Metamorfik taban kayaçlarından amfibolitlerin ana, iz ve nadir toprak elementleri bileşimlerine dayalı jeokimyası, bu kayaçların Yitim Zonu Üstü (SSZ) tipi ofiyolitlerin jeokimyasal özelliklerine sahip olduklarını gösterir. Amfibolitlerin Th/Nb oranları, ortalama değer Okyanus Ortası Sırtı Bazaltlarından (MORB) ve Okyanus Adası Bazaltlarından (OIB) yüksektir. Bu durum muhtemel olarak bu kayaçların yitim bileşeninin etkisiyle zenginleşen manto kaynağının değişmesi sonucu oluştuklarını gösterir. Amfibolitlerin Adayayı Toleyitleri (IAT), OIB ve MORB benzeri jeokimyası, bu kayaçların köken kayaçlarının Yitim Zonu Üstü ortam koşulları içerisinde oluştuklarını ve Batı Pasifikteki Mariana Trough ve Güney Atlantik Okyanusunda, Güney Sandwich yay-basen sistemlerine benzerlik sunduklarını gösterir. İzole dolerit daykları, metamorfik taban kayaçlarına ve ofiyolitik üniteye farklı yapısal seviyelerde sokulum yaparlar. Metamorfik taban kayaçlarını kesen dolerit daykları Adayayı Toleyitleri benzeri jeokimya gösterirler. Bu kayaçlar LIL elementler bakımından zenginleşmişler buna karşın HFS elementler bakımından tüketilmişlerdir. Dolerit dayklarının göreceli düz nadir toprak elementleri gidişleri de bu kayaçların yitim ile ilişkili kökenlerini teyit eder. Metamorfik taban kayaçlarının SSZ özelliklerini göstermeleri ve metamorfik olmayan Adayayı Toleyitleri benzeri dolerit daykları tarafından kesildikleri için Neotetis Okyanusunda dayklar ve metamorfik taban kayaçlarının gelişimini açıklamak için çift yitim sonucuna varılır.
Anahtar Kelime:

Konular: Jeoloji

Mersin ofiyolitinden metamorfik taban kayaçları ve mafik daykların ayrıntılı jeokimyası ve K-Ar jeokronolojisi, Güney Türkiye

Öz:
The metamorphic sole rocks at the base of mantle peridotites from the Mersin ophiolite consist of amphibolites and metasedimentary lithologies. Mineral parageneses in the metamorphic sole rocks exhibit amphibolite and greenschist facies assemblages. Geothermobarometric studies based on mineral assemblages and chemical compositions of minerals indicate that average metamorphic temperature during the metamorphism was 522 ± 15 °C and the pressure was less than 5 kb. Amphibolites from the metamorphic sole rocks exhibit geochemical characteristics of a supra-subduction zone (SSZ) type ophiolite, based on their major, trace and rare earth element (REE) compositions. The Th/Nb ratios of the amphibolites are higher than the average mid-ocean ridge basalt (MORB) and ocean island basalt (OIB) values. This may suggest that they were probably derived from an enriched mantle source modified by the addition of subduction component. Island arc tholeiite (IAT), OIB and MORB-like geochemistry of the amphibolites suggest that protoliths of these rocks were formed in a SSZ environment similar to the South Sandwich arc-basin system from South Atlantic ocean and the Mariana Trough from the Western Pacific. Isolated dolerite dykes intrude both the metamorphic sole rocks and the ophiolitic units at different structural levels. Dolerite dykes cutting the metamorphic sole rocks exhibit IAT-like geochemistry. They are enriched in large-ion-lithophile elements (LILE), depleted in high-field-strength elements (HFSE) and have relatively flat REE patterns, which also confirm their subduction-related origin. Double subduction is inferred here to explain the generation of the metamorphic sole rocks and dykes in the Neotethyan ocean, since the metamorphic sole rocks exhibit SSZ characteristics and were intruded by unmetamorphosed IAT-like dolerite dykes.
