Yıl: 2009 Cilt: 19 Sayı: 2 Sayfa Aralığı: 173 - 182 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Nöropsikiyatrik hastalıklara fizyolojik yaklaşım; otonom sinir sistemi ve melatoninin rolü

Öz:
Adaptasyon, bir türün genetik yükü ile onun çevresi arasında süregelen bir süreçtir. Çevresel değişimlere uyum için bazen birkaç hafta yeterli iken adaptasyon için pekçok neslin geçmesi gerekir. Çevresel kalıcı ve hızlı değişimler, canlıların uyum yeteneklerini zorlar ve gen-çevre uyumsuzluğuna yol açar. Bu uyumsuzluğun başladığı dönemde yaşayan bireylerin genetik yükleri, değişimden önceki çevreye uyumludur ve bu nedenle organizmanın fizyolojik çalışma prensipleri bu durumdan etkilenir. Bireyin çevre ile etkileşimindeki bozukluk, hastalık, artmış morbidite ve mortalite olarak fenotipe yansır. Gen-çevre uyumsuzluğunun fenotipik yansımaları olan medeniyet hastalıkları birkaç ana grupta toplanma eğilimi gösterir; bu gruplar metabolik (ör. Kardiyovasküler hastalıklar, diyabet, hipertansiyon, obezite ve metabolik sendrom), reprodüktif (erkek ve kadın tipi infertilite), nörodejeneratif (Alzheimer, demans vb.) ve bazı psikiyatrik (major depresyon, bipolar bozukluklar vb.) hastalıklar olarak ifade edilebilir. Pek çok nöropsikiyatrik hastalığın patofizyolojisi tam olarak bilinmemekle birlikte, uyku ve iştah bozuklukları, yorgunluk, libido ve konsantrasyon kaybı gibi belirtiler ile metabolik hastalıkların sık görülmesi, hastalığın kompleks bir nörobiyolojik temelinin olabileceğini düşündürmüştür. Bazı araştırmacılar bu durumu “nöropsikiyatrik sendrom” ya da “tip II metabolik sendrom” olarak tanımlamayı önermişlerdir. Metabolik sendrom çalışmalarından elde edilen bazı veriler, tip II metabolik sendroma uyarlanarak hastalı- ğın biyolojik temelleri aydınlatılabilir. Metabolik sendromda bozulduğu gösterilen temel fizyolojik mekanizmalar otonom sinir sistemi (OSS)’nin işleyişinin bozulması, santral ve periferal GABA üretiminin azalması ve son dönemde büyük yankı uyandıran epigenetik bozukluklar olarak özetlenebilir. OSS’nin işleyişinin bozulması son yıllarda ortaya çıkan vagal sinir uyarısı (VSU) ve ışık tedavisi (IT) gibi yeni yöntemlerle yakından ilişkilidir. Bu iki tedavi yöntemi gerçekte bozulmuş olan otonom ritmin yeniden düzenlenmesi esasına dayanır. OSS ritminde önemli yer tutan bir başka düzenleme ise pineal bezden melatonin salgılanmasıdır. Melatoninin uykusuzluk veya jet-lag gibi sorunların tedavisinde kullanılması endikasyon alanını uzun süre kısıtlamıştır; ancak melatoninin santral etkileri depresyon ve benzeri hastalıkların tedavisinde de önemli yer tutmaktadır. Bu anlamda melatonin son dönemde nöropsikiyatrik sendromun tedavisinde de kullanım alanı bulmuştur. Ayrıca nöropsikiyatrik hastalıklardaki güçlü ailesel yatkınlık uzun zamandır bilinmektedir. Buna rağmen özellikle depresif hastalarda bu geçişi açıklayacak genetik defektler (mutasyon, delesyon, insersiyon vb.) bulunamamıştır.
Anahtar Kelime: İlaçların fizyolojik etkileri Melatonin Fotoperiyod Otonom sinir sistemi Vagus Sinir Uyarımı Depresyon Nöropsikiyatri

Konular: Farmakoloji ve Eczacılık

Physiological approach to neuropsychiatric diseases; role of autonomic nervous system and melatonin

Öz:
Adaptation is a continuous process between the genes of a particular species and its environment. Although a couple of weeks are long enough to adapt to some environmental changes, sometimes several generations are needed to adapt. Rapid and sustained environmental changes, however, exceed the adaptation capacity of species and cause gene-environment discordance. Genomes of individuals, who live at the beginning of such discordance, are adapted to the previous environment and therefore physiological mechanisms of the organism are inşuenced by this novel circumstance. The disrupted interaction between individual and environment appears as diseases, increased morbidity, and mortality in the phenotype. Diseases of civilizations which are the reşections of gene-environment discordance tend to accumulate into several main groups such as metabolic (e.g., cardiovascular, diabetes, hypertension, obesity and metabolic syndrome), reproductive (male and female infertility), neurodegenerative (e.g., Alzheimer, dementia) and some psychiatric disorders (e.g., major depression, bipolar disorders). In spite of the fact that the pathophysiology of many neuropsychiatric disorders are not well known, since symptoms including sleep and appetite problems, fatigue, loss of libido and concentration as well as metabolic disorders may coexist, it is considered that neuropsychiatric disorders may have a complex neurobiological basis. Some scientists have referred to this situation as a “neuropsychiatric syndrome” or “type II metabolic syndrome”. Data obtained from metabolic syndrome studies may be adapted to type II metabolic syndrome to clarify the biological basis of the disease. As seen in metabolic syndrome, the neuropsychiatric syndrome may also develop in a broken physiological infrastructure. Some of the disrupted physiological mechanisms shown in metabolic syndrome may be summarized as the mismanaged autonomic nervous system (ANS), reduced central and peripheral GABA production, and epigenetic perturbations which have recently become very popular. ANS dysregulation is closely related to recent treatment modalities such as vagal nevre stimulation (VNS) and light therapy (LT). Both modalities are based on the re-regulation of an already dysregulated autonomic rhythm. Secretion of melatonin from the pineal gland is one of the effective mechanisms in the regulation of ANS. Since melatonin is only used for the treatment of jet-lag and sleep problems, the range of treatment indications with melatonin has remained limited for years. Nevertheless, central effects of melatonin play an important role in the treatment of depression and similar disorders. Therefore, melatonin has been recently used to treat neuropsychiatric syndrome. Moreover, a severe familial tendency in neuropsychiatric disorders has long been recognised.
