Yıl: 2009 Cilt: 57 Sayı: 4 Sayfa Aralığı: 453 - 465 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Hasta-ventilatör uyumu

Öz:
Yoğun bakım ünitelerinde invaziv ve noninvaziv mekanik ventilasyon tedavisi uygulanan hastalar ventilatörün tetiklemesinden akım hızlarına, inspiryum-ekspiryum geçişlerine kadar birçok aşamada ventilatör fonksiyonları ile etkileşir. Bu etkileşim uyum içinde ve senkronize olduğu zaman hastanın solunum işi azalıp hasta-ventilatör uyumu iyi olurken, senkronize olmadığı zaman hasta ventilatörle savaşır, solunum işi artar ve solunum kas yorgunluğu gelişir. Hasta-ventilatör uyumsuzluğu ventilatörün sağladığı solunum ile hastanın solunum merkezinden çıkan nöral outputun birbirine uymamasından kaynaklanır. Klinik belirtileri; yardımcı solunum kaslarının kullanımı, takipne, taşikardi, ekspiryumun aktif olması, terleme, hastanın gözlenen solunum hareketlerinin ventilatör traseleri ile uyumlu olmaması ve diğer solunum sıkıntısı belirtileridir. Kronik obstrüktif akciğer hastalığı olanlar gibi dinamik hiperinflasyonu olan hastalarda hasta-ventilatör uyumsuzluğunun en sık nedenleri tetikleme ve ekspiryum asenkronisidir. Akut solunum sıkıntısı sendromlu hastalarda ise hasta-ventilatör uyumsuzluğu, tetikleme, akım veya ekspiryum asenkronisi nedeniyle gelişebilir. Noninvaziv mekanik ventilasyon sırasında hasta uyumu, kullanılan maskelerden, tercih edilen ventilatörlerden, ventilasyon modlarından, ventilatör ayarlarından, uygulanan nemlendirme ve sedasyondan etkilenebilir. Hasta-ventilatör uyumsuzluğunun nedenlerinin bilinmesi ve bunların düzeltilmesi ventilatörlere kolay adaptasyonu sağlayarak dispneyi, etkin olmayan solunum çabalarını ve solunum işini azaltabildiği; böylelikle tedavinin etkinliğini artırarak süresini kısaltabildiği için önemlidir.
Anahtar Kelime: Solunum, yapay Pozitif-basınçlı solunum Ventilatörler, mekanik

Konular: Solunum Sistemi Kulak, Burun, Boğaz

Patient-ventilator interaction

Öz:
Mechanically ventilated patients interact with ventilator functions at different levels such as triggering of the ventilator, pressurization and cycling from inspiration to expiration. Patient ventilator asynchrony in any one of these phase results in fighting with ventilator, increase in work of breathing and respiratory muscle fatigue. Patient ventilator dyssynchrony occurs when gas delivery from the ventilator does not match with the neural output of the respiratory center. The clinical findings of patient-ventilator asynchrony are; use of accessory respiratory muscle, tachypnea, tachycardia, active expiration, diaphoresis and observation of asynchrony between patient respiratory effort and the ventilator waveforms. Among the patients with dynamic hyperinflation such as chronic obstructive pulmonary disease the most frequent causes of patient-ventilator asynchrony are trigger and expiratory asynchronies. In acute respiratory distress syndrome patient-ventilator asynchrony may develop due to problems in triggering or asynchrony in flow and inspiration-expiration cycle. Patient-ventilator interaction during noninvasive mechanical ventilation may be affected by the type of masks used, ventilator types, ventilation modes and parameters, humidification and sedation. Among the different patient groups it is important to know causes and solutions of patient-ventilator asynchrony problems. By this way patient will adapt ventilator and then dyspnea, ineffective respiratory effort and work of breathing may decrease subsequently.
Anahtar Kelime: Positive-Pressure Respiration Ventilators, Mechanical Respiration, Artificial