Anahtar Kelime:

Konular: Jeoloji
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • AVŞAR, N. 1992. Namrun (İçel) yöresi Paleojen bentik forominifer faunası [Palaeogene benthic foraminifera fauna of Namrun (İçel) region]. Mineral Research and Exploration Institute (MTA) of Turkey Bulletin 114, 127–144.
  • BAĞCI, U. & PARLAK, O. 2006. Geochemical character and tectonic environment of ultramafic to mafic cumulate rocks from the Tekirova (Antalya) ophiolite (southern Turkey). Geological Journal 41, 193–219.
  • BECCALUVA, L., OHNENSTETTER, D. & OHNENSTETTER, M. 1979. Geochemical discrimination between ocean-floor and island-arc tholeiitesapplication to some ophiolites. Canadian Journal of Earth Sciences 16, 1874–1872.
  • BROWN, M. 1977. The crossite content of Ca-amphiboles as a guide to pressure of metamorphism. Journal of Petrology 18, 53–72.
  • ÇELİK, Ö.F. 2002. Geochemical, Petrological and Geochronological Observations on the Metamorphic Rocks of the Tauride Belt Ophiolites (S. Turkey). PhD Thesis. Terre & Environment 39. University of Geneva, Switzerland.
  • ÇELİK, Ö.F. 2007. Metamorphic sole rocks and their mafic dykes in the eastern Tauride belt ophiolites (southern Turkey): implications for OIB type magma generation following slab break–off. Geological Magazine 144, 849–866.
  • ÇELİK, Ö.F. & CHIARADIA, M. 2008. Geochemical and petrological aspects of dike intrusions in the Lycian ophiolites (SW Turkey): a case study for the dike emplacement along the Tauride Belt Ophiolites. International Journal of Earth Sciences doi:10.1007/s00531-007- 0204-0.
  • ÇELİK, Ö.F. & DELALOYE, M. 2003. Origin of metamorphic sole rocks and their postkinematic mafic dyke swarms in the Antalya and Lycian ophiolites, SW Turkey. Geological Journal 38, 235–256.
  • ÇELİK, Ö.F. & DELALOYE, M. 2006. Characteristics of ophiolite-related metamorphic rocks in the Beyşehir ophiolitic mélange (Central Taurides, Turkey), deduced from whole rock and mineral chemistry. Journal of Asian Earth Sciences 26, 461–476.
  • ÇELİK, Ö.F., DELALOYE, M. & FERAUD, G. 2006. Precise 40Ar-39Ar ages from the metamorphic sole rocks of the Tauride Belt Ophiolites, southern Turkey: implications for the rapid cooling history. Geological Magazine 143, 213–227.
  • DİLEK, Y. & MOORES, E. 1990. Regional tectonics of the eastern Mediterranean ophiolites. In: MALPAS, J., MOORES, E., PANAYIOTOU, A. & XENOPHONTOS, C. (eds), Proceedings of International Troodos Ophiolite Symposium on Ophiolites-oceanic Crustal Analogues, 295–309.
  • DİLEK, Y., THY, P., HACKER, B. & GRUNDVIG, S. 1999. Saructure and petrology of Tauride ophiolites and mafic dyke intrusions (Turkey): implications for the Neotethyan ocean. Geological Society of America Bulletin 111, 1192–1216.
  • ELİTOK, Ö. 2001. Geochemistry and tectonic significance of the Şarkikaraağaç Ophiolite in the Beyşehir-Hoyran Nappes, SW Turkey. In: AKINCI, Ö., GÖRMÜŞ, M., KUŞCU, M., KARAGÜZEL, R. & BOZCU, M. (eds), Proceedings of 4th International Symposium on Eastern Mediterranean Geology, Isparta, 181–196.
  • EWART, A. & HAWKESWORTH, C.F. 1987. The Pleistocene–Recent Tonga- Kermadec arc lavas: interpretation of new isotopic and rare earth data in terms of a depleted mantle source model. Journal of Petrology 28, 495–530.
  • FONTEILLES, M. 1976. Essai d’interpretation des compositions chimiques des roches d’origine métamorphique et magmatique du massif hercynien de l’Agly, Pyrénées orientales. PhD Thesis, Université de Paris.
