Yıl: 2022 Cilt: 72 Sayı: 3 Sayfa Aralığı: 294 - 298 Metin Dili: İngilizce DOI: 10.5152/forestist.2022.21044 İndeks Tarihi: 30-08-2022

Estimating Stand Top Height Using Freely Distributed ICESat-2 LiDAR Data: A Case Study from Multi-species Forests in Artvin

Öz:
Forest inventories require up-to-date data on dominant tree height and stand top height from forest sample plots. These data are used to characterize the vertical structure of forests, providing a baseline for volume and yield tables as well as many other biomass studies. Obtaining height information through ground measurement is laborious, costly, and time-consuming. The aim of this study is to estimate stand top heights of the Artvin-Hatila Valley’s forests using freely available laser scanning (LiDAR) data from the ICESat-2 satellite for the first time in Turkey. For this purpose, the dominant tree heights, traditionally measured by digital hypsometer in 52 sample plots, were evaluated by stand types and compared with the ICESat-2 canopy data. Then, two data sets were modeled using the Convolutional Neural Network (CNN) and simple regression methods. The model accuracies were evaluated with correlation (Pearson’s R), coefficient of determination (R2), and root mean squared error (RMSE) using ground-based data. The results showed that the CNN-based model performed better than the linear regression model in height estimation. Its R, R2, and RMSE values were .82, .68, and 4.2 m, respectively. As for stand types, broadleaves-dominated, mature, and fully covered stands seem more appropriate for top height modeling with spaceborne LiDAR data. Degraded, coniferous, and young stands, as well as non-forest areas, barely allow accurate top height estimations due to their complex canopy surfaces and small openings among trees. Given the promising results, we conclude that satellite-based LiDAR systems provide opportunities to forest professionals as a free auxiliary data source for operational forest management in Turkey.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • • Balzter, H., Rowland, C. S., & Saich, P. (2007). Forest canopy height and carbon estimation at Monks Wood National Nature Reserve, UK, using dualwavelength SAR interferometry. Remote Sensing of Environment, 108(3), 224–239. [CrossRef]
  • • CNN. (2021). CNN code R implementation. Retrieved from https ://ww w.dat atech notes .com/ 2020/ 01/ho w-to- fit-r egres sion- data- with- cnn.h tml • Dandabathula, G., Sitiraju, S. R., & Jha, C. S. (2021). Retrieval of building heights from ICESat-2 photon data and evaluation with field measurements. Environmental Research, 1(1). [CrossRef]
  • • Dorado-Roda, I., Pascual, A., Godinho, S., Silva, C. A., Botequim, B., Rodríguez- Gonzálvez, P., González-Ferreiro, E., & Guerra-Hernández, J. (2021). Assessing the accuracy of GEDI data for canopy height and aboveground biomass estimates in Mediterranean forests. Remote Sensing, 13(12), 2279. [CrossRef]
  • • Fayad, I., Ienco, D., Baghdadi, N., Gaetano, R., Alvares, C. A., Stape, J. L., Ferraço Scolforo, H., & Le Maire, G. (2021). A CNN-based approach for the estimation of canopy heights and wood volume from GEDI waveforms. Remote Sensing of Environment, 265, 1–16. [CrossRef]
  • • FAO and UNEP. (2020). The state of the World’s Forests 2020. Forests, biodiversity and people. Rome: FAO and UNEP. [CrossRef]
  • • Gülçin, D. (2021). Spatial distribution of urban vegetation: A case study of a Canadian University Campus using LiDAR-based metrics. Forestist, 71(3), 196–209. [CrossRef]
