Yıl: 2009 Cilt: 33 Sayı: 1 Sayfa Aralığı: 65 - 77 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Plant Growth and mineral element content of different gourd species and watermelon under salinity stress

Öz:
Crimson Tide karpuz [Citrullus lanatus (Thunb.) Matsum. and Nakai] çeşidi ve karpuza anaçlık potansiyeli olan 7 farklı kabak genotipi [Cucurbita maxima, C. moschata, Luffa cylindrica, Benincasa hispida, Lagenaria siceraria (Skp ve Birecik) köy çeşidi ve L. siceraria melezi (FRGold)] 30 gün tuzlu (0, 4, 8, 12 ve 16 dS m-1) koşullarda yetiştirilerek tuz stresine tepkileri belirlenmiştir. Bitki ana gövde uzunluğu, kök kuru ağırlığı, yaprak ve gövde kuru ağırlığı, bitki kuru ağırlığındaki azalma, yapraklardaki Na+, Ca2+ ve K+ konsantrasyonu, Ca2+/Na+ ve K+/Na+ oranları belirlenmiştir. Kabak genotipleri tuzlu koşullarda incelenen bütün parametrelere farklı tepkiler vermişlerdir. L. cylindrica ve B. hispida hariç bütün kabak genotipleri tuz stresinden karpuza göre bitki gelişimi açısından daha az etkilenmişlerdir. İyon regülasyonu bakımından kabak genotipleri ve karpuz arasında önemli farklılıklar tespit edilmiştir. Tuz uygulaması ile birlikte yapraktaki Na+ konsantrasyonu yükselmiştir. L. cylindrica’nın yapraklarında Na+ birikimi önemli bir artış gösterirken, en düşük Na+ içeriği Birecik ve C. maxima’da belirlenmiştir. Tuz stresi altında, B. hispida ve L. cylindrica, karpuz ve diğer kabak genotiplerinden daha fazla Na+ biriktirmişlerdir. Ca2+/Na+ and K+/Na+ oranları tuz uygulaması ile birlikte önemli derecede azalmıştır. Azalma genotipe göre değişmiştir. Yüksek bitki kuru ağırlığına sahip olan genotipler, yüksek Ca2+/Na+ ve K+/Na+ oranlarına sahip olmuşlardır. Bitki büyüme parametreleri ile Ca2+/Na+ ve K+/Na+ oranları arasında önemli pozitif korelasyonlar bulunurken, Na+ içeriği ile önemli negatif korelasyon tespit edilmiştir. Cucurbita ve Lagenaria türleri tuz stresine, L. cylindrica, B. hispida ve karpuza göre daha yüksek tolerans göstermiştir.
Anahtar Kelime: bitki gelişimi sodyum karpuz anaçlar tuzluluk potasyum mineral madde içeriği kalsiyum tuz toleransı genotip büyüme

Konular: Orman Mühendisliği

Farklı kabak türlerinin ve karpuzun tuz stresi altında bitki gelişimi ve element içerikleri

Öz:
The watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai] cultivar Crimson Tide and 7 different gourd genotypes [Cucurbita maxima, C. moschata, Luffa cylindrica, Benincasa hispida, Lagenaria siceraria landraces (Skp and Birecik), and L. siceraria hybrid (FRGold)] with rootstock potential for watermelon were grown under saline conditions (0, 4, 8, 12, and 16 dS m–1) to investigate the responses of the gourd genotypes and watermelon to 30 days of salt stress. Plant main stem length, shoot dry weight, root dry weight, reduction in shoot dry weight, concentration of Na+, Ca2+, and K+ in the leaves of the genotypes, and Ca2+/Na+ and K+/Na+ ratios were investigated. Plant length, and shoot and root dry weight of the plants significantly decreased as salinity stress increased. Gourd genotypes responded significantly differently to all investigated parameters under saline conditions. All genotypes had better growth performance than watermelon, except for L. cylindrica and B. hispida. The gourd genotypes and watermelon showed significant differences under saline conditions, with respect to ion regulation. Sodium concentration in the leaves of all the genotypes increased in response to salt application. There was a remarkable increase in Na+ concentration in the leaves of L. cylindrica, whereas the lowest Na+ concentration was observed in Birecik, and C. maxima, B. hispida, and L. cylindrica accumulated more Na+ than watermelon and the other gourd genotypes did under saline conditions. Ca2+/Na+ and K+/Na+ ratios were significantly reduced by salt treatment and the degree of decrease was dependent on genotype. Genotypes with higher Ca2+/Na+ and K+/Na+ ratios produced more dry weight. Significant positive correlations were observed between plant biomass parameters, and Ca2+/Na+ and K+/Na+ ratios, whereas strong negative correlations were observed between Na+ concentrations and shoot and root dry weight of the genotypes. Cucurbita and Lagenaria species were more tolerant to salinity stress than L. cylindrica, B. hispida, and watermelon.
