Yıl: 2022 Cilt: 36 Sayı: 1 Sayfa Aralığı: 99 - 111 Metin Dili: Türkçe DOI: 10.5505/deutfd.2022.94547 İndeks Tarihi: 09-08-2022

Yutma Fonksiyonunun Merkezi Kontrolü

Öz:
Yutma fonksiyonu; besinin ağızdan mideye iletilmesini ifade eden karmaşık, sensorimotor bir süreçtir. Yutma fonksiyonunun kontrolünde beyin sapından serebral kortekse kadar farklı seviyelerde merkezi sinir sistemi bölümleri görev alır. Periferal duyusal girdiler ve kortikal girdiler merkezi patern jeneratörlerine ulaşır. Merkezi patern jeneratörler, yutmanın tetiklenmesi, ardışık ve ritmik yutma paterninin oluşturulması ve yutma zamanlamasını ayarlamaktadır. Oluşturulan nöral patern birden fazla motor nöron havuzuna sıralı olarak dağıtılarak ilgili yutma kaslarının sıralı ritmik kasılmasını sağlar. Serebellum, bazal gangliyonlar, talamus, hipotalamus ve amigdala yutmada aktive olan subkortikal yapılardır. Serebellum ve bazal gangliyonlar orofaringeal bölgenin koordineli çalışmasına katkıda bulunur. Serebral korteksteki primer motor korteks, primer somatosensoriyel korteks, yardımcı motor alan, singulat korteks, süperior temporal girus, insula ve hipokampus gibi birçok bölge yutma fonksiyonunda görev alır. Serebral korteksteki bölgelerin aktivasyonu yutmanın istemli ve refleksif aşamalarına göre değişiklik gösterir. Tüm bu yapıların etkileşimi sonucunda etkili ve güvenli yutma gerçekleşir. Merkezi kontrolün farklı seviyelerindeki lezyonlar yutma bozukluğu ile sonuçlanabilir. Bu nedenle yutma fonksiyonunun merkezi kontrolünde görevli yapıların bilinmesi ve görevlerinin algılanması oldukça önemlidir. Bu derlemenin amacı; yutma fonksiyonunda görev alan merkezlerin anatomik yapılarını tanımlamak ve yutma fonksiyonu ile ilişkilerini açıklamaktır.
Anahtar Kelime: Yutma Nörofizyoloji Santral Sinir Sistemi

CENTRAL CONTROL OF SWALLOWING FUNCTION

Öz:
Swallowing function is a complex sensorimotor process that refers to the delivery of food from the mouth to the stomach. Different levels of the central nervous system, from the brain stem to the cerebral cortex, are involved in the control of swallowing function. Peripheral sensory inputs and cortical inputs reach the central pattern generators. Central pattern generators regulate swallowing triggering, sequential and rhythmic swallowing patterns, and timing of swallowing. The created neural pattern is distributed sequentially to more than one motor neuron pool, providing sequential rhythmic contraction of the related swallowing muscles. The cerebellum, basal ganglia, thalamus, hypothalamus, and amygdala are subcortical structures that are activated during swallowing. The cerebellum and basal ganglia contribute to the coordinated work of the oropharyngeal region. Many regions in the cerebral cortex including the primary motor cortex, primary somatosensory cortex, supplementary motor area, cingulate cortex, superior temporal gyrus, insula, and hippocampus are involved in swallowing function. Activation of regions in the cerebral cortex changes according to the voluntary and reflexive stages of swallowing. As a result of the interaction of all these structures, effective and safe swallowing occurs. Lesions at different levels of central control may result in dysphagia. Therefore, it is very important to know the structures responsible for the central control of the swallowing function and to perceive their functions. The aim of this review is to describe the anatomical structures of the centers involved in the swallowing function and to explain their relationship with the swallowing function.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Mistry S, Hamdy S. Neural control of feeding and swallowing. Phys Med Rehabil Clin N Am. 2008;19(4):709-28, vii-viii. doi: 10.1016/j.pmr.2008.05.002. PMID: 18940637.