  • FRETZDORFF, S., LIVERMORE, R.S., DEVEY, C.W., LEAT, P.T. & STOFFERS, P. 2002. Petrogenesis of the back-arc East Scotia Ridge, south Atlantic Ocean. Journal of Petrology 43, 1435–1467.
  • GRIBBLE, R.F., STERN, R.J., BLOOMER, S.H., NEWMAN, S. & O’HEARN, T. 1988. Chemical and isotopic composition of lavas from the northern Mariana Trough: implications for magma genesis in backarc basins. Journal of Petrology 39, 122–154.
  • GRIBBLE, R.F., STERN, R.J., BLOOMER, S.H., STUBEN, D.H., O’HEARN, T. & NEWMAN, S. 1996. MORB mantle and subduction components interact to generate basalts in the southern Mariana Trough backarc basin. Geochimica et Cosmochimica Acta 60, 2153–2166.
  • HARRISON, T.M. 1981. Diffusion of 40Ar in hornblende. Contributions to Mineralogy and Petrology 78, 324–331.
  • HAWKINS, J.W. 1976. Petrology and geochemistry of basaltic rocks of the Lau basin. Earth and Planetary Science Letters 28, 283–298.
  • HAWKINS, J.W. 1995a. The geology of the Lau Basin. In: TAYLOR, B. (ed) Backarc Basins: Tectonics and Magmatism. New York Plenum Press, 63–138.
  • HAWKINS, J.W. 1995b. Evolution of the Lau Basin - insights from ODP Leg 135. In: TAYLOR, B. & NATLAND, J. (eds). Active Margins and Marginal Basins of the Western Pasific. American Geophysical Union Monograph 88, 126–174.
  • HAWKINS, J.W. 2003. Geology of supra-subduction zones – implications for the origin of ophiolites. In: DILEK, Y. & NEWCOMB, S. (eds), Ophiolite Concept and the Evolution of Geological Thought. The Geological Society of America Special Paper 373, 227–268.
  • HAWKINS, J.W. & MELCHIOR, J.T. 1985. Petrology of Mariana Trough and Lau basin basalts. Journal of Geophysical Research 90, 11431– 11468.
  • HAWKINS, J.W., LONSDALE, P.F., MACDOUGALL, J.D. & VOLPE, A.M. 1990. Petrology of the axial ridge of the Mariana Trough backarc spreading center. Earth and Planetary Science Letters 100, 226–250.
  • HOLLAND, T.J.B. & BLUNDY, J.D. 1994. Non-Ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology 116, 433–447.
  • IKEDA, Y. & YUASA, M. 1989. Volcanism in nascent back-arc basins behind the Shichito Ridge and adjacent areas in the Izu-Ogasawara arc, northwest Pacific: evidence for mixing between E-Type MORB and island arc magmas at the initiation of back-arc rifting. Contributions to Mineralogy and Petrology 101, 377–393.
  • JOHNSON, M.C. & PLANK, T. 1999. Dehydration and melting experiments constrain the fate of subducted sediments. Geochemistry, Geophysics, Geosystems 1, 1999GC000014.
  • JUTEAU, T. 1980. Ophiolites of Turkey. Ofioliti 2, 199–235.
  • KOEPKE, J., SEIDEL, E. & KREUZER, H. 2002. Ophiolites on the Southern Aegean islands Crete, Karpathos and Rhodes: composition, geochronology and position within the ophiolite belts of the Eastern Mediterranean. Lithos 65, 183–203.
  • LAIRD, J., LANPHERE, A. & ALBEE, A.L. 1984. Distribution of Ordovician and Devonian metamorphism in mafic and pelitic schists from Vermont. American Journal of Science 284, 376–416.
  • LEAKE, B.E. 1964. The chemical distinction between ortho- and paraamphibolites. Journal of Petrology 5, 238–254.