Anahtar Kelime: Photoperiod Autonomic Nervous System Vagus Nerve Stimulation Depression Neuropsychiatry Physiological Effects of Drugs Melatonin

Konular: Farmakoloji ve Eczacılık
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Irmak MK, Ozcan O. Human diversity, environmental adaptation and neural crest. Med Hypotheses 1997;48:407-10
  • 2. Cordain L, Eaton SB, Sebastian A, Mann N, Lindeberg S, Watkins BA, O'Keefe JH, Brand-Miller J. Origins and evolution of the Western diet: health implications for the 21st century. Am J Clin Nutr 2005;81:341-54
  • 3. Eaton SB, Konner M. Paleolithic nutrition. A consideration of its nature and current implications. N Engl J Med 1985;312:283-9
  • 4. Cordain L, Eaton SB, Miller JB, Mann N and Hill K. The paradoxical nature of hunter-gatherer diets: meat-based, yet non- atherogenic. Eur J Clin Nutr 2002;56 Suppl 1:S42-52
  • 5. Cordain L, Watkins BA, Florant GL, Kelher M, Rogers L and Li Y. Fatty acid analysis of wild ruminant tissues: evolutionary implications for reducing diet-related chronic disease. Eur J Clin Nutr 2002;56:181-91
  • 6. O'Keefe JH, Jr., Cordain L. Cardiovascular disease resulting from a diet and lifestyle at odds with our Paleolithic genome: how to become a 21st-century hunter-gatherer. Mayo Clin Proc 2004;79:101-8
  • 7. Andrade L, Caraveo-Anduaga JJ, Berglund P, De Graaf R, Vollebergh W, Dragomirecka E, Kohn R, Keller M, Kessler RC, Kawakami N, Kiliç C, Offord D, Ustun TB, Wittchen HU. The epidemiology of major depressive episodes: results from the International Consortium of Psychiatric Epidemiology (ICPE) Surveys. Int J Methods Psychiatr Res 2003;12:3-21
  • 8. Isomaa B. A major health hazard: the metabolic syndrome. Life Sci 2003;73:2395-411
  • 9. Shelton RC. The molecular neurobiology of depression. Psychiatr Clin North Am 2007;30:1-11
  • 10. McIntyre RS, Soczynska JK, Konarski JZ, Woldeyohannes HO, Law CW, Miranda A, Fulgosi D, Kennedy SH. Should Depressive Syndromes Be Reclassified
  • 11. Jakovljevic M, Crncevic Z, Ljubicic D, Babic D, Topic R and Saric M. Mental disorders and metabolic syndrome: a fatamorgana or warning reality? Psychiatr Danub 2007;19:76-86
  • 12. Taylor V, MacQueen G. Associations between bipolar disorder and metabolic syndrome: A review. J Clin Psychiatry 2006;67:1034-41
  • 13. Lustman PJ, Clouse RE. Depression in diabetic patients: the relationship between mood and glycemic control. J Diabetes Complications 2005;19:113-22
  • 14. McIntyre RS, Konarski JZ, Misener VL and Kennedy SH. Bipolar disorder and diabetes mellitus: epidemiology, etiology, and treatment implications. Ann Clin Psychiatry 2005;17:83-93
  • 15. Lett HS, Blumenthal JA, Babyak MA, Sherwood A, Strauman T, Robins C, Newman MF. Depression as a risk factor for coronary artery disease: evidence, mechanisms, and treatment. Psychosom Med 2004;66:305-15
  • 16. McElroy SL, Kotwal R, Malhotra S, Nelson EB, Keck PE and Nemeroff CB. Are mood disorders and obesity related? Areview for the mental health professional. J Clin Psychiatry 2004;65:634-51, quiz 730 as "Metabolic Syndrome Type II"? Ann Clin Psychiatry 2007;19:257-64
  • 17. Emslie GJ, Ryan ND and Wagner KD. Major depressive disorder in children and adolescents: clinical trial design and antidepressant efficacy. J Clin Psychiatry 2005;66 Suppl 7:14-20
  • 18. Murray LJ, O'Reilly DP, Betts N, Patterson CC, Davey Smith G and Evans AE. Season and outdoor ambient temperature: effects on birth weight. Obstet Gynecol 2000;96:689-95
  • 19. Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR, Rush AJ, Walters EE, Wang PS. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). Jama 2003;289:3095-105
  • 20. Montgomery SA. Why do we need new and better antidepressants? Int Clin Psychopharmacol 2006;21 Suppl 1:S1-S10
  • 21. Katic M, Kennedy AR, Leykin I, Norris A, McGettrick A, Gesta S, Russell SJ, Bluher M, Maratos-Flier E, Kahn CR. Mitochondrial gene expression and increased oxidative metabolism: role in increased lifespan of fat-specific insulin receptor knock-out mice. Aging Cell 2007;6:827-39
  • 22. Hindmarch I. Beyond the monoamine hypothesis: mechanisms, molecules and methods. Eur Psychiatry 2002;17 Suppl 3:294-9