  • 2. Shaw SM, Martino R. The normal swallow: muscular and neurophysiological control. Otolaryngol Clin North Am. 2013;46(6):937-56. doi: 10.1016/j.otc.2013.09.006. PMID: 24262952.
  • 3. Mosier K, Bereznaya I. Parallel cortical networks for volitional control of swallowing in humans. Exp Brain Res. 2001;140(3):280-9. doi: 10.1007/s002210100813. PMID: 11681303.
  • 4. Panebianco M, Marchese-Ragona R, Masiero S, Restivo DA. Dysphagia in neurological diseases: a literature review. Neurol Sci. 2020;41(11):3067- 3073. doi: 10.1007/s10072-020-04495-2. PMID: 32506360; PMCID: PMC7567719.
  • 5. Jean A. Brain stem control of swallowing: neuronal network and cellular mechanisms. Physiol Rev. 2001;81(2):929-69. doi: 10.1152/physrev.2001.81.2.929. PMID: 11274347.
  • 6. Ertekin C, Aydogdu I. Neurophysiology of swallowing. Clin Neurophysiol. 2003;114(12):2226-44. doi: 10.1016/s1388- 2457(03)00237-2. PMID: 14652082.
  • 7. Steele CM, Miller AJ. Sensory input pathways and mechanisms in swallowing: a review. Dysphagia. 2010;25(4):323-33. doi: 10.1007/s00455-010-9301-5. PMID: 20814803; PMCID: PMC2992653.
  • 8. Costa MMB. Neural Control Of Swallowing. Arq Gastroenterol. 2018;55 Suppl 1:61-75. doi: 10.1590/S0004-2803.201800000-45. PMID: 30156597.
  • 9. Lang IM. Brain stem control of the phases of swallowing. Dysphagia. 2009;24(3):333-48. doi: 10.1007/s00455-009-9211-6. PMID: 19399555.
  • 10. Bautista TG, Sun QJ, Pilowsky PM. The generation of pharyngeal phase of swallow and its coordination with breathing: interaction between the swallow and respiratory central pattern generators. Prog Brain Res. 2014;212:253-75. doi: 10.1016/B978-0-444-63488-7.00013-6. PMID: 25194202.
  • 11. Sargon, MF. Anatomi Akıl Notları. 1. Baskı. Ankara: Güneş Tıp Kitabevleri.; 2016.
  • 12. Flowers HL, Skoretz SA, Streiner DL, Silver FL, Martino R. MRI-based neuroanatomical predictors of dysphagia after acute ischemic stroke: a systematic review and meta-analysis. Cerebrovasc Dis. 2011;32(1):1-10. doi: 10.1159/000324940. PMID: 21576937.
  • 13. Jang SH, Kim MS. Dysphagia in Lateral Medullary Syndrome: A Narrative Review. Dysphagia. 2021;36(3):329-338. doi: 10.1007/s00455-020-10158- 3. PMID: 32654058.
  • 14. McCulloch T. M., Jaffe D. Head and neck disorders affecting swallowing. GI Motility Online (http://www.nature.com). 2006. doi:10.1038/gimo36
  • 15. Taner D. Fonksiyonel Nöroanatomi. 16. Baskı. Ankara: ODTÜ Geliştirme Vakfı Yayıncılık ve İletişim A.Ş.; 2016.
  • 16. Suzuki M, Asada Y, Ito J, Hayashi K, Inoue H, Kitano H. Activation of cerebellum and basal ganglia on volitional swallowing detected by functional magnetic resonance imaging. Dysphagia. 2003;18(2):71-7. doi: 10.1007/s00455- 002-0088-x. PMID: 12825899.
  • 17. Boillat Y, Bazin PL, van der Zwaag W. Whole- body somatotopic maps in the cerebellum revealed with 7T fMRI. Neuroimage. 2020;211:116624. doi: 10.1016/j.neuroimage.2020.116624. PMID: 32058002.
  • 18. Jayasekeran V, Rothwell J, Hamdy S. Non- invasive magnetic stimulation of the human cerebellum facilitates cortico-bulbar projections in the swallowing motor system. Neurogastroenterol Motil. 2011;23(9):831-e341. doi: 10.1111/j.1365-2982.2011.01747.x. PMID: 21838728.