Anahtar Kelime: potassium mineral content calcium salt tolerance genotypes growth plant development sodium watermelons rootstocks salinity

Konular: Orman Mühendisliği
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Awang, Y.B., J.G. Atherton and A.J. Taylor. 1993. Salinity effects of strawberry plants grown in rockwool I. Growth and leaf water relations. J. Hort. Sci. 68: 783-790.
  • Bayuelo-Jiménez, J.S., D.G. Debouck and J.P. Lynch. 2003. Growth, gas exchange, water relations, and ion composition of Phaseolus species grown under saline conditions. Field Crop. Res. 80: 207-222.
  • Bonhert, H.J. and R.G. Jensen. 1996. Metabolic engineering for increased salt tolerance the next step. Aust. J. Plant Physiol. 23: 661-666.
  • Botia, P., M. Carvajal, A. Cerda and V. Martinez. 1998. Responses of eight Cucumis mole cultivars to salinity during germination and early vegetative growth. Agronomie 18: 503-513.
  • Cachorro, P., A. Ortiz and A. Cerda. 1993. Growth, water relations and solute compositions of Phaseolus vulgaris L. under saline conditions. Plant Sci. 95: 29-32.
  • Cachorro, P., A. Ortiz and A. Cerda. 1994. Implication of calcium nutrition on the response of Phaseolus vulgaris L. to salinity. Plant Soil. 159: 205-221.
  • Carvajal, E., F.M. del Amor, G. Fernandez-Ballester, V. Martinez and A. Cerda. 1998. Time course of solute accumulation and water relations in muskmelon plants exposed to salt during different growth stages. Plant Sci. 138: 103-112.
  • Cayuela, E., M.T. Estan, M. Parra, M. Caro and M.C. Bolarin. 2001. NaCl pre-treatment at the seedling stage enhances fruit yield of tomato plants irrigated with salt water. Plant Soil. 230: 231-138.
  • Chartzoulakis, K. and G. Klapaki. 2000. Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. Sci. Hortic. 86: 247-260.
  • Chartzoulakis K. and M.H. Loupassaki. 1997. Effects of NaCl salinity on germination, growth, gas exchange, and yield of greenhouse eggplant. Agric. Water Manage. 32: 214-225.
  • Chung, H., T. Ryu, Y. Choi. 2003. Selection of salt-tolerant bottle gourd (Lagenaria siceraria) rootstock for watermelon graft. J. Korean Soci. Hortic. Sci. 44: 588-594.
  • Colla, G., Y. Rouphael, M. Cardarelli, O. Temperini, S. Fanasca, F. Pierandrei, A. Salerno and E. Rea. 2007. Salt tolerance and mineral relations for grafted and ungrafted watermelon plants grown in NFT. Acta Hortic. 747: 243-247.
  • Cramer, G.R. 2002. Sodium-calcium interaction under saline stress. In: Salinity. Environment-Plants-Molecules. (Eds.: A. Lauchi and U. Lüttge) Dordrecht: Kluwer, pp. 205-227.
  • Cuartero, J. and R. Fernandez-Munoz. 1999. Tomato and salinity. Sci. Hortic. 78: 83-125.
  • Dasgan, H.Y., H. Aktas, K. Abak and I. Cakmak. 2002. Determination of screening techniques to salinity tolerance in tomato and investigation of genotypes responses. Plant Sci. 163: 695-703.
  • de Pascale, S. and G. Barbieri. 1997. Effects of salinity and top removal on growth and yield of broadbean as a green vegetable. Sci. Hortic. 71: 147-165.
  • del Amor, F.M., V. Martinez and A. Cerda. 1999. Salinity duration and concentration affect fruit yield and quality and growth and mineral composition of melon plants grown in perlite. HortScience 34: 1234-1237.
  • del Amor, F.M., M.C. Ruiz-Scanchez, V. Martinez and A. Cerda. 2000. Gas exchange, water relations, and ion concentrations of saltstressed tomato and melon plants. J. Plant Nutr. 23: 1315-1325.
  • Durand, M. and D. Lacan. 1994. Sodium partitioning within the shoot of soybean. Physiol. Plant. 91: 65-71.
  • Flowers, T.J. and A.R. Yeo. 1986. Ion regulation of plants under drought and salinity. J. Plant Physiol. 13: 75-91.
  • Fooland, M.R. 1996. Genetic analysis of salt tolerance during vegetative growth in tomato, Lycopersicon esculentum Mill. Plant Breeding. 115: 245-250.