  • 23. Hensler JG. Regulation of 5-HT1A receptor function in brain following agonist or antidepressant administration. Life Sci 2003;72:1665-82
  • 24. Castro E, Gonzalez MP and Oset-Gasque MJ. Distribution of gamma-aminobutyric acid receptors in cultured adrenergic and noradrenergic bovine chromaffin cells. J Neurosci Res 2003;71:375- 82
  • 25. Sanacora G, Mason GF, Rothman DL, Behar KL, Hyder F, Petroff OA, Berman RM, Charney DS, Krystal JH. Reduced cortical gamma-aminobutyric acid levels in depressed patients determined by proton magnetic resonance spectroscopy. Arch Gen Psychiatry 1999;56:1043-7
  • 26. Sanacora G, Mason GF, Rothman DL, Hyder F, Ciarcia JJ, Ostroff RB, Berman RM, Krystal JH. Increased cortical GABA concentrations in depressed patients receiving ECT. Am J Psychiatry 2003;160:577-9
  • 27. Krystal JH, Sanacora G, Blumberg H, Anand A, Charney DS, Marek G, Epperson CN, Goddard A, Mason GF. Glutamate and GABA systems as targets for novel antidepressant and mood-stabilizing treatments. Mol Psychiatry 2002;7 Suppl 1:S71-80
  • 28. Sanacora G, Mason GF, Rothman DL and Krystal JH. Increased occipital cortex GABA concentrations in depressed patients after therapy with selective serotonin reuptake inhibitors. Am J Psychiatry 2002;159:663-5
  • 29. Sanacora G, Mason GF and Krystal JH. Impairment of GABAergic transmission in depression: new insights from neuroimaging studies. Crit Rev Neurobiol 2000;14:23-45
  • 30. Bhagwagar Z, Wylezinska M, Taylor M, Jezzard P, Matthews PM and Cowen PJ. Increased brain GABA concentrations following acute administration of a selective serotonin reuptake inhibitor. Am J Psychiatry 2004;161:368-70
  • 31. Leonard BE. Psychopathology of depression. Drugs Today (Barc) 2007;43:705-16
  • 32. Khan A, Khan S and Brown WA. Are placebo controls necessary to test new antidepressants and anxiolytics? Int J Neuropsychopharmacol 2002;5:193-7
  • 33. Storosum JG, Elferink AJ, van Zwieten BJ, Van den Brink W, Gersons BP, van Strik R, Broekmans AW. Short-term efficacy of tricyclic antidepressants revisited: a meta-analytic study. Eur Neuropsychopharmacol 2001;11:173-80
  • 34. Papakostas GI, Thase ME, Fava M, Nelson JC and Shelton RC. Are antidepressant drugs that combine serotonergic and noradrenergic mechanisms of action more effective than the selective serotonin reuptake inhibitors in treating major depressive disorder? A meta- analysis of studies of newer agents. Biol Psychiatry 2007;62:1217- 27
  • 35. Kreier F, Yilmaz A, Kalsbeek A, Romijn JA, Sauerwein HP, Fliers E, Buijs RM. Hypothesis: shifting the equilibrium from activity to food leads to autonomic unbalance and the metabolic syndrome. Diabetes 2003;52:2652-6
  • 36. Miklowitz DJ, Otto MW, Frank E, Reilly-Harrington NA, Kogan JN, Sachs GS, Thase ME, Calabrese JR, Marangell LB, Ostacher MJ, Patel J, Thomas MR, Araga M, Gonzalez JM, Wisniewski SR. Intensive psychosocial intervention enhances functioning in patients with bipolar depression: results from a 9-month randomized controlled trial. Am J Psychiatry 2007;164:1340-7
  • 37. Kenney MJ, Weiss ML, Mendes T, Wang Y and Fels RJ. Role of paraventricular nucleus in regulation of sympathetic nerve frequency components. Am J Physiol Heart Circ Physiol 2003;284:H1710-20
  • 38. Llewellyn-Smith IJ. GABA in the control of sympathetic preganglionic neurons. Clin Exp Pharmacol Physiol 2002;29:507-13
  • 39. Tsankova N, Renthal W, Kumar A and Nestler EJ. Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci 2007;8:355-67
  • 40. Shafique S, Dalsing MC. Vagus nerve stimulation therapy for treatment of drug-resistant epilepsy and depression. Perspect Vasc Surg Endovasc Ther 2006;18:323-7
  • 41. Conway CR, Sheline YI, Chibnall JT, George MS, Fletcher JW and Mintun MA. Cerebral blood flow changes during vagus nerve stimulation for depression. Psychiatry Res 2006;146:179-84
  • 42. Golden RN, Gaynes BN, Ekstrom RD, Hamer RM, Jacobsen FM, Suppes T, Wisner KL, Nemeroff CB. The efficacy of light therapy in the treatment of mood disorders: a review and meta-analysis of the evidence. Am J Psychiatry 2005;162:656-62
  • 43. Marty N, Dallaporta M and Thorens B. Brain glucose sensing, counterregulation, and energy homeostasis. Physiology (Bethesda) 2007;22:241-51