  • 19. Sasegbon A, Hamdy S. The Role of the Cerebellum in Swallowing. Dysphagia. 2021. doi: 10.1007/s00455-021-10271-x. PMID: 33675425.
  • 20. Dehaghani SE, Yadegari F, Asgari A, Chitsaz A, Karami M. Brain regions involved in swallowing: Evidence from stroke patients in a cross -sectional study. J Res Med Sci. 2016;21:45. doi: 10.4103/1735- 1995.183997. PMID: 27904591; PMCID: PMC5122214.
  • 21. Haber SN. Corticostriatal circuitry. Dialogues Clin Neurosci. 2016;18(1):7-21. doi: 10.31887/DCNS.2016.18.1/shaber. PMID: 27069376; PMCID: PMC4826773.
  • 22. Sonne J, Reddy V, Beato MR. Neuroanatomy, Substantia Nigra. [Updated 2020 Nov 8]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan-. PMID: 30725680.
  • 23. Hamdy S, Mikulis DJ, Crawley A, Xue S, Lau H, Henry S, Diamant NE. Cortical activation during human volitional swallowing: an event-related fMRI study. Am J Physiol. 1999;277(1):G219-25. doi: 10.1152/ajpgi.1999.277.1.G219. PMID: 10409170.
  • 24. Suntrup S, Warnecke T, Kemmling A, Teismann IK, Hamacher C, Oelenberg S, et al. Dysphagia in patients with acute striatocapsular hemorrhage. J Neurol. 2012;259(1):93-9. doi: 10.1007/s00415-011- 6129-3. PMID: 21647725.
  • 25. Kalf JG, de Swart BJ, Bloem BR, Munneke M. Prevalence of oropharyngeal dysphagia in Parkinson's disease: a meta-analysis. Parkinsonism Relat Disord. 2012;18(4):311-5. doi: 10.1016/j.parkreldis.2011.11.006. PMID: 22137459.
  • 26. Leopold NA, Daniels SK. Supranuclear control of swallowing. Dysphagia. 2010;25(3):250-7. doi: 10.1007/s00455-009-9249-5. PMID: 19730940.
  • 27. Mosier KM, Liu WC, Maldjian JA, Shah R, Modi B. Lateralization of cortical function in swallowing: a functional MR imaging study. AJNR Am J Neuroradiol. 1999;20(8):1520-6. PMID: 10512240; PMCID: PMC7657739.
  • 28. Maeshima S, Osawa A, Yamane F, Ishihara S, Tanahashi N. Dysphagia following acute thalamic haemorrhage: clinical correlates and outcomes. Eur Neurol. 2014;71(3-4):165-72. doi: 10.1159/000355477. PMID: 24457317.
  • 29. Ahima RS, Antwi DA. Brain regulation of appetite and satiety. Endocrinol Metab Clin North Am. 2008;37(4):811-23. doi: 10.1016/j.ecl.2008.08.005. PMID: 19026933; PMCID: PMC2710609.
  • 30. Rolls ET. Brain mechanisms underlying flavour and appetite. Philos Trans R Soc Lond B Biol Sci. 2006;361(1471):1123-36. doi: 10.1098/rstb.2006.1852. PMID: 16815796; PMCID: PMC1642694.
  • 31. Sah P, Faber ES, Lopez De Armentia M, Power J. The amygdaloid complex: anatomy and physiology. Physiol Rev. 2003;83(3):803-34. doi: 10.1152/physrev.00002.2003. PMID: 12843409.
  • 32. Wilmskoetter J, Daniels SK, Miller AJ. Cortical and Subcortical Control of Swallowing-Can We Use Information From Lesion Locations to Improve Diagnosis and Treatment for Patients With Stroke? Am J Speech Lang Pathol. 2020;29(2S):1030-1043. doi: 10.1044/2019_AJSLP- 19-00068. PMID: 32650664; PMCID: PMC7844337.
  • 33. Wilmskoetter J, Bonilha L, Martin-Harris B, Elm JJ, Horn J, Bonilha HS. Mapping acute lesion locations to physiological swallow impairments after stroke. Neuroimage Clin. 2019;22:101685. doi: 10.1016/j.nicl.2019.101685. PMID: 30711683; PMCID: PMC6357850.
