Yıl: 2010 Cilt: 34 Sayı: 3 Sayfa Aralığı: 287 - 296 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Physiological and antioxidant response of three cultivars of cucumber (Cucumis sativus L.) to salinity

Öz:
Bu çalışmada salatalık (Cucumis sativus L.) çeşitlerinde (Çengelköy, Anadolu F1, Beith Alpha) tuzluluğun, büyüme, oransal su kapsamı, klorofil miktarı, inorganik iyonlar, prolin birikimi, lipid peroksidasyonu ile süperoksit dismutaz (SOD), askorbat peroksidaz (APOX) ve katalaz (CAT) antioksidant enzimlerine etkisi araştırılmıştır. Salatalık çeşitleri kontrollü koşullarda, perlit ortamında, ½ Hoagland besin çözeltisi ile sulanarak 35 gün büyütülmüştür. Bu periyot sonunda; fidelere 150 mM NaCl uygulanmıştır ve tuz uygulamasının 7. ve 14. gününde bitkiler hasat edilmiştir. Taze ve kuru ağırlıkları, oransal su kapsamları (OSK), inorganik iyonlar, toplam klorofil, prolin ve malondialdehid (MDA) miktarları ile süperoksit dismutaz (SOD), katalaz (CAT), askorbat peroksidaz (AP) enzim aktiviteleri belirlenmiştir. Genel olarak, uygulanan tuzluluk tuz muamele süreci ve çeşitli farklılıklara bağlı olarak etkilenmiştir. Ayrıca tuzlulukla birlikte prolin içeği de artmış, fakat Çengelköy çeşidinde prolin birikimi diğer çeşitlere oranla daha az olmuştur. Sonuçlar, Çengelköy çeşidinin artan antioksidant enzim aktivitesine bağlı olarak oksidatif hasara karşı koruma mekanizmasının Beith Alpha ve Anadolu F1 çeşitlerinden daha iyi olabileceğini göstermiştir. Muhtemelen, Çengelköy’ün içerdiği daha düşük MDA ve prolin içeriği ile $Na^+ and Cl^-$ konsantrasyonu ve daha yüksek K+ konsantrasyonu ile oransal su kapsamı, toplam klorofil içeriği, süperoksit dismutaz, katalaz ve askorbat peroksidaz aktivitesi bu çeşidin tuza Beith Alpha ve Anadolu F1’e oranla daha dayanıklı olmasını sağlamaktadır.
Anahtar Kelime: malondialdehit süperoksit dismutaz stres yanıtı askorbat peroksidaz hıyar prolin tuzluluk enzim aktivitesi klorofil Cucumis sativus antioksidanlar katalaz

Konular: Biyoloji

Üç salatalık (Cucumis sativus L.) çeşidinin tuzluluğa karşı fizyolojik ve antioksidant tepkileri

Öz:
The effects of salinity on the growth, relative water content (RWC), chlorophyll content, inorganic ions, proline accumulation, lipid peroxidation and antioxidant enzymes, superoxide dismutase (SOD), ascorbate peroxidase (APOX), and catalase (CAT) of 3 cucumber (Cucumis sativus L.) cultivars (Çengelköy, Anadolu F1, and Beith Alpha) were investigated. Cucumber cultivars were grown in perlite culture and irrigated with half-strength Hoagland nutrient solution for a period of 35 days under controlled conditions. After this period, seedlings were treated with 150 mM NaCl solution and the plants were harvested on day 7 and day 14 of salt treatment. The fresh and dry weights, RWC, inorganic ions, total chlorophyll, proline and malondialdehyde (MDA) content, and SOD, CAT, and APOX activities were determined. In general, the applied salinity affected all of the considered parameters depending on the duration of salt treatment and the cultivars analyzed. Proline content also increased with salinity, but accumulation of proline was lower in Çengelköy than in the other cultivars. The results suggest that the protection mechanism against oxidative damage due to induced activity of antioxidant enzymes may be better in Çengelköy than in Beith Alpha or Anadolu F1. The higher $K^+$ concentrations, RWC, total chlorophyll content, and SOD, CAT, and APOX activities, together with the lower MDA, proline content, and $Na^+ and Cl^-$ concentrations detected in Çengelköy might make this cultivar more salt-tolerant than Beith Alpha or Anadolu F1.