  • Jacoby, B. 1994. Mechanisms involved in salt tolerance by plants. In: Pessarakli, M. (Ed), Handbook of plant and crop stress. Marcel Dekker, New York, pp, 97-123.
  • Kaya, C., D. Higgs, H. Kirnak and I. Tas. 2003. Ameliorative effects of calcium nitrate on cucumber and melon plants drip irrigated with saline water. J. Plant Nutr. 26: 1665-1681.
  • Kotuby-Amercher, J. Koing, R. and Kitchen, B. 2000. Salinity and plant tolerance, Utah State University Extension Publ. AG-SO-03, 1-8.
  • Lauchli, A. and E. Epstein. 1990. Plant responses to saline and sodic conditions. In: Agricultural Salinity Assessment and Management. (Ed.: K.K. Tanji). Vol. 71, ASCE Manuals and Reports on Engineering Practice, American Society of Civil Engineers, New York, pp. 113-137.
  • Lee, J.M. 1994. Cultivation of grafted vegetables I. Current status, grafting methods and benefits. HortScience. 29: 235-239.
  • Marschner, H. 1995. Saline soil in: mineral nutrition of higher plants, Academic Press, New York, 657-680 pp.
  • Navarro, J.M., M.A. Botella, A. Cerda and V. Martinez. 2000. Effect of salinity calcium interaction on cation balance in melon plants grown under two regimes of orthophosphate. J. Plant Nutr. 23: 991-1006.
  • Oda, M. 1995. New grafting methods for fruit-bearing vegetables in Japan. Jpn. Agr. Res. Q. 29: 187-198.
  • Porcelli, C.A., F.H. Gutierrez Boem, R.S. Lavado. 1995. The K/Na and Ca/Na ratios and rapeseed yield, under soil salinity and sodicity. Plant Soil. 175: 251-255.
  • Romero, L., A. Belakbir, L. Ragala and J.M. Ruiz. 1997. Responses of plant yield and leaf pigments to saline conditions: effectiveness of different rootstocks in melon plants (Cucumis melo L.). Soil Sci. Plant Nutr. 43: 855-862.
  • Romero-Aranda, R., T. Soria and J. Cuartero. 2001. Tomato plant-water relationship under saline growth conditions. Plant Sci. 160: 828- 830.
  • Rus, A.M., M.T. Estan, C. Gisbert, B. Garcia-Sogo, R. Serrano, M. Caro, V. Moreno and M.C. Bolarin. 2001. Expressing the yeast Hal1 gene in tomato increases fruit yield and enhances K+/Na+ selectivity under salt stress. Plant Cell Environ. 24: 875-880.
  • Santa-Cruz, A., M.M. Martinez-Rodriguez, F. Perez-Alfocea, R. Romero- Aranda and M.C. Bolarin. 2002. The rootstocks effect on the tomato salinity response depends on the shoot genotype. Plant Sci. 162: 825-831.
  • Santa-Maria, G.E. and E. Epstein. 2001. Potassium/sodium selectivity in wheat and amphiploid cross wheat Lophopyrum elongatum. Plant Sci. 160: 523-534.
  • Shachtman, D.P. and R. Munns. 1992. Sodium accumulation in leaves of Triticum species that differ in salt tolerance. Aust. J. Plant Physiol. 9: 331-340.
  • Shachtman, D.P., A.J. Blum and J. Dovrak. 1989. Salt tolerant Triticum Lophopyrum derivatives limit the accumulation of sodium and chloride ions under saline stress. Plant Cell Environ. 12: 47-55.
  • Singh, S. and M. Singh. 2000. Genotypic basis of response to salinity in some crosses of spring wheat Triticum aestivum L. Euphytica. 115: 209-219.
  • Sivritepe, H.O., N. Sivritepe, A. Eris and E. Turhan. 2005. The effects of NaCl pre-treatments on salt tolerance of melons grown under longterm salinity. Sci. Hortic. 106: 568-581.
  • Sykes, S.R. 1992. The inheritance of salt exclusion in woody perennial fruit species. Plant Soil, 146: 123-129.
  • Tester, M. and R. Davenport. 2003. Na+ tolerance and Na+ transport in higher plants. Ann. Bot. 91: 503-527.
  • van der Sanden P.A.C.M. and B.W. Veen. 1992. Effects of air humidity and nutrient solution concentration on growth, water potential and stomatal conductance of cucumber seedlings. Sci. Hortic. 50: 173- 186.
  • Walker, R.R. 1986. Sodium exclusion and potassium selectivity in salt treated Trifoliate orange (Poncirus trifoliate) and Cleopatra mandarin (Citrus reticulate) plants. Aust. J. Plant Physiol. 13: 193- 303.