  • 44. Orlov SN, Mongin AA. Salt-sensing mechanisms in blood pressure regulation and hypertension. Am J Physiol Heart Circ Physiol 2007;293:H2039-53
  • 45. Gao Q, Horvath TL. Neuronal control of energy homeostasis. FEBS Lett 2008;582:132-41
  • 46. Berthoud HR, Morrison C. The brain, appetite, and obesity. Annu Rev Psychol 2008;59:55-92
  • 47. Abdolmaleky HM, Smith CL, Faraone SV, Wilcox M, Glatt SJ, Gao F, Smith CL, Shafa R, Aeali B, Carnevale J, Pan H, Papageorgis P, Ponte JF, Sivaraman V, Tsuang MT, Thiagalingam S. Methylomics in psychiatry: Modulation of gene-environment interactions may be through DNA methylation. Am J Med Genet B Neuropsychiatr Genet 2004;127:51-9
  • 48. Peters JH, Ritter RC and Simasko SM. Leptin and CCK selectively activate vagal afferent neurons innervating the stomach and duodenum. Am J Physiol Regul Integr Comp Physiol 2006;290:R1544-9
  • 49. Buijs RM, la Fleur SE, Wortel J, Van Heyningen C, Zuiddam L, Mettenleiter TC, Kalsbeek A, Nagai K, Niijima A. The suprachiasmatic nucleus balances sympathetic and parasympathetic output to peripheral organs through separate preautonomic neurons. J Comp Neurol 2003;464:36-48
  • 50. Williams DL, Grill HJ, Cummings DE and Kaplan JM. Vagotomy dissociates short- and long-term controls of circulating ghrelin. Endocrinology 2003;144:5184-7
  • 51. Tjen ALS, Bonham A and Longhurst J. Interactions between sympathetic and vagal cardiac afferents in nucleus tractus solitarii. Am J Physiol 1997;272:H2843-51
  • 52. Rutecki P. Anatomical, physiological, and theoretical basis for the antiepileptic effect of vagus nerve stimulation. Epilepsia 1990;31 Suppl 2:S1-6
  • 53. Ricardo JA, Koh ET. Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures in the rat. Brain Res 1978;153:1-26
  • 54. Henry TR. Therapeutic mechanisms of vagus nerve stimulation. Neurology 2002;59:S3-14
  • 55. Hatton KW, McLarney JT, Pittman T and Fahy BG. Vagal nerve stimulation: overview and implications for anesthesiologists. Anesth Analg 2006;103:1241-9
  • 56. Bugajski AJ, Gil K, Ziomber A, Zurowski D, Zaraska W and Thor PJ. Effect of long-term vagal stimulation on food intake and body weight during diet induced obesity in rats. J Physiol Pharmacol 2007;58 Suppl 1:5-12
  • 57. Miller AL. Epidemiology, etiology, and natural treatment of seasonal affective disorder. Altern Med Rev 2005;10:5-13
  • 58. Mersch PP, Middendorp HM, Bouhuys AL, Beersma DG and van den Hoofdakker RH. Seasonal affective disorder and latitude: a review of the literature. J Affect Disord 1999;53:35-48
  • 59. Lurie SJ, Gawinski B, Pierce D and Rousseau SJ. Seasonal affective disorder. Am Fam Physician 2006;74:1521-4
  • 60. Terman M, Terman JS, Quitkin FM, McGrath PJ, Stewart JW and Rafferty B. Light therapy for seasonal affective disorder. A review of efficacy. Neuropsychopharmacology 1989;2:1-22
  • 61. Partonen T, Lonnqvist J. Seasonal affective disorder. Lancet 1998;352:1369-74
  • 62. Akın Çam ve Murat Faik Erdoğan, Melatonin, Ankara Üniversitesi Tıp Fakültesi Mecmuası 2003;56(2): 103-112
  • 63. Burgess HJ, Revell VL and Eastman CI. A 3 pulse phase response curve to 3 mg melatonin in humans. J Physiol 2007
  • 64. Terman M, Terman JS and Ross DC. A controlled trial of timed bright light and negative air ionization for treatment of winter depression. Arch Gen Psychiatry 1998;55:875-82
  • 65. Wehr TA, Giesen HA, Moul DE, Turner EH and Schwartz PJ. Suppression of men's responses to seasonal changes in day length by modern artificial lighting. Am J Physiol 1995;269:R173-8
  • 66. Barbini B, Benedetti F, Colombo C, Dotoli D, Bernasconi A, Cigala- Fulgosi M, Florita M, Smeraldi E. Dark therapy for mania: a pilot study. Bipolar Disord 2005;7:98-101
  • 67. Frank E, Kupfer DJ, Thase ME, Mallinger AG, Swartz HA, Fagiolini AM, Grochocinski V, Houck P, Scott J, Thompson W, Monk T. Two-year outcomes for interpersonal and social rhythm therapy in individuals with bipolar I disorder. Arch Gen Psychiatry 2005;62:996-1004
  • 68. Miklowitz DJ, Otto MW, Frank E, Reilly-Harrington NA, Wisniewski SR, Kogan JN, Nierenberg AA, Calabrese JR, Marangell LB, Gyulai L, Araga M, Gonzalez JM, Shirley ER, Thase ME, Sachs GS. Psychosocial treatments for bipolar depression: a 1- year randomized trial from the Systematic Treatment Enhancement Program. Arch Gen Psychiatry 2007;64:419-26