  • • ICESat-2. (2021). ICESat-2 data information. Retrieved from https://icesat-2. gsfc.nasa.gov/
  • • Khalsa,S. J. S., Borsa, A., Nandigam, V., Phan, M., Lin, K., Crosby, C., Fricker, H., Baru, C., & Lopez, L., Baru, C., & Lopez, L. (2020). OpenAltimetry-rapid analysis and visualization of Spaceborne altimeter data. Earth Science Informatics, 1–10. [CrossRef]
  • • Lefsky, M. A., Harding, D. J., Keller, M., Cohen, W. B., Carabajal, C. C., Del Bom Espirito Santo, F., Hunter, M. O., de Oliveira Jr., R., & de Oliveira, R. (2005). Estimates of forest canopy height and aboveground biomass using ICESat. Geophysical Research Letters, 32(22), n/a–n/a. [CrossRef]
  • • Li, Y., Zhang, H., Xue, X., Jiang, Y., & Shen, Q. (2018). Deep learning for remote sensing image classification: A survey. WIREs Data Mining and Knowledge Discovery, 8(6), e1264. [CrossRef]
  • • Lisein, J., Pierrot-Deseilligny, M., Bonnet, S., & Lejeune, P. (2013). A photogrammetric workflow for the creation of a forest canopy height model from small unmanned aerial system imagery. Forests, 4(4), 922–944. [CrossRef]
  • • Markus, T., Neumann, T., Martino, A., Abdalati, W., Brunt, K., Csatho, B., Farrell, S., Fricker, H., Gardner, A., Harding, D., Jasinski, M., Kwok, R., Magruder, L., Lubin, D., Luthcke, S., Morison, J., Nelson, R., Neuenschwander, A., Palm, S., ... (2017). The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sensing of Environment, 190, 260–273. [CrossRef]
  • • Nandy, S., Srinet, R., & Padalia, H. (2021). Mapping forest height and aboveground biomass by integrating ICESat 2, Sentinel 1 and Sentinel 2 data using Random Forest algorithm in northwest Himalayan foothills of India. Geophysical Research Letters, 48(14), e2021. [CrossRef]
  • • Neuenschwander, A. L., & Magruder, L. A. (2019). Canopy and terrain height retrievals with ICESat-2: A first look. Remote Sensing, 11(14), 1721. [CrossRef]
  • • Neuenschwander, A. L., K. L. Pitts, B. P. Jelley, J. Robbins, B. Klotz, S. C. Popescu, R. F. Nelson, D. Harding, D. Pederson, and R. Sheridan. 2020. ATLAS/ ICESat-2 L3A Land and Vegetation Height, Version 3. [41°15’N, 41°30’E; 41°N, 41°50’E.]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. [CrossRef]
  • • Openaltimetry. (2021). ICESat-2 data download page. Retrieved from https ://op enalt imetr y.org /abou t.htm l
  • • Ozdemir, I. (2013). Estimation of forest stand parameters using airborne LIDAR data. SDU Faculty of Forestry Journal, 14(1), 31–39
  • • Patenaude, G., Milne, R., & Dawson, T. P. (2005). Synthesis of remote sensing approaches for forest carbon estimation: Reporting to the Kyoto Protocol. Environmental Science and Policy, 8(2), 161–178. [CrossRef]
  • • Polat, N., & Kaya, Y. (2019). Damage detection in forest fires with multi-band satellite images. Journal of Bartin Faculty of Forestry, 23(1), 172–181. [CrossRef]
  • • Sabuncu, A., & Ozener, H. (2019). Detection of burned areas by remote sensing techniques: İzmir Seferihisar Forest fire case study. Journal of Natural Hazards and Environment, 5(2), 317–326. [CrossRef]
  • • Sun, T., Qi, J., & Huang, H. (2020). Discovering forest height changes based on spaceborne lidar data of ICESat-1 in 2005 and ICESat-2 in 2019: A case study in the Beijing-Tianjin-Hebei region of China. Forest Ecosystems, 7(1), 1–12. [CrossRef]
  • • Tolunay, D. (2019). Biomass factors used to calculate carbon storage of Turkish forests. Forestist, 69(2), 144–155. [CrossRef]