  • 34. Cola MG, Daniels SK, Corey DM, Lemen LC, Romero M, Foundas AL. Relevance of subcortical stroke in dysphagia. Stroke. 2010;41(3):482-6. doi: 10.1161/STROKEAHA.109.566133. PMID: 20093638.
  • 35. Watanabe Y, Abe S, Ishikawa T, Yamada Y, Yamane GY. Cortical regulation during the early stage of initiation of voluntary swallowing in humans. Dysphagia. 2004;19(2):100-8. doi: 10.1007/s00455-003-0509-5. PMID: 15382798.
  • 36. Vasant DH, Hamdy S. Cerebral Cortical Control of Deglutition. In: Shaker R, Belafsky PC, Postma GN, Easterling C, editors. Principles of Deglutition. New York: Springer.; 2013. p. 55-65.
  • 37. Teismann IK, Dziewas R, Steinstraeter O, Pantev C. Time-dependent hemispheric shift of the cortical control of volitional swallowing. Hum Brain Mapp. 2009;30(1):92-100. doi: 10.1002/hbm.20488. PMID: 17979116; PMCID: PMC6870608.
  • 38. Hamdy S. Role of cerebral cortex in the control of swallowing. GI Motility Online (http://www.nature.com). 2006. doi:10.1038/gimo8
  • 39. Li WQ, Lin T, Li X, Jing YH, Wu C, Li MN, Ding Q, Lan Y, Xu GQ. TMS brain mapping of the pharyngeal cortical representation in healthy subjects. Brain Stimul. 2020;13(3):891-899. doi: 10.1016/j.brs.2020.02.031. PMID: 32289722.
  • 40. Kern MK, Jaradeh S, Arndorfer RC, Shaker R. Cerebral cortical representation of reflexive and volitional swallowing in humans. Am J Physiol Gastrointest Liver Physiol. 2001;280(3):G354-60. doi: 10.1152/ajpgi.2001.280.3.G354. PMID: 11171617.
  • 41. Martin RE, Goodyear BG, Gati JS, Menon RS. Cerebral cortical representation of automatic and volitional swallowing in humans. J Neurophysiol. 2001;85(2):938-50. doi: 10.1152/jn.2001.85.2.938. PMID: 11160524.
  • 42. Ertekin C. Voluntary versus spontaneous swallowing in man. Dysphagia. 2011;26(2):183-92. doi: 10.1007/s00455-010-9319-8. PMID: 21161279.
  • 43. St-Onge MP, Sy M, Heymsfield SB, Hirsch J. Human cortical specialization for food: a functional magnetic resonance imaging investigation. J Nutr. 2005;135(5):1014-8. doi: 10.1093/jn/135.5.1014. PMID: 15867274.
  • 44. Dziewas R, Sörös P, Ishii R, Chau W, Henningsen H, Ringelstein EB, Knecht S, Pantev C. Neuroimaging evidence for cortical involvement in the preparation and in the act of swallowing. Neuroimage. 2003;20(1):135-44. doi: 10.1016/s1053-8119(03)00285-4. PMID: 14527576.
  • 45. Barrett KE, Brooks HL, Boitano S, Barman SM. Learning, memory, language, & speech. In Ganong's Review of Medical Physiology, 23rd ed. New York: McGraw-Hill, Lange; 2010. p. 289-99.
  • 46. Suntrup S, Kemmling A, Warnecke T, Hamacher C, Oelenberg S, Niederstadt T, et al. The impact of lesion location on dysphagia incidence, pattern and complications in acute stroke. Part 1: dysphagia incidence, severity and aspiration. Eur J Neurol. 2015;22(5):832-8. doi: 10.1111/ene.12670. PMID: 25677582.
  • 47. Sura L, Madhavan A, Carnaby G, Crary MA. Dysphagia in the elderly: management and nutritional considerations. Clin Interv Aging. 2012;7:287-98. doi: 10.2147/CIA.S23404. PMID: 22956864; PMCID: PMC3426263.