  • 69. Balsalobre A. Clock genes in mammalian peripheral tissues. Cell Tissue Res 2002;309:193-9
  • 70. Panda S, Antoch MP, Miller BH, Su AI, Schook AB, Straume M, Schultz PG, Kay SA, Takahashi JS, Hogenesch JB. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 2002;109:307-20
  • 71. Seron-Ferre M, Valenzuela GJ and Torres-Farfan C. Circadian clocks during embryonic and fetal development. Birth Defects Res C Embryo Today 2007;81:204-14
  • 72. Lamont EW, James FO, Boivin DB and Cermakian N. From circadian clock gene expression to pathologies. Sleep Med 2007;8:547-56
  • 73. Reiter RJ, Tan DX, Manchester LC, Pilar Terron M, Flores LJ and Koppisepi S. Medical implications of melatonin: receptor-mediated and receptor-independent actions. Adv Med Sci 2007;52:11-28
  • 74. Kasım Göktaş ve İshak Özkan, Yaşlılarda Uyku Bozuklukları, Derleme, Türk Geriatri Dergisi 2006; 9 (4): 226-233
  • 75. Bolli GB, De Feo P, De Cosmo S, et al. Demonstration of a dawn phenomenon in normal human volunteers. Diabetes 1984;33:1150-3
  • 76. Bolli GB, Gerich JE. The "dawn phenomenon"--a common occurrence in both non-insulin-dependent and insulin-dependent diabetes mellitus. N Engl J Med 1984;310:746-50
  • 77. Postolache TT, Oren DA. Circadian phase shifting, alerting, and antidepressant effects of bright light treatment. Clin Sports Med 2005;24:381-413, xii
  • 78. Cermakian N, Boivin DB. A molecular perspective of human circadian rhythm disorders. Brain Res Brain Res Rev 2003;42:204-20
  • 79. Reiter RJ. Melatonin: the chemical expression of darkness. Mol Cell Endocrinol 1991;79:C153-8
  • 80. Chaturvedi N, Sjolie AK, Stephenson JM, Abrahamian H, Keipes M, Castellarin A, Rogulja-Pepeonik Z, Fuller JH. Effect of lisinopril on progression of retinopathy in normotensive people with type 1 diabetes. The EUCLID Study Group. EURODIAB Controlled Trial of Lisinopril in Insulin-Dependent Diabetes Mellitus. Lancet 1998;351:28-31
  • 81. Dubocovich ML. Agomelatine targets a range of major depressive disorder symptoms. Curr Opin Investig Drugs 2006;7:670-80
  • 82. Montgomery SA, Kasper S. Severe depression and antidepressants: focus on a pooled analysis of placebo-controlled studies on agomelatine. Int Clin Psychopharmacol 2007;22:283-91
  • 83. Pjrek E, Winkler D, Konstantinidis A, Willeit M, Praschak-Rieder N and Kasper S. Agomelatine in the treatment of seasonal affective disorder. Psychopharmacology (Berl) 2007;190:575-9
  • 84. Zupancic M, Guilleminault C. Agomelatine: a preliminary review of a new antidepressant. CNS Drugs 2006;20:981-92
  • 85. Zlotos DP. Recent advances in melatonin receptor ligands. Arch Pharm (Weinheim) 2005;338:229-47
  • 86. Lavie P. Melatonin: role in gating nocturnal rise in sleep propensity. J Biol Rhythms 1997;12:657-65
  • 87. Brzezinski A, Vangel MG, Wurtman RJ, Norrie G, Zhdanova I, Ben- Shushan A, Ford I. Effects of exogenous melatonin on sleep: a meta- analysis. Sleep Med Rev 2005;9:41-50
  • 88. Skinner DC, Malpaux B. High melatonin concentrations in third ventricular cerebrospinal fluid are not due to Galen vein blood recirculating through the choroid plexus. Endocrinology 1999;140:4399-405
  • 89. Shaw PF, Kennaway DJ and Seamark RF. Evidence of high concentrations of melatonin in lateral ventricular cerebrospinal fluid of sheep. J Pineal Res 1989;6:201-8
  • 90. Longatti P, Perin A, Rizzo V, Comai S, Giusti P and Costa CV. Ventricular cerebrospinal fluid melatonin concentrations investigated with an endoscopic technique. J Pineal Res 2007;42:113-8
  • 91. Silva SO, Ximenes VF, Livramento JA, Catalani LH and Campa A. High concentrations of the melatonin metabolite, N1-acetyl-N2- formyl-5-methoxykynuramine, in cerebrospinal fluid of patients with meningitis: a possible immunomodulatory mechanism. J Pineal Res 2005;39:302-6
  • 92. Samarkandi A, Naguib M, Riad W, Thalaj A, Alotibi W, Aldammas F, Albassam A. Melatonin vs. midazolam premedication in children: a double-blind, placebo-controlled study. Eur J Anaesthesiol 2005;22:189-96
  • 93. Naguib M, Samarkandi AH. Premedication with melatonin: a double-blind, placebo-controlled comparison with midazolam. Br J Anaesth 1999;82:875-80