Anahtar Kelime: enzyme activity chlorophyll Cucumis sativus antioxidants catalase malondialdehyde superoxide dismutase stress response ascorbate peroxidase cucumbers proline salinity

Konular: Biyoloji
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Munns R. Comparative physiology of salt and water stress. Plant Cell Env 25: 239-250, 2002.
  • 2. Mansour MMF, Salama KHA. Cellular basis of salinity tolerance in plants. Environ Exp Bot 52: 113-122, 2004.
  • 3. Hasegawa PM, Bressan RA, Zhu JK et al. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51: 463-499, 2000.
  • 4. Cheeseman J. Mechanisms of salinity tolerance in plants. Plant Physiol 7: 547-550, 1988.
  • 5. Levitt J. Responses of Plants to Environmental Stresses, Water, Radiation, Salt and Other Stresses, 2nd ed., vol. 2. Academic Press; 1980, pp. 105-111.
  • 6. Khatkar D, Kuhad MS. Short-term salinity induced changes in two wheat cultivars at different growth stages. Biol Plant 43: 629-632, 2000.
  • 7. Greenway H, Munns R. Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31: 149-190, 1980.
  • 8. McCord JM. The evolution of free radicals and oxidative stress. Am J Med 108: 652-659, 2000.
  • 9. Mittova V, Guy M, Tal M et al. Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt dependent oxidative stress: increased activities of antioxidant enzymes in root plastids. Free Radic Res 36: 195- 202, 2002.
  • 10. Mittova V, Tal M, Volokita M et al. Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant Cell Environ 26: 845-856, 2003.
  • 11. McKersie BD, Leshem YY. Stress and Stress Coping in Cultivated Plants. Kluwer Academic Publishers. Dordrecht, the Netherlands; 1994, p. 256.
  • 12. Chartzoulakis KS. Effects of saline irrigation water on germination, growth and yield of greenhouse cucumber. Acta Hort 287: 327-334, 1990.
  • 13. Chartzoulakis KS. Effects of NaCl salinity on germination, growth and yield of greenhouse cucumber. J Hort Sci 67: 115- 119, 1992.
  • 14. Abd-Alla AM, Abou-Hadid AF, Jones RA. Salinity stress alters the vegetative and reproductive growth of cucumber plants. Acta Hort 323: 411-421, 1992.
  • 15. Lechno S, Zamski E, Tel-Or E. Salt stress induced responses in cucumber plants. J Plant Physiol 150: 206-211, 1997.
  • 16. Smart RE, Bingham GE. Rapid estimates of relative water content. Plant Physiol 53: 258-260, 1974.
  • 17. Lichtenthaler HK. Chlorophylls and carotenoids, the pigments of photosynthetic biomembranes. Methods Enzymol 148: 350- 382, 1987.
  • 18. Prakash L, Prathapasenan G. Effects of NaCl salinity and putrescine on shoot growth, tissue ion concentration and yield of rice (Oryza sativa L. var. GR-3). J Agron & Crop Sci 160: 325- 334, 1988.
  • 19. Bates ML, Waldren RP, Teare JD. Rapid determination of free proline for water stress studies. Plant Soil 39: 205-207, 1973.
  • 20. Lutts S, Kinet JM, Bouharmont J. Effects of salt stress on growth, mineral nutrition and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) cultivars differing in salinity tolerance. Plant Growth Regul 19: 207-218, 1996.
  • 21. Cakmak I, Marschner H. Magnesium deficiency and high-light intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiol 98: 1222-1227, 1992.
  • 22. Cakmak I. Activity of ascorbate-dependent $H _2O _2$ scavenging enzymes and leaf chlorosis are enhanced in magnesium and potassium deficient leaves, but not in phosphorus deficient leaves. J Exp Bot 45: 1259-1266, 1994.
  • 23. Parida AK, Das AB. Salt tolerance and salinity effects on plants: a review. Ecotoxic and Env Safety 60: 324-349, 2005.