  • Wei, G., Y. Zhu, Z. Liu, L. Yang and G. Zhang. 2007. Growth and ion distribution in grafted eggplant seedling under NaCl stress. Acta Botanica Boreali-Occidentalia Sinica 27: 1172-1178.
  • Yang, L., Y. Zhu, C. Hu, G. Zhang and Z. Liu. 2005. Studies on growth trends, physiology and biochemical characteristics in hydroponicallygrown grafted watermelon under NaCl stress. Southwest China J. Agric. Sci. 18: 439-443.
  • Yang, L., Y. Zhu, C. Hu, Z. Liu and G. Wei. 2006. Effects of salt stress on biomass formation and ion partition in hydroponically-cultured grafted cucumber. Acta Botanica Boreali-Occidentalia Sinica. 26: 2500-2505.
  • Yetisir, H. and N. Sari. 2003. Effect of rootstock on plant growth, yield and quality of watermelon. Aust. J. Exp. Agric. 43: 1269-1274.
  • Yetişir, H. and N. Sarı. 2004. Effect of hypocotyls morphology on survival rate and growth of watermelon seedling grafted on rootstocks with different emergence performance at various temperatures. Turk. J. Agric. For. 28: 231-237.
  • Zarcinas, B.A., B. Cartwright and L.P. Spouncer. 1987. Nitric acid digestion and multi-element analysis of plant material by inductively coupled argon plasma spectrometry. Commun. Soil. Sci. Plan. 18: 131-147.
  • Zhang, Y., S. Liu and H. Wang. 2004. Effect of salt-tolerant stock grafting on the salt-tolerant characteristics of watermelon. Acta Hortic. 20: 62-64.
  • Zhang, G., Y. Zhu, L. Yang, Z. Liu and C. Hu. 2006. Effect of NaCl stress on the biomass and ion contents in grafted tomato seedlings. Acta Botanica Boreali-Occidentalia Sinica. 26: 2069-2074.
APA YETİŞİR H, UYGUR V (2009). Plant Growth and mineral element content of different gourd species and watermelon under salinity stress. , 65 - 77.
Chicago YETİŞİR HALİT,UYGUR VELI Plant Growth and mineral element content of different gourd species and watermelon under salinity stress. (2009): 65 - 77.
MLA YETİŞİR HALİT,UYGUR VELI Plant Growth and mineral element content of different gourd species and watermelon under salinity stress. , 2009, ss.65 - 77.
AMA YETİŞİR H,UYGUR V Plant Growth and mineral element content of different gourd species and watermelon under salinity stress. . 2009; 65 - 77.
Vancouver YETİŞİR H,UYGUR V Plant Growth and mineral element content of different gourd species and watermelon under salinity stress. . 2009; 65 - 77.
IEEE YETİŞİR H,UYGUR V "Plant Growth and mineral element content of different gourd species and watermelon under salinity stress." , ss.65 - 77, 2009.
ISNAD YETİŞİR, HALİT - UYGUR, VELI. "Plant Growth and mineral element content of different gourd species and watermelon under salinity stress". (2009), 65-77.
APA YETİŞİR H, UYGUR V (2009). Plant Growth and mineral element content of different gourd species and watermelon under salinity stress. Turkish Journal of Agriculture and Forestry, 33(1), 65 - 77.
Chicago YETİŞİR HALİT,UYGUR VELI Plant Growth and mineral element content of different gourd species and watermelon under salinity stress. Turkish Journal of Agriculture and Forestry 33, no.1 (2009): 65 - 77.
MLA YETİŞİR HALİT,UYGUR VELI Plant Growth and mineral element content of different gourd species and watermelon under salinity stress. Turkish Journal of Agriculture and Forestry, vol.33, no.1, 2009, ss.65 - 77.
AMA YETİŞİR H,UYGUR V Plant Growth and mineral element content of different gourd species and watermelon under salinity stress. Turkish Journal of Agriculture and Forestry. 2009; 33(1): 65 - 77.
Vancouver YETİŞİR H,UYGUR V Plant Growth and mineral element content of different gourd species and watermelon under salinity stress. Turkish Journal of Agriculture and Forestry. 2009; 33(1): 65 - 77.
IEEE YETİŞİR H,UYGUR V "Plant Growth and mineral element content of different gourd species and watermelon under salinity stress." Turkish Journal of Agriculture and Forestry, 33, ss.65 - 77, 2009.
ISNAD YETİŞİR, HALİT - UYGUR, VELI. "Plant Growth and mineral element content of different gourd species and watermelon under salinity stress". Turkish Journal of Agriculture and Forestry 33/1 (2009), 65-77.