  • • Vatandaşlar, C., & Abdikan, S. (2021). Carbon stock estimation by dual-polarized Synthetic Aperture Radar (SAR) and forest inventory data in a Mediterranean forest landscape. Journal of Forestry Research. [CrossRef]
  • • Yu, J., Nie, S., Liu, W., Zhu, X., Lu, D., Wu, W., & Sun, Y. (2021). Accuracy assessment of ICESat-2 ground elevation and canopy height estimates in mangroves. IEEE Geoscience and Remote Sensing Letters, 19, 1–5. [CrossRef]
APA Narin O, VATANDAŞLAR C, Abdikan S (2022). Estimating Stand Top Height Using Freely Distributed ICESat-2 LiDAR Data: A Case Study from Multi-species Forests in Artvin. , 294 - 298. 10.5152/forestist.2022.21044
Chicago Narin Omer Gokberk,VATANDAŞLAR CAN,Abdikan Saygin Estimating Stand Top Height Using Freely Distributed ICESat-2 LiDAR Data: A Case Study from Multi-species Forests in Artvin. (2022): 294 - 298. 10.5152/forestist.2022.21044
MLA Narin Omer Gokberk,VATANDAŞLAR CAN,Abdikan Saygin Estimating Stand Top Height Using Freely Distributed ICESat-2 LiDAR Data: A Case Study from Multi-species Forests in Artvin. , 2022, ss.294 - 298. 10.5152/forestist.2022.21044
AMA Narin O,VATANDAŞLAR C,Abdikan S Estimating Stand Top Height Using Freely Distributed ICESat-2 LiDAR Data: A Case Study from Multi-species Forests in Artvin. . 2022; 294 - 298. 10.5152/forestist.2022.21044
Vancouver Narin O,VATANDAŞLAR C,Abdikan S Estimating Stand Top Height Using Freely Distributed ICESat-2 LiDAR Data: A Case Study from Multi-species Forests in Artvin. . 2022; 294 - 298. 10.5152/forestist.2022.21044
IEEE Narin O,VATANDAŞLAR C,Abdikan S "Estimating Stand Top Height Using Freely Distributed ICESat-2 LiDAR Data: A Case Study from Multi-species Forests in Artvin." , ss.294 - 298, 2022. 10.5152/forestist.2022.21044
ISNAD Narin, Omer Gokberk vd. "Estimating Stand Top Height Using Freely Distributed ICESat-2 LiDAR Data: A Case Study from Multi-species Forests in Artvin". (2022), 294-298. https://doi.org/10.5152/forestist.2022.21044
APA Narin O, VATANDAŞLAR C, Abdikan S (2022). Estimating Stand Top Height Using Freely Distributed ICESat-2 LiDAR Data: A Case Study from Multi-species Forests in Artvin. FORESTIST, 72(3), 294 - 298. 10.5152/forestist.2022.21044
Chicago Narin Omer Gokberk,VATANDAŞLAR CAN,Abdikan Saygin Estimating Stand Top Height Using Freely Distributed ICESat-2 LiDAR Data: A Case Study from Multi-species Forests in Artvin. FORESTIST 72, no.3 (2022): 294 - 298. 10.5152/forestist.2022.21044
MLA Narin Omer Gokberk,VATANDAŞLAR CAN,Abdikan Saygin Estimating Stand Top Height Using Freely Distributed ICESat-2 LiDAR Data: A Case Study from Multi-species Forests in Artvin. FORESTIST, vol.72, no.3, 2022, ss.294 - 298. 10.5152/forestist.2022.21044
AMA Narin O,VATANDAŞLAR C,Abdikan S Estimating Stand Top Height Using Freely Distributed ICESat-2 LiDAR Data: A Case Study from Multi-species Forests in Artvin. FORESTIST. 2022; 72(3): 294 - 298. 10.5152/forestist.2022.21044
Vancouver Narin O,VATANDAŞLAR C,Abdikan S Estimating Stand Top Height Using Freely Distributed ICESat-2 LiDAR Data: A Case Study from Multi-species Forests in Artvin. FORESTIST. 2022; 72(3): 294 - 298. 10.5152/forestist.2022.21044
IEEE Narin O,VATANDAŞLAR C,Abdikan S "Estimating Stand Top Height Using Freely Distributed ICESat-2 LiDAR Data: A Case Study from Multi-species Forests in Artvin." FORESTIST, 72, ss.294 - 298, 2022. 10.5152/forestist.2022.21044
ISNAD Narin, Omer Gokberk vd. "Estimating Stand Top Height Using Freely Distributed ICESat-2 LiDAR Data: A Case Study from Multi-species Forests in Artvin". FORESTIST 72/3 (2022), 294-298. https://doi.org/10.5152/forestist.2022.21044