  • LEAKE, B.E., WOOLLEY, A.R., ARPS, C.E.S., BIRCH, W.D., GILBERT, M.C., GRICE, J.D., HAWTHOPNE, F.C., KATO, A., KISCH, H.J., KRIVOVICHEV, V.G., LINTHOUT, K., LAIRD, J., MANDARINO, J., MARESCH, W.V., NICKEL, E.H., ROCK, N.M.S., SCHUMACHER, J.C., SMITH, D.C., STEPHENSON, N.C.N., UNGARETTI, L., WHITTAKER, E.J.W. & YOUZHI, G. 1997. Nomenclature of amphiboles: Report of the subcommitee on amphiboles of the International Mineralogical Association, commission on new minerals and mineral names. American Mineralogist 82, 1019–1037.
  • LEAT, P.T., LIVERMORE, R.A., MILLAR, I.L. & PEARCE, J.A. 2000. Magma supply in back-arc spreading centre segment E2, East Scotia Ridge. Journal of Petrology 41, 845–866.
  • LEAT, P.T., PEARCE, J.A., BARKER, P.F., MILLAR, I.L., BARRY, T.L. & LARTER, R.D. 2004. Magma genesis and mantle flow at a subducting slab edge: the South Sandwich arc-basin system. Earth and Planetary Science Letters 227, 17–35.
  • LYTWYN, J.N. & CASEY, J.F. 1995. The geochemistry of postkinematic mafic dyke swarms and subophiolitic metabasites, Pozantı-Karsantı ophiolite, Turkey: evidence for ridge subduction. Geology Society of America Bulletin 7, 830–850.
  • MULLEN, E.D. 1983. MnO/TiO2/P2O5: a minor element discriminant for basaltic rocks of oceanic environnement and its implication for petrogenesis. Earth and Planetary Science Letters 62, 53–62.
  • ÖNEN, A.P. & HALL, R. 2000. Sub-ophiolite metamorphic rocks from NW Anatolia, Turkey. Journal of Metamorphic Geology 18, 483–495.
  • PARLAK, O. 1996. Geochemistry and Geochronology of the Mersin Ophiolite within the Eastern Mediterranean Tectonic Frame. PhD Thesis. Terre & Environnement 6, University of Geneva, Switzerland.
  • PARLAK, O. & DELALOYE, M. 1996. Geochemistry and timing of postmetamorphic dyke emplacement in the Mersin ophiolite (southern Turkey): new age constraints from 40Ar/39Ar geochronology. Terra Nova 8, 585–592.
  • PARLAK, O. & DELALOYE, M. 1999. Precise 40Ar-39Ar ages from the metamorphic sole of the Mersin ophiolite (Southern Turkey). Tectonophysics 301, 145–158.
  • PARLAK, O., DELALOYE, M. & BİNGÖL, E. 1995. Origin of sub-ophiolitic metamorphic rocks beneath the Mersin ophiolite, southern Turkey. Ofioliti 20, 97–110.
  • PARLAK, O., DELALOYE, M. & BİNGÖL, E. 1996. Mineral chemistry of ultramafic and mafic cumulates as an indicator of arc-related origin of the Mersin ophiolite (southern Turkey). Geologische Rundschau 85, 647–661.
  • PARLAK, O., HÖCK, V. & DELALOYE, M. 2000. Suprasubduction zone origin of the Pozantı-Karsantı Ophiolite (Southern Turkey) deduced from whole-rock and mineral chemistry of the gabbroic cumulates. In: BOZKURT, E., WINCHESTER, J.A. & PIPER, J.D.A. (eds), Tectonics and Magmatism in Turkey and the Surrounding Area. Geological Society, London, Special Publications 173, 219–234.
  • PARLAK, O., HÖCK, V. & DELALOYE, M. 2002. The supra-subduction zone Pozantı-Karsantı ophiolite, southern Turkey: evidence for highpressure crystal fractionation of ultramafic cumulates. Lithos 65, 205–224.
  • PARLAK, O. & ROBERTSON, A.H.F. 2004. Tectonic setting and evolution of the ophiolite-related Mersin Mélange, southern Turkey: its role in the tectonic-sedimentary setting of the Tethys in the eastern Mediterranean region. Geological Magazine 141, 257–286.