  • 24. Al-Rwahy SA. Nitrogen uptake, growth rate and yield of tomatoes under saline condition. PhD. Dissertation, University of Arizona, Tucson, 1989: p. 118.
  • 25. Katerji N, Van Hoorn JW, Hamdy A et al. Osmotic adjustment of sugar beets in response to soil salinity and its influence on stomatal conductance, growth and yield. Agricul Water Manage 34: 57-69, 1997.
  • 26. Ghoulam C, Foursy A, Fares K. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environ Exp Bot 47: 39- 50, 2002.
  • 27. Ashraf MY, Bhatti AS. Effect of salinity on growth and chlorophyll content in rice. Pak J Ind Res 43: 130-131, 2000.
  • 28. Al-Sobhi OA, Al-Zahrani HS, Al-Ahmadi SB. Effect of salinity on chlorophyll & carbohydrate contents of Calotropis procera seedlings. King Fasil University J 7: 105-115, 2005.
  • 29. Loggini B, Scartazza A, Brugnoli E, Navari-Izzo F. Antioxidative defense system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant Physiol 119: 1091-1099, 1999.
  • 30. Meloni DA, Oliva MA, Martinez CA, Cambraia J. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49: 69-76, 2003.
  • 31. Garcia-Sanchez F, Jifon JL, Carvaial M, Syvertsen JP. Gas exchange, chlorophyll and nutrient contents in relation to Na+ and Cl- accumulation in ‘Sunburst’ mandarin grafted on different rootstocks. Plant Sci 162: 705-712, 2002.
  • 32. Sudhir PR, Pogoryelov D, Kovacs L, Garab G, Murthy SD. The effects of salt stress on photosynthetic electron transport and thylakoid membrane proteins in the cyanobacterium Spirulina platensis. J Biochem Mol Biol 38: 481-485, 2005.
  • 33. Amor NB, Hamed KB, Debez A et al. Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity. Plant Sci 16: 889-899, 2005.
  • 34. Slama F. Intervention des racines dans le sensibilite ou la tolerance a NaCl de plantes cultivees. Agronomie 6: 651-658, 1986.
  • 35. Pérez-Alfocea F, Balibrea ME, Santa Cruz A et al. Agronomical and physiological characterization of salinity tolerance in a commercial tomato hybrid. Plant Soil 180: 251-257, 1996.
  • 36. Ashraf M, McNeilly T. Salinity tolerance in Brassica oilseeds. Crit Rev Plant Sci 23: 157-174, 2004.
  • 37. Tal M, Katz A, Heiken H et al. Salt tolerance in wild relatives of the cultivated tomato: proline accumulation in Lycopersicon esculentum Mill., L. peruvianum Mill., and Solanum pennelli Cor. treated with NaCl and polyethylene glycol. New Phytol 82: 349-360, 1979.
  • 38. Moftah AB, Michel BB. The effect of sodium chloride on solute potential and proline accumulation in soybean leaves. Plant Physiol 83: 283-286, 1987.
  • 39. Ashraf M. Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166: 3-16, 2004.
  • 40. Bor M, Özdemir F, Türkan I. The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Sci 164: 77-84, 2003.
  • 41. Foyer CH. Free radical processes in plants. Biochem Soc Trans 24: 427-434, 1996.
  • 42. Demiral T, Türkan I. Does exogenous glycinebetaine affect antioxidative system of rice seedlings under NaCl treatment? J Plant Physiol 161: 1089-1100, 2004.
  • 43. Sudhakar C, Lakshmi A, Giridarakumar S. Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Sci 161: 613-619, 2001.
  • 44. Sairam RK, Veerabhadra K, Srivastava GC. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci 163: 1037-1046, 2002.
  • 45. Khan MH, Panda SK. Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaCl-salinity stress. Acta Physiol Plant 30: 81-89, 2008.
  • 46. Türkan I, Bor M, Özdemir F et al. Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius and drought-sensitive P. vulgaris L., subjected to polyethylene glycol mediated water stress. Plant Sci 168: 223- 231, 2005.
  • 47. Zaefyzadeh M, Quliyev Ra, Babayeva SM et al. The Effect of the Interaction between Genotypes and Drought Stress on the Superoxide Dismutase and Chlorophyll Content in Durum Wheat Landraces. Turk J Biol 33: 1-7, 2009.