  • 48. Khan A, Carmona R, Traube M. Dysphagia in the elderly. Clin Geriatr Med. 2014;30(1):43-53. doi: 10.1016/j.cger.2013.10.009. PMID: 24267601.
  • 49. Martin R, Barr A, MacIntosh B, Smith R, Stevens T, Taves D, Gati J, Menon R, Hachinski V. Cerebral cortical processing of swallowing in older adults. Exp Brain Res. 2007;176(1):12-22. doi: 10.1007/s00221-006-0592-6. PMID: 16896984.
  • 50. Langdon PC, Lee AH, Binns CW. Dysphagia in acute ischaemic stroke: severity, recovery and relationship to stroke subtype. J Clin Neurosci. 2007;14(7):630-4. doi: 10.1016/j.jocn.2006.04.009. PMID: 17434310.
APA ELMALI Y, ARSLAN S (2022). Yutma Fonksiyonunun Merkezi Kontrolü. , 99 - 111. 10.5505/deutfd.2022.94547
Chicago ELMALI YAĞMUR,ARSLAN Selen Serel Yutma Fonksiyonunun Merkezi Kontrolü. (2022): 99 - 111. 10.5505/deutfd.2022.94547
MLA ELMALI YAĞMUR,ARSLAN Selen Serel Yutma Fonksiyonunun Merkezi Kontrolü. , 2022, ss.99 - 111. 10.5505/deutfd.2022.94547
AMA ELMALI Y,ARSLAN S Yutma Fonksiyonunun Merkezi Kontrolü. . 2022; 99 - 111. 10.5505/deutfd.2022.94547
Vancouver ELMALI Y,ARSLAN S Yutma Fonksiyonunun Merkezi Kontrolü. . 2022; 99 - 111. 10.5505/deutfd.2022.94547
IEEE ELMALI Y,ARSLAN S "Yutma Fonksiyonunun Merkezi Kontrolü." , ss.99 - 111, 2022. 10.5505/deutfd.2022.94547
ISNAD ELMALI, YAĞMUR - ARSLAN, Selen Serel. "Yutma Fonksiyonunun Merkezi Kontrolü". (2022), 99-111. https://doi.org/10.5505/deutfd.2022.94547
APA ELMALI Y, ARSLAN S (2022). Yutma Fonksiyonunun Merkezi Kontrolü. Dokuz Eylül Üniversitesi Tıp Fakültesi Dergisi, 36(1), 99 - 111. 10.5505/deutfd.2022.94547
Chicago ELMALI YAĞMUR,ARSLAN Selen Serel Yutma Fonksiyonunun Merkezi Kontrolü. Dokuz Eylül Üniversitesi Tıp Fakültesi Dergisi 36, no.1 (2022): 99 - 111. 10.5505/deutfd.2022.94547
MLA ELMALI YAĞMUR,ARSLAN Selen Serel Yutma Fonksiyonunun Merkezi Kontrolü. Dokuz Eylül Üniversitesi Tıp Fakültesi Dergisi, vol.36, no.1, 2022, ss.99 - 111. 10.5505/deutfd.2022.94547
AMA ELMALI Y,ARSLAN S Yutma Fonksiyonunun Merkezi Kontrolü. Dokuz Eylül Üniversitesi Tıp Fakültesi Dergisi. 2022; 36(1): 99 - 111. 10.5505/deutfd.2022.94547
Vancouver ELMALI Y,ARSLAN S Yutma Fonksiyonunun Merkezi Kontrolü. Dokuz Eylül Üniversitesi Tıp Fakültesi Dergisi. 2022; 36(1): 99 - 111. 10.5505/deutfd.2022.94547
IEEE ELMALI Y,ARSLAN S "Yutma Fonksiyonunun Merkezi Kontrolü." Dokuz Eylül Üniversitesi Tıp Fakültesi Dergisi, 36, ss.99 - 111, 2022. 10.5505/deutfd.2022.94547
ISNAD ELMALI, YAĞMUR - ARSLAN, Selen Serel. "Yutma Fonksiyonunun Merkezi Kontrolü". Dokuz Eylül Üniversitesi Tıp Fakültesi Dergisi 36/1 (2022), 99-111. https://doi.org/10.5505/deutfd.2022.94547