  • PARLAK, O., YILMAZ, H. & BOZTUĞ, D. 2006. Origin and tectonic significance of the metamorphic sole and isolated dykes of the Divriği ophiolite (Sivas, Türkiye): evidence for slab break-off prior to ophiolite emplacement. Turkish Journal of Earth Sciences 15, 25–45.
  • PEARCE, J.A. 1980. Geochemical evidence for the genesis and eruptive setting of lava from Tethyan ophiolites. In: PANAYIOTOU, A. (ed), Ophiolites. Cyprus, 299–317.
  • PEARCE, J.A. 1982. Trace element characteristicns of lavas from destructive plate boundaries. In: THORPE, R.S. (ed), Andesites. Wiley and Sons, New York, 525–548.
  • PEARCE, J.A. 2003. Supra-subduction zone ophiolites: the search for modern analogues. In: DILEK, Y. & NEWCOMB, S. (eds), Ophiolite Concept and the Evolution of Geological Thought. The Geological Society of America Special Paper 373, 269–293.
  • PEARCE, J.A., LIPPARD, S.J. & ROBERTS, S. 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites. In: KOKELAAR, B.P. & HOWELS, M.F. (eds), Marginal Basin Geology. Geological Society, London, Special Publications 16, 77–94. PEARCE, J.A., ALABASTER, T., SHELTON, A.W. & SEARLE, M.P. 1981. The Oman ophiolite as a Cretaceous arc-basin complex: evidence and implications. Philosophical Transactions Royal Society of London 300, 299–317.
  • PEARCE, J.A., BARKER, P.F., EDWARDS, S.J., PARKINSON, I.J. & LEAT, P.T. 2000. Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic. Contributions to Mineralogy and Petrology 139, 36–53.
  • POLAT, A., CASEY, J.F. & KERRICH, R. 1996. Geochemical characteristics of accreted material beneath the Pozantı-Karsantı ophiolite, Turkey: Intra-oceanic detachment, assembly and obduction. Tectonophysics 263, 249–276.
  • RAASE, P. 1974. Al and Ti contents of hornblende, indicators of pressure temperature of regional metamorphism. Contributions to Mineralogy and Petrology 45, 231–236.
  • ROBERTSON, A.H.F. 2002. Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region. Lithos 65, 1–67.
  • SAUNDERS, A.D. & TARNEY, J. 1979. The geochemistry of basalts from a back-arc spreading centre in the East Scotia Sea. Geochimica Cosmochimica Acta 43, 555–572. SAUNDERS, A.D. & TARNEY, J. 1984. Geochemical characteristics of basaltic volcanism within back-arc basins. In: KOKELAAR, B.P. & HOWELLS, M.F. (eds), Marginal Basin Geology. Geology Society, London, Special Publications 16, 59–76.
  • SHERVAIS, W.J. 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters 59, 102–118.
  • STEIGER, R.H. & JÄEGER, E. 1977. Subcommission on geochronology: convention on the use of decay constants in geo-and cosmochronology. Earth and Planetary Science Letters 55, 359–362.
  • SUN, S.S. & MC DONOUGH, W.F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: SAUNDERS, A.D. & NORRY, M.J. (eds), Magmatism in the Ocean Basins. Geological Society, London, Special Publications 42, 313–345.
  • THOMPSON, G. 1991. Metamorphic and hydrothermal processes: basaltseawater interactions. In: FLOYD, P.A. (ed), Oceanic Basalts. Blackie, Glasgow, 148–173.
  • THUIZAT, R., WHITECHURCH, H., MONTIGNY, R. & JUTEAU, T. 1981. K-Ar dating of some infra-ophiolitic metamorphic soles from the eastern Mediterranean: New evidence for oceanic thrusting before obduction. Earth and Planetary Science Letters 52, 302–310.
  • TINDLE, A.G. & WEBB, P.C. 1994. PROBE-AMPH a spreadsheet program to classify microprobe-derived amphibole analyses. Computers and Geosciences 20, 1201–1228.