  • 48. Hernandez JA, Almansa MS. Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiol Plant 115: 251-257, 2002.
  • 49. Sairam DS, Shukla DS, Saxena DC. Stress induced injury and antioxidant enzymes in relation to drought tolerance in wheat genotypes. Biologia Plant 40: 357-364, 1997/98.
  • 50. Smirnoff N. The role of active oxygen in response of plants to water deficit and desiccation. New Phytol 125: 27-58, 1993.
  • 51. Perez-Lopez U, Robredo A, Lacuesta M et al. The oxidative stress caused by salinity in two barley cultivars is mitigated by elevated $CO _2$. Physiol Plant 135: 29-42, 2009.
APA BAYSAL FURTANA G, TIPIRDAMAZ R (2010). Physiological and antioxidant response of three cultivars of cucumber (Cucumis sativus L.) to salinity. , 287 - 296.
Chicago BAYSAL FURTANA GÖKÇEN,TIPIRDAMAZ Rukiye Physiological and antioxidant response of three cultivars of cucumber (Cucumis sativus L.) to salinity. (2010): 287 - 296.
MLA BAYSAL FURTANA GÖKÇEN,TIPIRDAMAZ Rukiye Physiological and antioxidant response of three cultivars of cucumber (Cucumis sativus L.) to salinity. , 2010, ss.287 - 296.
AMA BAYSAL FURTANA G,TIPIRDAMAZ R Physiological and antioxidant response of three cultivars of cucumber (Cucumis sativus L.) to salinity. . 2010; 287 - 296.
Vancouver BAYSAL FURTANA G,TIPIRDAMAZ R Physiological and antioxidant response of three cultivars of cucumber (Cucumis sativus L.) to salinity. . 2010; 287 - 296.
IEEE BAYSAL FURTANA G,TIPIRDAMAZ R "Physiological and antioxidant response of three cultivars of cucumber (Cucumis sativus L.) to salinity." , ss.287 - 296, 2010.
ISNAD BAYSAL FURTANA, GÖKÇEN - TIPIRDAMAZ, Rukiye. "Physiological and antioxidant response of three cultivars of cucumber (Cucumis sativus L.) to salinity". (2010), 287-296.
APA BAYSAL FURTANA G, TIPIRDAMAZ R (2010). Physiological and antioxidant response of three cultivars of cucumber (Cucumis sativus L.) to salinity. Turkish Journal of Biology, 34(3), 287 - 296.
Chicago BAYSAL FURTANA GÖKÇEN,TIPIRDAMAZ Rukiye Physiological and antioxidant response of three cultivars of cucumber (Cucumis sativus L.) to salinity. Turkish Journal of Biology 34, no.3 (2010): 287 - 296.
MLA BAYSAL FURTANA GÖKÇEN,TIPIRDAMAZ Rukiye Physiological and antioxidant response of three cultivars of cucumber (Cucumis sativus L.) to salinity. Turkish Journal of Biology, vol.34, no.3, 2010, ss.287 - 296.
AMA BAYSAL FURTANA G,TIPIRDAMAZ R Physiological and antioxidant response of three cultivars of cucumber (Cucumis sativus L.) to salinity. Turkish Journal of Biology. 2010; 34(3): 287 - 296.
Vancouver BAYSAL FURTANA G,TIPIRDAMAZ R Physiological and antioxidant response of three cultivars of cucumber (Cucumis sativus L.) to salinity. Turkish Journal of Biology. 2010; 34(3): 287 - 296.
IEEE BAYSAL FURTANA G,TIPIRDAMAZ R "Physiological and antioxidant response of three cultivars of cucumber (Cucumis sativus L.) to salinity." Turkish Journal of Biology, 34, ss.287 - 296, 2010.
ISNAD BAYSAL FURTANA, GÖKÇEN - TIPIRDAMAZ, Rukiye. "Physiological and antioxidant response of three cultivars of cucumber (Cucumis sativus L.) to salinity". Turkish Journal of Biology 34/3 (2010), 287-296.