Konular: Solunum Sistemi Kulak, Burun, Boğaz
Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Nilsestuen JO, Hargett KD. Using ventilator graphics to identify patient ventilator asynchrony. Respir Care 2005; 50: 202-34.
  • 2. Aslanian P, El Atrous S, Ysabei D, et al. Effects of flow triggering on breathing efforts during partial ventilatory support. Am J Respir Crit Care Med 1998; 157: 135-43.
  • 3. Leung P, Jubran A, Tobin MJ. Comparison of assisted ventilator modes on triggering, patient comfort and dyspnoea. Am J Respir Crit Care Med 1997; 155: 1940-8.
  • 4. Tobin MJ, Jubran A, Laghi F. Critical care perspective: Patient-ventilator interaction. Am J Respir Crit Care Med 2001; 163: 1059-63.
  • 5. Pepe P, Marini J. Occult positive end-expiratory pressure in mechanically ventilated patients with airflow obstruction. Am Rev Respir Dis 1982; 126: 166-70.
  • 6. Ranieri VM, Mascia L, Petruzzelli V, et al. Inspiratory effort and measurement of dynamic intrinsic PEEP in COPD patients: Effects of ventilator triggering system. Intensive Care Med 1995; 21: 896-903.
  • 7. Rossi A, Polese G, Brandi G, et al. Intrinsic positive endexpiratory pressure. Intensive Care Med 1995; 21: 522-36.
  • 8. Parthasarathy S, Tobin MJ. Patient ventilator interactions in mechanical ventilation. Update in Intensive Care and Emergency Medicine 40. Slutsky A.S Brochard L(eds). 83-95.
  • 9. Parthasarathy S, Jubran A, Tobin MJ. Assessment of neural inspiratory time in ventilator-supported patients. Am J Respir Crit Care Med 2000; 162: 546-52.
  • 10. Imanaka H, Nishimura M, Takeuchi M, et al. Autotriggering caused by cardiogenic ossilation during flow-triggered mechanical ventilation. Crit Care Med 2000; 28: 402-7.
  • 11. Hill LL, Pearl RG. Flow triggering, pressure triggering, and autotriggering during mechanical ventilation. Crit Care Med 2000; 28: 579-81.
  • 12. Prinianakis G, Kondili E, Geargopoulos D. Effects of the flow waveform method of triggering and cycling on patient- ventilator interaction during pressure support. Intensive Care Med 2003; 29: 1950-9.
  • 13. Puddy A, Younes M. Effect of inspiratory flow rate on respiratory output in normal subjects. Am Rev Respir Dis 1992; 146: 787-9.
  • 14. Laghi F, Karamchandani K, Tobin MJ. Influence of ventilator settings in determining respiratory frequency during mechanical ventilation. Am J Respir Crit Care Med 1999; 160: 1766-70.
  • 15. Laghi F, Segal J, Choe W, Tobin MJ. Effect of imposed inflation time on respiratory frequency and hyperinflation in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2001; 163: 1365-70.
  • 16. Chiumello D, Pelosi P, Croci M, et al. The effects of pressurization rate on breathing pattern, work of breathing, gas exchange and patient comfort in pressure support ventilation. Eur Respir J 2001; 18: 107-14.
  • 17. Du HL, Yamada Y. Expiratory asynchrony. Respir Care Clin 2005; 11: 265-80.
  • 18. Nava S, Bruschi C, Rubini F, et al. Respiratory response and inspiratory effort during pressure support ventilation in COPD patients. Intensive Care Med 1995; 21: 871-9.
  • 19. Jolliet P, Tassaux D. Clinical review: Patient-ventilator interaction in chronic obstructive pulmonary disease. Crit Care 2006; 10: 236.
  • 20. Georgopoulos D, Prinianakis G, Kondili E. Bedside waveforms interpretation as a tool to identify patient-ventilator asynchronies. Intensive Care Med 2006; 32: 34-47.
  • 21. Parthasarathy S, Jubran A, Tobin MJ. Cycling of inspiratory and expiratory muscle groups with the ventilator in airflow limitation. Am J Respir Crit Care Med 1998; 158: 1471-8.
  • 22. Jubran A, Van de Graff WB, Tobin MJ. Variability of patient ventilator interaction with pressure support ventilation in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1995; 152: 129-36.
  • 23. Chiumello D, Polli F, Tallarini F, et al. Effect of different cycling-off criteria and positive end-expiratory pressure during pressure support ventilation in patients with chronic obstructive pulmonary disease. Crit Care Med 2007; 2547-52.
  • 24. Tassaux D, Gainnier M, Battisti A, et al. Impact of expiratory trigger setting on delayed cycling and inspiratory muscle workload. Am J Respir Crit Care Med 2005; 172: 1283-9.
  • 25. The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000; 342: 1301.
  • 26. Kallet RH, Campbell AR, Dicker RA, et al. The effects of tidal volume on work of breathing during lung protective ventilation in patient with acute lung injury and acute respiratory distress syndrome. Crit Care Med 2006; 34: 8-14.