  • 94. Naguib M, Samarkandi AH. The comparative dose-response effects of melatonin and midazolam for premedication of adult patients: a double-blinded, placebo-controlled study. Anesth Analg 2000;91:473-9
  • 95. Naguib M, Hammond DL, Schmid PG, 3rd, Baker MT, Cutkomp J, Queral L, Smith T. Pharmacological effects of intravenous melatonin: comparative studies with thiopental and propofol. Br J Anaesth 2003;90:504-7
  • 96. Duranti E, Stankov B, Spadoni G, Duranti A, Lucini V, Capsoni S, Biella G, Fraschini F. 2-Bromomelatonin: synthesis and characterization of a potent melatonin agonist. Life Sci 1992;51:479-85
  • 97. Coloma FM, Niles LP. Melatonin enhancement of [3H]-gamma- aminobutyric acid and [3H]muscimol binding in rat brain. Biochem Pharmacol 1988;37:1271-4
  • 98. Niles LP, Pickering DS and Arciszewski MA. Effects of chronic melatonin administration on GABA and diazepam binding in rat brain. J Neural Transm 1987;70:117-24
  • 99. Wang F, Li J, Wu C, Yang J, Xu F and Zhao Q. The GABA(A) receptor mediates the hypnotic activity of melatonin in rats. Pharmacol Biochem Behav 2003;74:573-8
  • 100.Gladkevich A, Korf J, Hakobyan VP and Melkonyan KV. The peripheral GABAergic system as a target in endocrine disorders. Auton Neurosci 2006;124:1-8
  • 101.Vuolteenaho O, Vakkuri O and Leppaluoto J. Wide distribution of beta-endorphin-like immunoreactivity in extrapituitary tissues of rat. Life Sci 1980;27:57-65
  • 102.Klongpanichapak S, Phansuwan-Pujito P, Ebadi M and Govitrapong P. Melatonin protects SK-N-SH neuroblastoma cells from amphetamine-induced neurotoxicity. J Pineal Res 2007;43:65-73
  • 103.Aloyo VJ. Identification and characterization of delta opioid binding sites in the bovine pineal. J Pharmacol Exp Ther 1992;262:292-7
  • 104.Govitrapong P, Pariyanonth M and Ebadi M. The presence and actions of opioid receptors in bovine pineal gland. J Pineal Res 1992;13:124-32
  • 105.Govitrapong P, Jitaijamjang W, Chetsawang B, Phansuwan-Pujito P and Ebadi M. Existence and function of opioid receptors on mammalian pinealocytes. J Pineal Res 1998;24:201-8
  • 106.Moore RY, Sibony P. Enkephalin-like immunoreactivity in neurons in the human pineal gland. Brain Res 1988;457:395-8
  • 107.Coto-Montes A, Masson-Pevet M, Pevet P and Moller M. The presence of opioidergic pinealocytes in the pineal gland of the European hamster (Cricetus cricetus): an immunocytochemical study. Cell Tissue Res 1994;278:483-91
  • 108.Geffard M, Gaffori O, Chauveau J, Muyard JP and Le Moal M. Dramatic increase in pineal melatonin levels in the rat after subcutaneous injection of Des-tyrosine1-gamma-endorphin. Neurosci Lett 1981;27:329-34
  • 109.Esposti D, Esposti G, Lissoni P, Parravicini L and Fraschini F. Action of morphine on melatonin release in the rat. J Pineal Res 1988;5:35-9
  • 110.Ebadi M, Govitrapong P, Phansuwan-Pujito P, Nelson F and Reiter RJ. Pineal opioid receptors and analgesic action of melatonin. J Pineal Res 1998;24:193-200
  • 111.Shavali S, Ho B, Govitrapong P, Sawlom S, Ajjimaporn A, Klongpanichapak S, Ebadi M. Melatonin exerts its analgesic actions not by binding to opioid receptor subtypes but by increasing the release of beta-endorphin an endogenous opioid. Brain Res Bull 2005;64:471-9
  • 112.Hamra JG, Kamerling SG, Wolfsheimer KJ and Bagwell CA. Diurnal variation in plasma ir-beta-endorphin levels and experimental pain thresholds in the horse. Life Sci 1993;53:121-9
  • 113.Wesche DL, Frederickson RC. Diurnal differences in opioid peptide levels correlated with nociceptive sensitivity. Life Sci 1979;24:1861-7
  • 114.Kenney MJ, Weiss ML and Haywood JR. The paraventricular nucleus: an important component of the central neurocircuitry regulating sympathetic nerve outflow. Acta Physiol Scand 2003;177:7-15
  • 115.Zhang W, Herrera-Rosales M and Mifflin S. Chronic hypertension enhances the postsynaptic effect of baclofen in the nucleus tractus solitarius. Hypertension 2007;49:659-63
  • 116.Li DP, Pan HL. Glutamatergic inputs in the hypothalamic paraventricular nucleus maintain sympathetic vasomotor tone in hypertension. Hypertension 2007;49:916-25
