Yıl: 2009 Cilt: 29 Sayı: 1 Sayfa Aralığı: 91 - 98 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Unsteady turbulent vortex structure downstream of a three dimensional cylinder

Öz:
Bu çalışmada üç boyutlu silindir çapına gore hesaplanan Reynolds sayısı 20,000 olan silindir üzerindeki zamana bağlı değişen türbülanslı akış sayısal olarak incelenmiştir. Sonuçlar litern atürdeki deneysel çalışmalarla kıyaslanmıştır. Hesaplamalı akışkanlar dinamiği (HAD) açısından bakıldığında çalışma, düzensiz ağların ve Large Eddy Simulation yönteminin alt ağ yöntemi kullanmadan laminerden türbülanslı akışa geçiş Reynolds sayılarına denk gelen bir akış rejimi için kullanılabilirliğini test etmektedir. Sayısal sonuçlara dikgen ayrıştırma yöntemi uygulanarak eldeki türbülanslı akışın enerji dağılımı ve akış özellikleri ayrıntılı olarak incelenmiştir. Sayısal analiz sonuçları literatürdeki deneysel çalışmaların sonuçlarıyla uyum içerisindedir. POD kip enerjilerini gösteren grafikler, sadece dört mekansal kipin toplam enerjinin %98’ini oluşturduğunu ve akışı modellemek için yeterli olduğunu göstermektedir.
Anahtar Kelime:

Konular: Termodinamik

Üç boyutlu silindir arkasındaki zamanla değişen türbülanslı girdap yapısı

Öz:
This study examines the near wake behavior of the turbulent, unsteady flow over a three dimensional circular cylinder at Re=20,000, based on cylinder diameter, computationally. From a CFD perspective, this work assesses the capability of unstructured grids and large eddy simulations without a subgrid scale model, for the prediction of flow behavior at transitional Reynolds numbers for the time-dependent flow over a circular cylinder. Proper orthogonal decomposition is also applied to the computational results in order to investigate the flow structure further and examine the energy content of the turbulent flow at hand. The results of the computations are in close agreement with the experimental results in literature. The energy content of the POD modes reveals that only four spatial modes have 98% of the total energy in the flow and are enough to represent the flow.
Anahtar Kelime:

Konular: Termodinamik
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Anderson, J. D., Fundamentals of Aerodynamics, Second Edition, McGraw-Hill, New York, 1991.
  • Beaudan, P. and Moin, P., Numerical Experiments on the Flow past a Circular Cylinder at Subcritical Reynolds Number, Report TF-62, Department of Mechanical Engineering, Stanford University, 1994.
  • Braza, M., Chaissaing, P. and Ha Minch, H., Prediction of Large Scale Transition Features in the Wake of a Circular Cylinder, Physics of Fluids, Vol A2, pp.1461- 1521, 1990.
  • Cohen, K., Siegel, S., McLaughlin, T., Gillies, E. and Myatt, J., Closed-loop approaches to control of a wake flow modeled by the Ginzburg–Landau equation, Computers and Fluids, Vol. 34, pp. 927-949, 2005.
  • Dong, S., Karniadakis, G. E., Ekmekci, A. and Rockwell, D., A Combined Direct Numerical Simulation-Particle Image Velocimetry Study of the Turbulent Near Wake, Journal of Fluid Mechanics, Vol 569, pp. 185-207, 2006.
  • Franke, J. and Frank, W., Large Eddy Simulation of the Flow past a Circular Cylinder at ReD=3900, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 90, Issue 10, pp. 1191-1206, 2002.
  • Gottlieb, J. J. and Growth, C. P. T., Assessment of Riemann Solvers for Unsteady One-Dimensional Inviscid Flows of Perfect Gases, Journal of Computational Physics, pp. 437-458, 1988.
  • Hansen, R., Forsythe, J., Large and Detached Eddy Simulations of a Circular Cylinder Using Unstructured Grids, 41st Aerospace Sciences Meeting and Exhibit, Reno, Nevada, AIAA-2003-775, January 2003.
  • Holmes, P., Lumley, J. L., Berkooz, G., Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Journal of Fluid Mechanics, Vol. 322, 215- 241, 1996.
  • Jordan, S. A., Investigation of the Cylinder Separated Shear-Layer Physics by Large Eddy Simulation, International J. Heat Fluid Flow, Vol. 23, pp 1-12, 2002.
  • Lim, H. and Lee, S., Flow Control of Circular Cylinders with Longitudinal Grooved Surfaces, AIAA Journal, Vol. 40, No:10, October 2002.
  • Lin, J. C., Towfighi, J. and Rockwell, D., Instantaneous Structure of a Near Wake of a Cylinder: On the Effect of Reynolds Number, J. Fluids Struct., Vol. 9, pp. 409- 418, 1995.
  • Kravchenko, A. G. and Moin, P., Numerical Studies of Flow over a Circular Cylinder at ReD=3900, Physics of Fluids, Vol. 12, Issue 2, pp. 403-417, 2000.
  • Ma, X., Karamanos, G. S. and Karniadakis, G. E., Dynamics and Low-Dimensionality of a Turbulent Near Wake, Journal of Fluid Mechanics, Vol. 410, pp. 29- 65, 2000.
  • Mittal, R. and Moin, P., Stability of Upwind-Biased Finite Difference Schemes for Large- Eddy Simulation of Turbulent Flows, AIAA Journal, Vol. 35, No.8, pp. 1415-1417, 1997.
  • Newman, A. J., Model Reduction via the Karhunen Loeve Expansion Part 1: An Exposition, Technical Research Report, 96-32, ISR, 1996.
  • Norberg, C., An Experimental Investigation of the Flow around a Circular Cylinder: Influence of Aspect Ratio, Journal of Fluid Mechanics, Vol. 258, pp. 287-316, 1994.
  • Norberg, C., Fluctuating Lift on a Circular Cylinder: Review and New Measurements, J. Fluids Struct., Vol. 17, pp.57-96, 2003.
  • Strang, W. Z., Tomaro, R. F., Grismer, M. J., The Defining Methods of Cobalt60: A Parallel, Implicit, Unstructured Euler/Navier Stokes Flow Solver, AIAA 99-0786, January 1999.
  • Sirovich, L., Turbulence and the dynamics of coherent structures part I: Coherent structures, Quarterly of Applied Mathematics, Vol. 45, No:3, 561-571, 1987.
  • Unal, M. and Rockwell, D., On Vortex Shedding from a Cylinder, Part 1: The Initial Instability, Journal of Fluid Mechanics, Vol. 190, pp. 491-512, 1988.
  • Zdravkovich, M. M., Conceptual Overview of Laminar and Turbulent Flows Past Smooth and Rough Circular Cylinders, J. Wind Engineering Indust. Aero, Vol. 33, pp. 53-62, 1990.
APA ARADAG S (2009). Unsteady turbulent vortex structure downstream of a three dimensional cylinder. , 91 - 98.
Chicago ARADAG Selin Unsteady turbulent vortex structure downstream of a three dimensional cylinder. (2009): 91 - 98.
MLA ARADAG Selin Unsteady turbulent vortex structure downstream of a three dimensional cylinder. , 2009, ss.91 - 98.
AMA ARADAG S Unsteady turbulent vortex structure downstream of a three dimensional cylinder. . 2009; 91 - 98.
Vancouver ARADAG S Unsteady turbulent vortex structure downstream of a three dimensional cylinder. . 2009; 91 - 98.
IEEE ARADAG S "Unsteady turbulent vortex structure downstream of a three dimensional cylinder." , ss.91 - 98, 2009.
ISNAD ARADAG, Selin. "Unsteady turbulent vortex structure downstream of a three dimensional cylinder". (2009), 91-98.
APA ARADAG S (2009). Unsteady turbulent vortex structure downstream of a three dimensional cylinder. Isı Bilimi ve Tekniği Dergisi, 29(1), 91 - 98.
Chicago ARADAG Selin Unsteady turbulent vortex structure downstream of a three dimensional cylinder. Isı Bilimi ve Tekniği Dergisi 29, no.1 (2009): 91 - 98.
MLA ARADAG Selin Unsteady turbulent vortex structure downstream of a three dimensional cylinder. Isı Bilimi ve Tekniği Dergisi, vol.29, no.1, 2009, ss.91 - 98.
AMA ARADAG S Unsteady turbulent vortex structure downstream of a three dimensional cylinder. Isı Bilimi ve Tekniği Dergisi. 2009; 29(1): 91 - 98.
Vancouver ARADAG S Unsteady turbulent vortex structure downstream of a three dimensional cylinder. Isı Bilimi ve Tekniği Dergisi. 2009; 29(1): 91 - 98.
IEEE ARADAG S "Unsteady turbulent vortex structure downstream of a three dimensional cylinder." Isı Bilimi ve Tekniği Dergisi, 29, ss.91 - 98, 2009.
ISNAD ARADAG, Selin. "Unsteady turbulent vortex structure downstream of a three dimensional cylinder". Isı Bilimi ve Tekniği Dergisi 29/1 (2009), 91-98.