  • 27. Ramnath VR, Hess DR, Thompson BT. Conventional mechanical ventilation in acute lung injury and acute respiratory distress syndrome. Clin Chest Med 2006; 27: 601-13.
  • 28. Vinayak AG, Gehlbah B, Pohlman AS, et al. The relationship between sedative infusion requirements and permissive hypercapnia in critically ill, mechanically ventilated patients. Crit Care Med 2006; 34: 1668-73.
  • 29. Cheng IW, Eisner MD, Thompson BT, et al. Acute effects of tidal volume strategy on hemodynamics, fluid balance, and sedation in acute lung injury. Crit Care Med 2005; 33: 63-70.
  • 30. Kahn JM, Andersson L, Karir V, et al. Low tidal volume ventilation does not increase sedation use in patients with acute lung injury. Crit Care Med 2005; 33: 766-71.
  • 31. Fanfulla F, Delmastro M, Berardinelli A, et al. Effects of different ventilator settings on sleep and inspiratory effort in patients with neuromuscular disease. Am J Respir Crit Care Med 2005; 172: 619-24.
  • 32. Bomsa K, Ferreyra G, Ambrogio C, et al. Patient-ventilator interaction and sleep in mechanically ventilated patients: Pressure support versus proportional assist ventilation. Crit Care Med 2007; 35: 1048-54.
  • 33. Parthasarty S, Tobin MJ. Effect of ventilator mode on sleep quality in critically ill patients. Am J Respir Crit Care Med 2002; 166: 1423-9.
  • 34. Trompeo A, Vidi Y, Locane D, et al. Relationship between sleep abnormalities and delirium occurrence in ICU. Am J Respir Crit Care Med 2006; 3: 639.
  • 35. Cabello B, Parthasarathy S, Mancebo J. Mechanical ventilation: Let us minimize sleep disturbances. Curr Opin Crit Care 2007; 13: 20-6.
  • 36. Nava S, Ceriana P. Patient-ventilator interaction during noninvasive positive pressure ventilation. Respir Care Clin 2005; 11: 281-93.
  • 37. Achour L, Letellier C, Cuvelier A, et al. Asynchrony and cyclic variability in pressure support ventilation. Computers in Biology and Medicine 2007; 37: 1308-20.
  • 38. Calderini E, Confalonieri M, Puccio PG, et al. Patient-ventilator asynchrony during noninvasive ventilation: The role of expiratory trigger. Intensive Care Med 1999; 25:662-7.
  • 39. Gay PC, Hess DR, Hill NS. Noninvasive proportional assist ventilation for acute respiratory insufficiency: Comparison with pressure support ventilation. Am J Respir Crit Care Med 2001; 164: 1606-11.
  • 40. Vivas MF, Caturla-Such J, Gonzales de la Rosa J, et al. Noninvasive pressure support versus proportional assist ventilation in acute respiratory failure. Intensive Care Med 2003; 29: 1126-33.
  • 41. Stell IM, Paul G, Lee KC, et al. Noninvasive ventilator triggering in chronic obstructive pulmonary disease: A test lung comparison. Am J Respir Crit Care Med 2001; 164: 2092-7.
  • 42. Nava S, Ambrosino N, Bruschi C, et al. Physiological effects of flow and pressure triggering during noninvasive mechanical ventilation in patients with chronic obstructive pulmonary disease. Thorax 1997; 52: 249-54.
  • 43. Priniakis G, Delmastro M, Carlucci A, et al. Effect of varying pressurisation rate during noninvasive mechanical ventilation. Eur Respir J 2004; 23: 314-20.
  • 44. Lellouche F, Maggiore SM, Deye N, et al. Effect of humidification device on the work of breathing during noninvasive ventilation. Intensive Care Med 2002; 28: 1582-9.
APA GÜRSEL G, AYDOĞDU M (2009). Hasta-ventilatör uyumu. , 453 - 465.
Chicago GÜRSEL Gül,AYDOĞDU MÜGE Hasta-ventilatör uyumu. (2009): 453 - 465.
MLA GÜRSEL Gül,AYDOĞDU MÜGE Hasta-ventilatör uyumu. , 2009, ss.453 - 465.
AMA GÜRSEL G,AYDOĞDU M Hasta-ventilatör uyumu. . 2009; 453 - 465.
Vancouver GÜRSEL G,AYDOĞDU M Hasta-ventilatör uyumu. . 2009; 453 - 465.
IEEE GÜRSEL G,AYDOĞDU M "Hasta-ventilatör uyumu." , ss.453 - 465, 2009.
ISNAD GÜRSEL, Gül - AYDOĞDU, MÜGE. "Hasta-ventilatör uyumu". (2009), 453-465.
APA GÜRSEL G, AYDOĞDU M (2009). Hasta-ventilatör uyumu. Tüberküloz ve Toraks, 57(4), 453 - 465.
Chicago GÜRSEL Gül,AYDOĞDU MÜGE Hasta-ventilatör uyumu. Tüberküloz ve Toraks 57, no.4 (2009): 453 - 465.
MLA GÜRSEL Gül,AYDOĞDU MÜGE Hasta-ventilatör uyumu. Tüberküloz ve Toraks, vol.57, no.4, 2009, ss.453 - 465.
AMA GÜRSEL G,AYDOĞDU M Hasta-ventilatör uyumu. Tüberküloz ve Toraks. 2009; 57(4): 453 - 465.
Vancouver GÜRSEL G,AYDOĞDU M Hasta-ventilatör uyumu. Tüberküloz ve Toraks. 2009; 57(4): 453 - 465.
IEEE GÜRSEL G,AYDOĞDU M "Hasta-ventilatör uyumu." Tüberküloz ve Toraks, 57, ss.453 - 465, 2009.
ISNAD GÜRSEL, Gül - AYDOĞDU, MÜGE. "Hasta-ventilatör uyumu". Tüberküloz ve Toraks 57/4 (2009), 453-465.