  • 117.Li DP, Pan HL. Role of gamma-aminobutyric acid (GABA)A and GABAB receptors in paraventricular nucleus in control of sympathetic vasomotor tone in hypertension. J Pharmacol Exp Ther 2007;320:615-26
  • 118.Zahner MR, Li DP and Pan HL. Benzodiazepine inhibits hypothalamic presympathetic neurons by potentiation of GABAergic synaptic input. Neuropharmacology 2007;52:467-75
  • 119.Julius S, Majahalme S and Palatini P. Antihypertensive treatment of patients with diabetes and hypertension. Am J Hypertens 2001;14:310S-316S
  • 120.Acuna-Castroviejo D, Lowenstein PR, Rosenstein R and Cardinali DP. Diurnal variations of benzodiazepine binding in rat cerebral cortex: disruption by pinealectomy. J Pineal Res 1986;3:101-9
  • 121.Castroviejo DA, Rosenstein RE, Romeo HE and Cardinali DP. Changes in gamma-aminobutyric acid high affinity binding to cerebral cortex membranes after pinealectomy or melatonin administration to rats. Neuroendocrinology 1986;43:24-31
  • 122.Xu F, Li JC, Ma KC and Wang M. Effects of melatonin on hypothalamic gamma-aminobutyric acid, aspartic acid, glutamic acid, beta-endorphin and serotonin levels in male mice. Biol Signals 1995;4:225-31
  • 123.Cardinali DP, Lowenstein PR, Rosenstein RE, Gonzalez Solveyra C, Sarmiento MI, Romeo HE, Acuña Castroviejo D. Functional links between benzodiazepine and GABA receptors and pineal activity. Adv Biochem Psychopharmacol 1986;42:155-64
  • 124.Lowenstein PR, Gonzalez Solveyra C, Keller Sarmiento MI and Cardinali DP. Benzodiazepines decrease norepinephrine release from rat pineal nerves by acting on peripheral type binding sites. Acta Physiol Pharmacol Latinoam 1985;35:441-9
  • 125.Golombek DA, Cardinali DP. Melatonin accelerates reentrainment after phase advance of the light-dark cycle in Syrian hamsters: antagonism by flumazenil. Chronobiol Int 1993;10:435-41
  • 126.Golombek DA, Martini M and Cardinali DP. Melatonin as an anxiolytic in rats: time dependence and interaction with the central GABAergic system. Eur J Pharmacol 1993;237:231-6
  • 127.Kanterewicz BI, Golombek DA, Rosenstein RE and Cardinali DP. Diurnal changes of GABA turnover rate in brain and pineal gland of Syrian hamsters. Brain Res Bull 1993;31:661-6
  • 128.Touret M, Parrot S, Denoroy L, Belin MF and Didier-Bazes M. Glutamatergic alterations in the cortex of genetic absence epilepsy rats. BMC Neurosci 2007;8:69
  • 129.Munoz-Hoyos A, Sanchez-Forte M, Molina-Carballo A, Escames G, Martin-Medina E, Reiter RJ, Molina-Font JA, Acuña-Castroviejo D. Melatonin's role as an anticonvulsant and neuronal protector: experimental and clinical evidence. J Child Neurol 1998;13:501-9
  • 130.Molina-Carballo A, Munoz-Hoyos A, Reiter RJ, Sánchez-Forte M, Moreno-Madrid F, Rufo-Campos M, Molina-Font JA, Acuña- Castroviejo D. Utility of high doses of melatonin as adjunctive anticonvulsant therapy in a child with severe myoclonic epilepsy: two years' experience. J Pineal Res 1997;23:97-105
  • 131.Molina-Carballo A, Munoz-Hoyos A, Sanchez-Forte M, Uberos- Fernandez J, Moreno-Madrid F and Acuna-Castroviejo D. Melatonin increases following convulsive seizures may be related to its anticonvulsant properties at physiological concentrations. Neuropediatrics 2007;38:122-5
  • 132.Seabra ML, Bignotto M, Pinto LR, Jr. and Tufik S. Randomized, double-blind clinical trial, controlled with placebo, of the toxicology of chronic melatonin treatment. J Pineal Res 2000;29:193-200
  • 133.Nordlund JJ, Lerner AB. The effects of oral melatonin on skin color and on the release of pituitary hormones. J Clin Endocrinol Metab 1977;45:768-74
  • 134.Reiter R, Gultekin, F., Flores, LJ., Terron MP., Tan DX. Melatonın: Potential Utility For Improving Public Health Korhek 2006;5:131- 158
  • 135.Crow TJ. How and why genetic linkage has not solved the problem of psychosis: review and hypothesis. Am J Psychiatry 2007;164:13- 21
  • 136.Mill J, Petronis A. Molecular studies of major depressive disorder: the epigenetic perspective. Mol Psychiatry 2007;12:799-814
  • 137.Korkmaz A, Reiter RJ. Epigenetic regulation: a new research area for melatonin? J Pineal Res 2008;44:41-4
APA Korkmaz A, ATEŞ M, ALGÜL A, BAŞOĞLU C (2009). Nöropsikiyatrik hastalıklara fizyolojik yaklaşım; otonom sinir sistemi ve melatoninin rolü. , 173 - 182.