  • VERGİLİ, Ö. & PARLAK, O. 2005. Geochemistry and tectonic setting of metamorphic sole rocks and mafic dykes from the Pınarbaşı (Kayseri) ophiolite, Central Anatolia (Turkey). Ofioliti 30, 37–52.
  • VOLPE, A.M., MACDOUGALL, J.D., LUGMAIR, G., HAWKINS, J.W. & LONSDALE, P.F. 1990. Fine-scale isotropic variation in Mariana Trough basalts: evidence for heterogeneity and recycled component in backarc basin mantle. Earth and Planetary Science Letters 100, 251–264.
APA ÇELİK Ö (2008). Detailed geochemistry and K-Ar geochronology of the metamorphic sole rocks and their mafic dykes from the Mersin ophiolite, Southern Turkey. , 685 - 708.
Chicago ÇELİK ÖMER FARUK Detailed geochemistry and K-Ar geochronology of the metamorphic sole rocks and their mafic dykes from the Mersin ophiolite, Southern Turkey. (2008): 685 - 708.
MLA ÇELİK ÖMER FARUK Detailed geochemistry and K-Ar geochronology of the metamorphic sole rocks and their mafic dykes from the Mersin ophiolite, Southern Turkey. , 2008, ss.685 - 708.
AMA ÇELİK Ö Detailed geochemistry and K-Ar geochronology of the metamorphic sole rocks and their mafic dykes from the Mersin ophiolite, Southern Turkey. . 2008; 685 - 708.
Vancouver ÇELİK Ö Detailed geochemistry and K-Ar geochronology of the metamorphic sole rocks and their mafic dykes from the Mersin ophiolite, Southern Turkey. . 2008; 685 - 708.
IEEE ÇELİK Ö "Detailed geochemistry and K-Ar geochronology of the metamorphic sole rocks and their mafic dykes from the Mersin ophiolite, Southern Turkey." , ss.685 - 708, 2008.
ISNAD ÇELİK, ÖMER FARUK. "Detailed geochemistry and K-Ar geochronology of the metamorphic sole rocks and their mafic dykes from the Mersin ophiolite, Southern Turkey". (2008), 685-708.
APA ÇELİK Ö (2008). Detailed geochemistry and K-Ar geochronology of the metamorphic sole rocks and their mafic dykes from the Mersin ophiolite, Southern Turkey. Turkish Journal of Earth Sciences, 17(4), 685 - 708.
Chicago ÇELİK ÖMER FARUK Detailed geochemistry and K-Ar geochronology of the metamorphic sole rocks and their mafic dykes from the Mersin ophiolite, Southern Turkey. Turkish Journal of Earth Sciences 17, no.4 (2008): 685 - 708.
MLA ÇELİK ÖMER FARUK Detailed geochemistry and K-Ar geochronology of the metamorphic sole rocks and their mafic dykes from the Mersin ophiolite, Southern Turkey. Turkish Journal of Earth Sciences, vol.17, no.4, 2008, ss.685 - 708.
AMA ÇELİK Ö Detailed geochemistry and K-Ar geochronology of the metamorphic sole rocks and their mafic dykes from the Mersin ophiolite, Southern Turkey. Turkish Journal of Earth Sciences. 2008; 17(4): 685 - 708.
Vancouver ÇELİK Ö Detailed geochemistry and K-Ar geochronology of the metamorphic sole rocks and their mafic dykes from the Mersin ophiolite, Southern Turkey. Turkish Journal of Earth Sciences. 2008; 17(4): 685 - 708.
IEEE ÇELİK Ö "Detailed geochemistry and K-Ar geochronology of the metamorphic sole rocks and their mafic dykes from the Mersin ophiolite, Southern Turkey." Turkish Journal of Earth Sciences, 17, ss.685 - 708, 2008.
ISNAD ÇELİK, ÖMER FARUK. "Detailed geochemistry and K-Ar geochronology of the metamorphic sole rocks and their mafic dykes from the Mersin ophiolite, Southern Turkey". Turkish Journal of Earth Sciences 17/4 (2008), 685-708.