Chicago Korkmaz Ahmet,ATEŞ M.Alpay,ALGÜL Ayhan,BAŞOĞLU Cengiz Nöropsikiyatrik hastalıklara fizyolojik yaklaşım; otonom sinir sistemi ve melatoninin rolü. (2009): 173 - 182.
MLA Korkmaz Ahmet,ATEŞ M.Alpay,ALGÜL Ayhan,BAŞOĞLU Cengiz Nöropsikiyatrik hastalıklara fizyolojik yaklaşım; otonom sinir sistemi ve melatoninin rolü. , 2009, ss.173 - 182.
AMA Korkmaz A,ATEŞ M,ALGÜL A,BAŞOĞLU C Nöropsikiyatrik hastalıklara fizyolojik yaklaşım; otonom sinir sistemi ve melatoninin rolü. . 2009; 173 - 182.
Vancouver Korkmaz A,ATEŞ M,ALGÜL A,BAŞOĞLU C Nöropsikiyatrik hastalıklara fizyolojik yaklaşım; otonom sinir sistemi ve melatoninin rolü. . 2009; 173 - 182.
IEEE Korkmaz A,ATEŞ M,ALGÜL A,BAŞOĞLU C "Nöropsikiyatrik hastalıklara fizyolojik yaklaşım; otonom sinir sistemi ve melatoninin rolü." , ss.173 - 182, 2009.
ISNAD Korkmaz, Ahmet vd. "Nöropsikiyatrik hastalıklara fizyolojik yaklaşım; otonom sinir sistemi ve melatoninin rolü". (2009), 173-182.
APA Korkmaz A, ATEŞ M, ALGÜL A, BAŞOĞLU C (2009). Nöropsikiyatrik hastalıklara fizyolojik yaklaşım; otonom sinir sistemi ve melatoninin rolü. Klinik Psikofarmakoloji Bülteni, 19(2), 173 - 182.
Chicago Korkmaz Ahmet,ATEŞ M.Alpay,ALGÜL Ayhan,BAŞOĞLU Cengiz Nöropsikiyatrik hastalıklara fizyolojik yaklaşım; otonom sinir sistemi ve melatoninin rolü. Klinik Psikofarmakoloji Bülteni 19, no.2 (2009): 173 - 182.
MLA Korkmaz Ahmet,ATEŞ M.Alpay,ALGÜL Ayhan,BAŞOĞLU Cengiz Nöropsikiyatrik hastalıklara fizyolojik yaklaşım; otonom sinir sistemi ve melatoninin rolü. Klinik Psikofarmakoloji Bülteni, vol.19, no.2, 2009, ss.173 - 182.
AMA Korkmaz A,ATEŞ M,ALGÜL A,BAŞOĞLU C Nöropsikiyatrik hastalıklara fizyolojik yaklaşım; otonom sinir sistemi ve melatoninin rolü. Klinik Psikofarmakoloji Bülteni. 2009; 19(2): 173 - 182.
Vancouver Korkmaz A,ATEŞ M,ALGÜL A,BAŞOĞLU C Nöropsikiyatrik hastalıklara fizyolojik yaklaşım; otonom sinir sistemi ve melatoninin rolü. Klinik Psikofarmakoloji Bülteni. 2009; 19(2): 173 - 182.
IEEE Korkmaz A,ATEŞ M,ALGÜL A,BAŞOĞLU C "Nöropsikiyatrik hastalıklara fizyolojik yaklaşım; otonom sinir sistemi ve melatoninin rolü." Klinik Psikofarmakoloji Bülteni, 19, ss.173 - 182, 2009.
ISNAD Korkmaz, Ahmet vd. "Nöropsikiyatrik hastalıklara fizyolojik yaklaşım; otonom sinir sistemi ve melatoninin rolü". Klinik Psikofarmakoloji Bülteni 19/2 (2009), 173-182.